Tadee, Suton; Poopra, Sudaporn On the Diophantine equation \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}\). (English) Zbl 07663621 Int. J. Math. Comput. Sci. 18, No. 2, 173-177 (2023). MSC: 11D61 PDF BibTeX XML Cite \textit{S. Tadee} and \textit{S. Poopra}, Int. J. Math. Comput. Sci. 18, No. 2, 173--177 (2023; Zbl 07663621) Full Text: Link
Yuan, Xiaodan A Diophantine equation and its positive integer solutions. (English) Zbl 1513.11118 JP J. Algebra Number Theory Appl. 56, 37-69 (2022). MSC: 11D68 PDF BibTeX XML Cite \textit{X. Yuan}, JP J. Algebra Number Theory Appl. 56, 37--69 (2022; Zbl 1513.11118) Full Text: DOI
Luo, Jiagui Perfect powers of five with few ternary digits. (Chinese. English summary) Zbl 1513.11102 Chin. Ann. Math., Ser. A 42, No. 4, 359-378 (2021). MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{J. Luo}, Chin. Ann. Math., Ser. A 42, No. 4, 359--378 (2021; Zbl 1513.11102) Full Text: DOI
Li, Yang On the positive integer solutions of the simultaneous Diophantine equations \(8{x^2} - 6{y^2} = 2\) and \(28{y^2} - 8{z^2} = 20\). (Chinese. English summary) Zbl 1488.11080 Math. Pract. Theory 51, No. 15, 300-303 (2021). MSC: 11D09 PDF BibTeX XML Cite \textit{Y. Li}, Math. Pract. Theory 51, No. 15, 300--303 (2021; Zbl 1488.11080)
Zheng, Hui; Yang, Shichun The positive integer solutions to multivariate Euler function equation \(\varphi(x_1x_2 \cdots x_n) = k_1\varphi(x_1) + k_2\varphi(x_2) + \cdots + k_n\varphi(x_n) \pm l\). (Chinese. English summary) Zbl 1488.11014 Math. Pract. Theory 51, No. 13, 313-318 (2021). MSC: 11A25 11D45 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{S. Yang}, Math. Pract. Theory 51, No. 13, 313--318 (2021; Zbl 1488.11014)
Zhang, Sibao; Jiang, Lianxia The solutions of arithmetic function equation \(k\varphi(Y) = {\varphi_2}(Y) + S(Y^8)\). (Chinese. English summary) Zbl 1488.11013 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 45, No. 2, 194-197 (2021). MSC: 11A25 11D41 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{L. Jiang}, J. Jiangxi Norm. Univ., Nat. Sci. Ed. 45, No. 2, 194--197 (2021; Zbl 1488.11013) Full Text: DOI
Zhang, Sibao; Jiang, Lianxia Discussion on the positive integer solution of equation \(k\varphi (m) = S(m^t)\). (Chinese. English summary) Zbl 1488.11012 J. Henan Univ., Nat. Sci. 51, No. 3, 367-372 (2021). MSC: 11A25 11D41 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{L. Jiang}, J. Henan Univ., Nat. Sci. 51, No. 3, 367--372 (2021; Zbl 1488.11012) Full Text: DOI
Guan, Xungui A conjecture of Jeśmanowicz concerning Pythagorean triples. (Chinese. English summary) Zbl 1488.11092 Adv. Math., Beijing 50, No. 4, 519-528 (2021). MSC: 11D61 PDF BibTeX XML Cite \textit{X. Guan}, Adv. Math., Beijing 50, No. 4, 519--528 (2021; Zbl 1488.11092)
Cai, Tianxin; Zhang, Yong A variety of Euler’s sum of powers conjecture. (English) Zbl 07442476 Czech. Math. J. 71, No. 4, 1099-1113 (2021). MSC: 11D72 11D41 11G05 PDF BibTeX XML Cite \textit{T. Cai} and \textit{Y. Zhang}, Czech. Math. J. 71, No. 4, 1099--1113 (2021; Zbl 07442476) Full Text: DOI
Lin, Lijuan On the Diophantine equation \(7x(x + 1)(x + 2)(x + 3) = 5y(y + 1)(y + 2)(y + 3)\). (Chinese. English summary) Zbl 1488.11083 Math. Pract. Theory 51, No. 9, 218-223 (2021). MSC: 11D25 PDF BibTeX XML Cite \textit{L. Lin}, Math. Pract. Theory 51, No. 9, 218--223 (2021; Zbl 1488.11083)
Deng, Naijuan Number of solutions to \({(an)^x} + {(bn)^y} = {(cn)^z}\). (Chinese. English summary) Zbl 1488.11091 Math. Pract. Theory 51, No. 9, 194-204 (2021). MSC: 11D61 PDF BibTeX XML Cite \textit{N. Deng}, Math. Pract. Theory 51, No. 9, 194--204 (2021; Zbl 1488.11091)
Guan, Xungui On the Diophantine equation \(X^2 - (a^2 + 1)Y^4 = k^2 - 1 - 2ka\). (Chinese. English summary) Zbl 1488.11081 J. Sichuan Norm. Univ., Nat. Sci. 44, No. 2, 225-234 (2021). MSC: 11D25 11J68 PDF BibTeX XML Cite \textit{X. Guan}, J. Sichuan Norm. Univ., Nat. Sci. 44, No. 2, 225--234 (2021; Zbl 1488.11081) Full Text: DOI
Zhang, Y. On products of consecutive arithmetic progressions. III. (English) Zbl 1480.11035 Acta Math. Hung. 163, No. 2, 407-428 (2021). Reviewer: Maciej Ulas (Kraków) MSC: 11D25 11D72 PDF BibTeX XML Cite \textit{Y. Zhang}, Acta Math. Hung. 163, No. 2, 407--428 (2021; Zbl 1480.11035) Full Text: DOI
Tong, Ruizhou On the Diophantine equation \((2^x-1)(p^y-1)=2z^2\). (English) Zbl 1513.11115 Czech. Math. J. 71, No. 3, 689-696 (2021). MSC: 11D61 PDF BibTeX XML Cite \textit{R. Tong}, Czech. Math. J. 71, No. 3, 689--696 (2021; Zbl 1513.11115) Full Text: DOI
Deng, Guilin; Liao, Qunying The solvability of the equation \({\varphi_e}(n) = {p^{t\omega (n)}}(e = 2, 3, 4, 6)\). (Chinese. English summary) Zbl 1474.11008 J. Sichuan Norm. Univ., Nat. Sci. 44, No. 1, 18-22 (2021). MSC: 11A25 PDF BibTeX XML Cite \textit{G. Deng} and \textit{Q. Liao}, J. Sichuan Norm. Univ., Nat. Sci. 44, No. 1, 18--22 (2021; Zbl 1474.11008) Full Text: DOI
Xie, Tiantian; Yang, Hai; Xu, Qian The positive integer solutions of elliptic curves \({y^2} = qx ({x^2} - 256)\). (Chinese. English summary) Zbl 1474.11087 J. Qufu Norm. Univ., Nat. Sci. 47, No. 1, 47-51 (2021). MSC: 11D25 11G05 11G07 PDF BibTeX XML Cite \textit{T. Xie} et al., J. Qufu Norm. Univ., Nat. Sci. 47, No. 1, 47--51 (2021; Zbl 1474.11087)
Zhang, Sibao The solution of a quaternary variable coefficient mixed equation on Euler function \(\varphi (n)\). (Chinese. English summary) Zbl 1474.11019 J. Cent. China Norm. Univ., Nat. Sci. 55, No. 1, 24-29 (2021). MSC: 11A25 PDF BibTeX XML Cite \textit{S. Zhang}, J. Cent. China Norm. Univ., Nat. Sci. 55, No. 1, 24--29 (2021; Zbl 1474.11019) Full Text: DOI
Deng, Naijuan; Yuan, Pingzhi Diophantine equation \(((c + 1)m^2 + 1)^x + (cm^2 - 1)^y = (am)^z\). (Chinese. English summary) Zbl 1474.11095 Math. Pract. Theory 50, No. 20, 220-226 (2020). MSC: 11D61 PDF BibTeX XML Cite \textit{N. Deng} and \textit{P. Yuan}, Math. Pract. Theory 50, No. 20, 220--226 (2020; Zbl 1474.11095)
Kaidireya, Nuermaimaiti; Zhang, Sibao Discussion of solutions of an equation on the number-theoretic function \(\varphi(m)\). (Chinese. English summary) Zbl 1463.11107 Pure Appl. Math. 36, No. 2, 229-238 (2020). MSC: 11D72 11D45 PDF BibTeX XML Cite \textit{N. Kaidireya} and \textit{S. Zhang}, Pure Appl. Math. 36, No. 2, 229--238 (2020; Zbl 1463.11107) Full Text: DOI
Li, Yuan; Luo, Jiagui Extension of the Stormer theorem. (Chinese. English summary) Zbl 1463.11100 J. Nat. Sci. Heilongjiang Univ. 37, No. 2, 167-172 (2020). MSC: 11D09 PDF BibTeX XML Cite \textit{Y. Li} and \textit{J. Luo}, J. Nat. Sci. Heilongjiang Univ. 37, No. 2, 167--172 (2020; Zbl 1463.11100) Full Text: DOI
Deng, Guilin; Liao, Qunying The solvability of the equation \({\varphi_e} (n) = 2^{t\omega (n)}\). (Chinese. English summary) Zbl 1463.11006 J. Sichuan Norm. Univ., Nat. Sci. 43, No. 2, 187-201 (2020). MSC: 11A25 11B68 11Y70 PDF BibTeX XML Cite \textit{G. Deng} and \textit{Q. Liao}, J. Sichuan Norm. Univ., Nat. Sci. 43, No. 2, 187--201 (2020; Zbl 1463.11006) Full Text: DOI
Guan, Xungui On the Diophantine equation \(x^2-2y^4=M (M=17, 41, 73, 89, 97)\). (Chinese. English summary) Zbl 1463.11103 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 200-206 (2020). MSC: 11D25 PDF BibTeX XML Cite \textit{X. Guan}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 2, 200--206 (2020; Zbl 1463.11103) Full Text: DOI
Zhang, Mingli; Gao, Li On the positive integer solution of a ternary variable coefficient Euler function equation. (Chinese. English summary) Zbl 1463.11013 J. Cent. China Norm. Univ., Nat. Sci. 54, No. 1, 23-29 (2020). MSC: 11A25 11D72 PDF BibTeX XML Cite \textit{M. Zhang} and \textit{L. Gao}, J. Cent. China Norm. Univ., Nat. Sci. 54, No. 1, 23--29 (2020; Zbl 1463.11013) Full Text: DOI
Guan, Xungui On the Diophantine equation \(X^2 + 4Y^4 = pZ^4\). (Chinese. English summary) Zbl 1449.11057 Math. Pract. Theory 49, No. 18, 279-284 (2019). MSC: 11D25 PDF BibTeX XML Cite \textit{X. Guan}, Math. Pract. Theory 49, No. 18, 279--284 (2019; Zbl 1449.11057)
Shen, Jianghong; Gao, Li; Zhang, Mingli Solvability of a ternary variable coefficient of Euler functional equation with constant terms and a perfect number. (Chinese. English summary) Zbl 1449.11009 J. Yunnan Minzu Univ., Nat. Sci. 28, No. 5, 455-461 (2019). MSC: 11A25 PDF BibTeX XML Cite \textit{J. Shen} et al., J. Yunnan Minzu Univ., Nat. Sci. 28, No. 5, 455--461 (2019; Zbl 1449.11009)
Li, Jianglong; Luo, Ming; Lin, Lijuan On the positive integer solution of Diophantine equation \(x (x+1) (x+2) (x+3) = 42y (y+1) (y+2) (y+3)\). (Chinese. English summary) Zbl 1449.11058 Basic Sci. J. Text. Univ. 32, No. 3, 293-297 (2019). MSC: 11D25 PDF BibTeX XML Cite \textit{J. Li} et al., Basic Sci. J. Text. Univ. 32, No. 3, 293--297 (2019; Zbl 1449.11058) Full Text: DOI
Zhu, Jie; Liao, Qunying The solvability of the equation \(Z (n) = \varphi_e(\mathrm{SL}(n))\). (Chinese. English summary) Zbl 1449.11016 Adv. Math., Beijing 48, No. 5, 541-554 (2019). MSC: 11A25 PDF BibTeX XML Cite \textit{J. Zhu} and \textit{Q. Liao}, Adv. Math., Beijing 48, No. 5, 541--554 (2019; Zbl 1449.11016)
Deng, Nai-Juan; Wu, Dan-Yao; Yuan, Ping-Zhi The exponential Diophantine equation \((3am^2-1)^x+(a(a-3)m^2+1)^y=(am)^z\). (English) Zbl 1448.11071 Turk. J. Math. 43, No. 5, 2561-2567 (2019). MSC: 11D61 PDF BibTeX XML Cite \textit{N.-J. Deng} et al., Turk. J. Math. 43, No. 5, 2561--2567 (2019; Zbl 1448.11071) Full Text: Link
Zhang, Sibao; Yoldax, Akim Two equations on generalized Euler function \({\varphi_2} (n)\). (Chinese. English summary) Zbl 1449.11015 J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 2, 7-12 (2019). MSC: 11A25 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{A. Yoldax}, J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 2, 7--12 (2019; Zbl 1449.11015) Full Text: DOI
Zhang, Sibao Solutions on Euler function equation \(\varphi (n) = {2^{\omega (n)}}{3^{\omega (n)}}{5^{\omega (n)}}\). (Chinese. English summary) Zbl 1449.11014 J. Nanchang Univ., Nat. Sci. 43, No. 2, 114-119 (2019). MSC: 11A25 PDF BibTeX XML Cite \textit{S. Zhang}, J. Nanchang Univ., Nat. Sci. 43, No. 2, 114--119 (2019; Zbl 1449.11014)
Zhang, Sibao Solutions of two equations related to generalized Euler function. (Chinese. English summary) Zbl 1449.11013 J. Anhui Univ., Nat. Sci. 43, No. 4, 32-35 (2019). MSC: 11A25 PDF BibTeX XML Cite \textit{S. Zhang}, J. Anhui Univ., Nat. Sci. 43, No. 4, 32--35 (2019; Zbl 1449.11013) Full Text: DOI
He, Yanfeng On the exponential Diophantine equation \(x^2=D^{2m}-D^mP^n+p^{2n}\). (Chinese. English summary) Zbl 1438.11085 J. Math., Wuhan Univ. 39, No. 2, 279-286 (2019). MSC: 11D61 PDF BibTeX XML Cite \textit{Y. He}, J. Math., Wuhan Univ. 39, No. 2, 279--286 (2019; Zbl 1438.11085) Full Text: DOI
Guan, Xungui On positive integer solutions to the simultaneous Pell equations \({y^2} - D{z^2} = 1\), \({x^2} - 2D{z^2} = 1\). (Chinese. English summary) Zbl 1438.11076 J. Cent. China Norm. Univ., Nat. Sci. 53, No. 2, 171-180 (2019). MSC: 11D09 PDF BibTeX XML Cite \textit{X. Guan}, J. Cent. China Norm. Univ., Nat. Sci. 53, No. 2, 171--180 (2019; Zbl 1438.11076) Full Text: DOI
Zhang, Sibao; Yang, Yanni; Xi, Xiaozhong Several nonlinear equations on Euler function \(\varphi(n)\). (Chinese. English summary) Zbl 1438.11013 J. Henan Univ., Nat. Sci. 49, No. 1, 122-126 (2019). MSC: 11A25 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Henan Univ., Nat. Sci. 49, No. 1, 122--126 (2019; Zbl 1438.11013) Full Text: DOI
Zhang, Sibao Solutions of two equations mixing Euler function \(\varphi(n)\) with generalized Euler function \(\varphi_2(n)\). (Chinese. English summary) Zbl 1438.11011 J. Beihua Univ., Nat. Sci. 20, No. 1, 8-14 (2019). MSC: 11A25 PDF BibTeX XML Cite \textit{S. Zhang}, J. Beihua Univ., Nat. Sci. 20, No. 1, 8--14 (2019; Zbl 1438.11011) Full Text: DOI
Yang, Hai; Fu, Ruiqin A note on the Goormaghtigh equation. (English) Zbl 1438.11089 Period. Math. Hung. 79, No. 1, 86-93 (2019). Reviewer: Le Maohua (Zhanjiang) MSC: 11D61 11J86 PDF BibTeX XML Cite \textit{H. Yang} and \textit{R. Fu}, Period. Math. Hung. 79, No. 1, 86--93 (2019; Zbl 1438.11089) Full Text: DOI
Du, Shouqiang; Zhang, Liping A mixed integer programming approach to the tensor complementarity problem. (English) Zbl 1425.90072 J. Glob. Optim. 73, No. 4, 789-800 (2019). MSC: 90C11 15A69 PDF BibTeX XML Cite \textit{S. Du} and \textit{L. Zhang}, J. Glob. Optim. 73, No. 4, 789--800 (2019; Zbl 1425.90072) Full Text: DOI arXiv
Liu, Baoli The solvability for a class of the exponential Diophantine equation. (Chinese. English summary) Zbl 1424.11085 Math. Pract. Theory 48, No. 14, 308-311 (2018). MSC: 11D61 PDF BibTeX XML Cite \textit{B. Liu}, Math. Pract. Theory 48, No. 14, 308--311 (2018; Zbl 1424.11085)
Gu, Xiuchuan Existence of solution for the system of Pell equations. (Chinese. English summary) Zbl 1424.11071 J. Cent. China Norm. Univ., Nat. Sci. 52, No. 5, 619-621 (2018). MSC: 11D09 PDF BibTeX XML Cite \textit{X. Gu}, J. Cent. China Norm. Univ., Nat. Sci. 52, No. 5, 619--621 (2018; Zbl 1424.11071) Full Text: DOI
Jiang, Lianxia Positive integer solutions of a nonlinear equation containing Euler function \(\varphi (n)\). (Chinese. English summary) Zbl 1424.11010 J. Beihua Univ., Nat. Sci. 19, No. 6, 719-723 (2018). MSC: 11A25 PDF BibTeX XML Cite \textit{L. Jiang}, J. Beihua Univ., Nat. Sci. 19, No. 6, 719--723 (2018; Zbl 1424.11010) Full Text: DOI
Zheng, Lu; Gao, Li; Guo, Mengyuan Positive integer solution of nonlinear equations related to Euler function \(\varphi \left ( n \right)\). (Chinese. English summary) Zbl 1424.11018 Pure Appl. Math. 34, No. 2, 172-176 (2018). MSC: 11A25 PDF BibTeX XML Cite \textit{L. Zheng} et al., Pure Appl. Math. 34, No. 2, 172--176 (2018; Zbl 1424.11018) Full Text: DOI
Yuan, Xiaodan; Luo, Jiagui On the Diophantine equation \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3p}\). (English) Zbl 1425.11061 AIMS Math. 2, No. 1, 111-127 (2017). MSC: 11D68 PDF BibTeX XML Cite \textit{X. Yuan} and \textit{J. Luo}, AIMS Math. 2, No. 1, 111--127 (2017; Zbl 1425.11061) Full Text: DOI
Yang, Hai; Hou, Jing; Fu, Ruiqin On the solvability of the cubic Diophantine equation \({x^3}+1=2{p_1}{p_2}Q{y^2}\). (Chinese. English summary) Zbl 1399.11094 Acta Sci. Nat. Univ. Sunyatseni 56, No. 5, 30-33 (2017). MSC: 11D25 PDF BibTeX XML Cite \textit{H. Yang} et al., Acta Sci. Nat. Univ. Sunyatseni 56, No. 5, 30--33 (2017; Zbl 1399.11094) Full Text: DOI
Bai, Jiwen; Zhao, Xiqing Several equations related to the Euler function \(\varphi \left ( n \right)\). (Chinese. English summary) Zbl 1399.11058 J. Yunnan Minzu Univ., Nat. Sci. 26, No. 4, 296-298 (2017). MSC: 11B68 11D45 PDF BibTeX XML Cite \textit{J. Bai} and \textit{X. Zhao}, J. Yunnan Minzu Univ., Nat. Sci. 26, No. 4, 296--298 (2017; Zbl 1399.11058) Full Text: DOI
Zhang, Yong; Shen, Zhongyan On the Diophantine system \(f(z)= f(x) f(y)= f(u) f(v)\). (English) Zbl 1387.11024 Period. Math. Hung. 75, No. 2, 295-301 (2017). Reviewer: Thomas Schmidt (Corvallis) MSC: 11D25 11D72 11G05 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Z. Shen}, Period. Math. Hung. 75, No. 2, 295--301 (2017; Zbl 1387.11024) Full Text: DOI
He, Zongyou On the Diophantine equation \(y(y + 1)(y + 2)(y + 3) = n^2x(x + 1)(x + 2)(x + 3)\). (Chinese. English summary) Zbl 1389.11080 J. Yunnan Minzu Univ., Nat. Sci. 26, No. 2, 137-139, 143 (2017). MSC: 11D25 PDF BibTeX XML Cite \textit{Z. He}, J. Yunnan Minzu Univ., Nat. Sci. 26, No. 2, 137--139, 143 (2017; Zbl 1389.11080)
Pan, Xiaowei A note on the exponential Diophantine equation \((am^2+1)^x+(bm^2-1)^y=(cm)^z\). (English) Zbl 1425.11058 Colloq. Math. 149, No. 2, 265-273 (2017). MSC: 11D61 PDF BibTeX XML Cite \textit{X. Pan}, Colloq. Math. 149, No. 2, 265--273 (2017; Zbl 1425.11058) Full Text: DOI
Xu, Aijuan; Deng, Moujie On the Diophantine equation \(p^x + (p + 1)^y =z^2\). (Chinese. English summary) Zbl 1389.11090 J. Nat. Sci. Heilongjiang Univ. 33, No. 6, 766-769 (2016). MSC: 11D61 PDF BibTeX XML Cite \textit{A. Xu} and \textit{M. Deng}, J. Nat. Sci. Heilongjiang Univ. 33, No. 6, 766--769 (2016; Zbl 1389.11090) Full Text: DOI
Guan, Chunmei; Wu, Xingxing; Zhang, Sibao; Xi, Xiaozhong The positive integer solutions of Diophantine equation \(\varphi(xyz) = 5(\varphi(x) + \varphi(y) + \varphi(z))\). (Chinese. English summary) Zbl 1374.11005 J. Northwest Norm. Univ., Nat. Sci. 52, No. 4, 17-21 (2016). MSC: 11A25 PDF BibTeX XML Cite \textit{C. Guan} et al., J. Northwest Norm. Univ., Nat. Sci. 52, No. 4, 17--21 (2016; Zbl 1374.11005) Full Text: DOI
Wang, Rong; Liao, Qunying On the solvability of the equation \(\varphi_e(n) = \frac{n}{d}\) \((e = 1, 2, 4)\). (Chinese. English summary) Zbl 1374.11011 Pure Appl. Math. 32, No. 5, 481-494 (2016). MSC: 11A25 PDF BibTeX XML Cite \textit{R. Wang} and \textit{Q. Liao}, Pure Appl. Math. 32, No. 5, 481--494 (2016; Zbl 1374.11011) Full Text: DOI
Zhang, Xiaobeng; Li, Xiaoxue The number of solutions of the generalized Ramanujan-Nagell equation \(x^2+D^m=4p^n\). (Chinese. English summary) Zbl 1374.11059 J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 11-13 (2016). MSC: 11D61 11D45 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{X. Li}, J. Shaanxi Norm. Univ., Nat. Sci. Ed. 44, No. 4, 11--13 (2016; Zbl 1374.11059) Full Text: DOI
Zhang, Zhengping; Zhao, Kaiming On the positive integer solutions of a class of generalized Ramanujan-Nagell equation. (Chinese. English summary) Zbl 1374.11046 J. Math., Wuhan Univ. 36, No. 5, 1077-1082 (2016). MSC: 11D09 11D45 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{K. Zhao}, J. Math., Wuhan Univ. 36, No. 5, 1077--1082 (2016; Zbl 1374.11046)
Zhang, Sibao Three kinds of equations involving Euler function. (Chinese. English summary) Zbl 1363.11033 Math. Pract. Theory 46, No. 8, 287-291 (2016). MSC: 11B68 11B83 PDF BibTeX XML Cite \textit{S. Zhang}, Math. Pract. Theory 46, No. 8, 287--291 (2016; Zbl 1363.11033)
Guan, Xungui On the Diophantine equation \(x^2-kxy+ y^2 + px = 0\). (Chinese. English summary) Zbl 1363.11050 Math. Pract. Theory 46, No. 8, 206-212 (2016). MSC: 11D09 PDF BibTeX XML Cite \textit{X. Guan}, Math. Pract. Theory 46, No. 8, 206--212 (2016; Zbl 1363.11050)
Du, Xiaoying Positive integer solutions of Mordell’s equation \(y^3 = x^2 + 2p^4\). (Chinese. English summary) Zbl 1363.11052 Math. Pract. Theory 46, No. 1, 263-266 (2016). MSC: 11D25 11D45 PDF BibTeX XML Cite \textit{X. Du}, Math. Pract. Theory 46, No. 1, 263--266 (2016; Zbl 1363.11052)
Hu, Jiayuan; Li, Xiaoxue All solutions of the Diophantine equation \(x^2 +2^m = y^n\). (Chinese. English summary) Zbl 1349.11075 Math. Pract. Theory 45, No. 24, 291-296 (2015). MSC: 11D61 PDF BibTeX XML Cite \textit{J. Hu} and \textit{X. Li}, Math. Pract. Theory 45, No. 24, 291--296 (2015; Zbl 1349.11075)
Gao, Li; Ma, Yafeng An equation involving the Smarandache LCM dual function. (Chinese. English summary) Zbl 1349.11003 J. Hubei Univ., Nat. Sci. 37, No. 4, 367-371 (2015). MSC: 11A25 PDF BibTeX XML Cite \textit{L. Gao} and \textit{Y. Ma}, J. Hubei Univ., Nat. Sci. 37, No. 4, 367--371 (2015; Zbl 1349.11003) Full Text: DOI
Guan, Xungui On Terai’s conjecture concerning the Diophantine equation \(a^x +b^y= c^z\). (Chinese. English summary) Zbl 1349.11074 Adv. Math., Beijing 44, No. 6, 837-844 (2015). MSC: 11D61 PDF BibTeX XML Cite \textit{X. Guan}, Adv. Math., Beijing 44, No. 6, 837--844 (2015; Zbl 1349.11074) Full Text: DOI
Liu, Miaohua; Song, Xiuchao The necessary conditions for the equation \(x^3+1=3py^2\) having positive integer solutions. (Chinese. English summary) Zbl 1340.11034 J. Inn. Mong. Norm. Univ., Nat. Sci. 44, No. 1, 19-21 (2015). MSC: 11D25 PDF BibTeX XML Cite \textit{M. Liu} and \textit{X. Song}, J. Inn. Mong. Norm. Univ., Nat. Sci. 44, No. 1, 19--21 (2015; Zbl 1340.11034)
Wang, Jianping; Wang, Tingting; Zhang, Wenpeng A note on the exponential Diophantine equation \((4m^2+1)^x+(5m^2-1)^y=(3m)^z\). (English) Zbl 1364.11087 Colloq. Math. 139, No. 1, 121-126 (2015). MSC: 11D61 PDF BibTeX XML Cite \textit{J. Wang} et al., Colloq. Math. 139, No. 1, 121--126 (2015; Zbl 1364.11087) Full Text: DOI
Feng, Qiang; Han, Di On the Diophantine system \(a^2+b^2=c^r\) and \(a^x+b^y=c^z\) for \(b\) is a prime. (English) Zbl 1339.11047 Int. J. Appl. Math. Stat. 52, No. 7, 65-73 (2014). MSC: 11D61 PDF BibTeX XML Cite \textit{Q. Feng} and \textit{D. Han}, Int. J. Appl. Math. Stat. 52, No. 7, 65--73 (2014; Zbl 1339.11047) Full Text: Link
Wang, Jianhua; Wang, Xiaohan The upper bound for solutions of the generalized Brocard-Ramanujan equation \(x^2-D=y!\). (Chinese. English summary) Zbl 1324.11032 Basic Sci. J. Text. Univ. 27, No. 3, 290-292 (2014). MSC: 11D09 PDF BibTeX XML Cite \textit{J. Wang} and \textit{X. Wang}, Basic Sci. J. Text. Univ. 27, No. 3, 290--292 (2014; Zbl 1324.11032)
Guan, Wenji; Che, Shun On the Diophantine equation \(2^yn^{y-x}=(b+2)^x-b^x\). (Chinese. English summary) Zbl 1313.11072 J. Northwest Univ., Nat. Sci. Ed. 44, No. 4, 534-536 (2014). MSC: 11D61 PDF BibTeX XML Cite \textit{W. Guan} and \textit{S. Che}, J. Northwest Univ., Nat. Sci. Ed. 44, No. 4, 534--536 (2014; Zbl 1313.11072)
Liu, Baoli A note on the ternary pure exponential Diophantine equations. (Chinese. English summary) Zbl 1313.11073 J. Inn. Mong. Norm. Univ., Nat. Sci. 43, No. 4, 401-402, 407 (2014). MSC: 11D61 PDF BibTeX XML Cite \textit{B. Liu}, J. Inn. Mong. Norm. Univ., Nat. Sci. 43, No. 4, 401--402, 407 (2014; Zbl 1313.11073)
Zhu, Minhui; Zhang, Juanjuan; Cui, Yan The criteria for the equation \(x^3-1=2py^2\) having positive integer solutions. (Chinese. English summary) Zbl 1313.11064 J. Inn. Mong. Norm. Univ., Nat. Sci. 43, No. 4, 397-400 (2014). MSC: 11D25 PDF BibTeX XML Cite \textit{M. Zhu} et al., J. Inn. Mong. Norm. Univ., Nat. Sci. 43, No. 4, 397--400 (2014; Zbl 1313.11064)
Wang, Xiaohan On the Diophantine equation \(p^{2m}-Dx^2=1\). (Chinese. English summary) Zbl 1313.11074 Basic Sci. J. Text. Univ. 27, No. 1, 45-47 (2014). MSC: 11D61 PDF BibTeX XML Cite \textit{X. Wang}, Basic Sci. J. Text. Univ. 27, No. 1, 45--47 (2014; Zbl 1313.11074)
Su, Juanli The criteria for the equation \(x^3-8=py^2\) has primitive positive integer solutions. (Chinese. English summary) Zbl 1313.11061 Basic Sci. J. Text. Univ. 27, No. 1, 38-41 (2014). MSC: 11D25 PDF BibTeX XML Cite \textit{J. Su}, Basic Sci. J. Text. Univ. 27, No. 1, 38--41 (2014; Zbl 1313.11061)
Zheng, Hui On the Diophantine equation \(x(x+1)(x+2)=2p^ky^n\). (Chinese. English summary) Zbl 1313.11063 J. Southwest Univ. Natl., Nat. Sci. 40, No. 3, 399-401 (2014). MSC: 11D25 PDF BibTeX XML Cite \textit{H. Zheng}, J. Southwest Univ. Natl., Nat. Sci. 40, No. 3, 399--401 (2014; Zbl 1313.11063) Full Text: DOI
Du, Xiancun; Wan, Fei; Zhao, Jin’e On the Diophantine equation \(x^3\pm 1=pD_1y^2\). (Chinese. English summary) Zbl 1313.11059 J. Anhui Univ., Nat. Sci. 38, No. 2, 23-26 (2014). MSC: 11D25 PDF BibTeX XML Cite \textit{X. Du} et al., J. Anhui Univ., Nat. Sci. 38, No. 2, 23--26 (2014; Zbl 1313.11059) Full Text: DOI
Yang, Hai; Fu, Ruiqin A kind of an exponential Diophantine system and its integer solution. (Chinese. English summary) Zbl 1299.11036 J. Northwest Univ., Nat. Sci. Ed. 43, No. 4, 524-526 (2013). MSC: 11D61 PDF BibTeX XML Cite \textit{H. Yang} and \textit{R. Fu}, J. Northwest Univ., Nat. Sci. Ed. 43, No. 4, 524--526 (2013; Zbl 1299.11036)
Che, Shun An equation involving Smarandache function \(S(n)\) and pseudo Smarandache function \(Z_1(n)\) and its positive integer solutions. (Chinese. English summary) Zbl 1289.11003 Basic Sci. J. Text. Univ. 26, No. 1, 15-17 (2013). MSC: 11A25 PDF BibTeX XML Cite \textit{S. Che}, Basic Sci. J. Text. Univ. 26, No. 1, 15--17 (2013; Zbl 1289.11003)
Wu, Huaming On the cubic Diophantine equation \(x^3+1=3py^2\). (Chinese. English summary) Zbl 1274.11083 J. Northwest Univ., Nat. Sci. Ed. 43, No. 1, 15-17 (2013). MSC: 11D25 PDF BibTeX XML Cite \textit{H. Wu}, J. Northwest Univ., Nat. Sci. Ed. 43, No. 1, 15--17 (2013; Zbl 1274.11083)
Cheng, Zhi; Sun, Cuifang; Du, Xianneng On the Diophantine equation \((20n)^x+(21n)^y=(29n)^z\). (English) Zbl 1274.11088 Math. Appl. 26, No. 1, 129-133 (2013). MSC: 11D61 PDF BibTeX XML Cite \textit{Z. Cheng} et al., Math. Appl. 26, No. 1, 129--133 (2013; Zbl 1274.11088)
He, Bo; Togbé, Alain; Yang, Shichun On the solutions of the exponential Diophantine equation \(a^x+b^y=(m^2+1)^z\). (English) Zbl 1274.11086 Quaest. Math. 36, No. 1, 119-135 (2013). MSC: 11D41 11D09 11D61 PDF BibTeX XML Cite \textit{B. He} et al., Quaest. Math. 36, No. 1, 119--135 (2013; Zbl 1274.11086) Full Text: DOI
Liu, Yanyan An equation involving the L.C.M. product of the arithmetical function. (Chinese. English summary) Zbl 1274.11010 J. Inn. Mong. Norm. Univ., Nat. Sci. 41, No. 6, 601-603 (2012). MSC: 11A25 PDF BibTeX XML Cite \textit{Y. Liu}, J. Inn. Mong. Norm. Univ., Nat. Sci. 41, No. 6, 601--603 (2012; Zbl 1274.11010)
Qian, Longjiang An equation involving the Smarandache function and the pseudo-Smarandache function of second kind. (Chinese. English summary) Zbl 1249.11043 Pure Appl. Math. 27, No. 5, 577-580 (2011). MSC: 11B83 PDF BibTeX XML Cite \textit{L. Qian}, Pure Appl. Math. 27, No. 5, 577--580 (2011; Zbl 1249.11043)
Wu, Huaming A rational fractional Diophantine equation. (English) Zbl 1240.11055 J. Math., Wuhan Univ. 31, No. 3, 428-432 (2011). MSC: 11D25 PDF BibTeX XML Cite \textit{H. Wu}, J. Math., Wuhan Univ. 31, No. 3, 428--432 (2011; Zbl 1240.11055)
Yuan, Xia Two equations involving the F. Smarandache function. (Chinese. English summary) Zbl 1240.11022 J. Inn. Mong. Norm. Univ., Nat. Sci. 40, No. 2, 129-131 (2011). MSC: 11A25 PDF BibTeX XML Cite \textit{X. Yuan}, J. Inn. Mong. Norm. Univ., Nat. Sci. 40, No. 2, 129--131 (2011; Zbl 1240.11022)
Le, Maohua A note on the Diophantine equation \( (a-1)x^2+f (a)=4a^n\). (Chinese. English summary) Zbl 1240.11061 Acta Math. Sin., Chin. Ser. 54, No. 1, 111-114 (2011). MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, Acta Math. Sin., Chin. Ser. 54, No. 1, 111--114 (2011; Zbl 1240.11061)
Abou-El-Enien, Tarek Hanafi M. On the solution of a special type of large scale integer linear vector optimization problems with uncertain data through TOPSIS approach. (English) Zbl 1279.90205 Int. J. Contemp. Math. Sci. 6, No. 13-16, 657-669 (2011). MSC: 90C70 90C06 90C10 90C29 PDF BibTeX XML Cite \textit{T. H. M. Abou-El-Enien}, Int. J. Contemp. Math. Sci. 6, No. 13--16, 657--669 (2011; Zbl 1279.90205) Full Text: Link
Wu, Xin An equation involving the pseudo-Smarandache dual function. (Chinese. English summary) Zbl 1240.11020 J. Inn. Mong. Norm. Univ., Nat. Sci. 39, No. 6, 557-559 (2010). MSC: 11A25 PDF BibTeX XML Cite \textit{X. Wu}, J. Inn. Mong. Norm. Univ., Nat. Sci. 39, No. 6, 557--559 (2010; Zbl 1240.11020)
Li, Caijuan An equation involving two Smarandache functions and its positive integer solutions. (Chinese. English summary) Zbl 1240.11013 J. Nat. Sci. Heilongjiang Univ. 27, No. 4, 446-448, 454 (2010). MSC: 11A25 PDF BibTeX XML Cite \textit{C. Li}, J. Nat. Sci. Heilongjiang Univ. 27, No. 4, 446--448, 454 (2010; Zbl 1240.11013)
Gao, Jie; Yuan, Jin On the Diophantine equation \(x^3+1=py^2\). (Chinese. English summary) Zbl 1240.11052 Pure Appl. Math. 26, No. 4, 687-690 (2010). MSC: 11D25 PDF BibTeX XML Cite \textit{J. Gao} and \textit{J. Yuan}, Pure Appl. Math. 26, No. 4, 687--690 (2010; Zbl 1240.11052)
Yang, Shichun; Liao, Qunying A note of the solutions of Lebesgue-Nagell equation \(x^2+D=y^p\). (Chinese. English summary) Zbl 1240.11065 J. Sichuan Univ., Nat. Sci. Ed. 47, No. 4, 718-722 (2010). MSC: 11D61 11D45 PDF BibTeX XML Cite \textit{S. Yang} and \textit{Q. Liao}, J. Sichuan Univ., Nat. Sci. Ed. 47, No. 4, 718--722 (2010; Zbl 1240.11065) Full Text: DOI
He, Bo; Yang, Shichun The positive integer solution of Diophantine equations \((8a^3-3a)^x+(3a^2-1)^y=(4a^2-1)^z\). (Chinese. English summary) Zbl 1240.11058 J. Sichuan Univ., Nat. Sci. Ed. 47, No. 1, 13-16 (2010). MSC: 11D61 11D45 PDF BibTeX XML Cite \textit{B. He} and \textit{S. Yang}, J. Sichuan Univ., Nat. Sci. Ed. 47, No. 1, 13--16 (2010; Zbl 1240.11058) Full Text: DOI
Zhang, Jin An equation involving the pseudo Smarandache function and its dual function. (Chinese. English summary) Zbl 1224.11043 Pure Appl. Math. 25, No. 4, 786-788 (2009). MSC: 11B83 PDF BibTeX XML Cite \textit{J. Zhang}, Pure Appl. Math. 25, No. 4, 786--788 (2009; Zbl 1224.11043)
Wu, Zhaoxia; Wu, Nan A congruence equation involving the Smarandache function. (Chinese. English summary) Zbl 1212.11010 J. Northwest Univ., Nat. Sci. Ed. 39, No. 4, 549-551 (2009). MSC: 11A25 11A07 PDF BibTeX XML Cite \textit{Z. Wu} and \textit{N. Wu}, J. Northwest Univ., Nat. Sci. Ed. 39, No. 4, 549--551 (2009; Zbl 1212.11010)
Zhao, Yuane On a congruence equation of the Smarandache function. (Chinese. English summary) Zbl 1199.11003 Pure Appl. Math. 25, No. 1, 80-82 (2009). MSC: 11A07 PDF BibTeX XML Cite \textit{Y. Zhao}, Pure Appl. Math. 25, No. 1, 80--82 (2009; Zbl 1199.11003)
Li, Fanbei; Wang, Yuguang An equation involving the Euler function and the Smarandache \(m\)-th power residues function. (English) Zbl 1219.11005 Zhang, Wenpeng (ed.), Research on number theory and Smarandache notions. Proceedings of the fifth international conference on number theory and Smarandache notions, Shangluo, China, March 27–30, 2009. Phoenix, AZ: Hexis (ISBN 978-1-59973-088-2/pbk). 31-33 (2009). MSC: 11A25 PDF BibTeX XML Cite \textit{F. Li} and \textit{Y. Wang}, in: Research on number theory and Smarandache notions. Proceedings of the fifth international conference on number theory and Smarandache notions, Shangluo, China, March 27--30, 2009. Phoenix, AZ: Hexis. 31--33 (2009; Zbl 1219.11005)
Wang, Chunping; Zhao, Yanlin On an equation involving the Smarandache function and the Dirichlet divisor function. (English) Zbl 1219.11007 Zhang, Wenpeng (ed.), Research on number theory and Smarandache notions. Proceedings of the fifth international conference on number theory and Smarandache notions, Shangluo, China, March 27–30, 2009. Phoenix, AZ: Hexis (ISBN 978-1-59973-088-2/pbk). 27-30 (2009). MSC: 11A25 PDF BibTeX XML Cite \textit{C. Wang} and \textit{Y. Zhao}, in: Research on number theory and Smarandache notions. Proceedings of the fifth international conference on number theory and Smarandache notions, Shangluo, China, March 27--30, 2009. Phoenix, AZ: Hexis. 27--30 (2009; Zbl 1219.11007)
Li, Fanbei A functional equation related to the Smarandache function and its positive integer solutions. (Chinese. English summary) Zbl 1199.11012 J. Northwest Univ., Nat. Sci. Ed. 38, No. 6, 892-894 (2008). MSC: 11A25 PDF BibTeX XML Cite \textit{F. Li}, J. Northwest Univ., Nat. Sci. Ed. 38, No. 6, 892--894 (2008; Zbl 1199.11012)
Zhang, Wenpeng On two problems of the Smarandache function. (Chinese. English summary) Zbl 1199.11033 J. Northwest Univ., Nat. Sci. Ed. 38, No. 2, 173-176 (2008). MSC: 11A25 PDF BibTeX XML Cite \textit{W. Zhang}, J. Northwest Univ., Nat. Sci. Ed. 38, No. 2, 173--176 (2008; Zbl 1199.11033)
Zhu, Minhui An equation involving the Smarandache function and its positive integer solutions. (English) Zbl 1199.11036 Sci. Magna 4, No. 4, 1-3 (2008). MSC: 11A25 PDF BibTeX XML Cite \textit{M. Zhu}, Sci. Magna 4, No. 4, 1--3 (2008; Zbl 1199.11036)
Cheng, Bin On the pseudo Smarandache square-free function. (English) Zbl 1199.11006 Sci. Magna 4, No. 2, 21-24 (2008). MSC: 11A25 PDF BibTeX XML Cite \textit{B. Cheng}, Sci. Magna 4, No. 2, 21--24 (2008; Zbl 1199.11006)
Zhang, Pei An equation involving the pseudo-Smarandache squarefree function. (Chinese. English summary) Zbl 1199.11032 J. Zhengzhou Univ., Nat. Sci. Ed. 40, No. 2, 36-38 (2008). MSC: 11A25 PDF BibTeX XML Cite \textit{P. Zhang}, J. Zhengzhou Univ., Nat. Sci. Ed. 40, No. 2, 36--38 (2008; Zbl 1199.11032)
Cai, Lixiang An equation involving an arithmetic function and its positive integer solution. (Chinese. English summary) Zbl 1199.11004 J. Zhengzhou Univ., Nat. Sci. Ed. 40, No. 2, 33-35 (2008). MSC: 11A25 PDF BibTeX XML Cite \textit{L. Cai}, J. Zhengzhou Univ., Nat. Sci. Ed. 40, No. 2, 33--35 (2008; Zbl 1199.11004)
Liang, Ming; Le, Maohua On the Diophantine equation \( (n+1)+ (n+2)^y=n^z\). (Chinese. English summary) Zbl 1199.11082 Pure Appl. Math. 24, No. 4, 736-741 (2008). MSC: 11D61 PDF BibTeX XML Cite \textit{M. Liang} and \textit{M. Le}, Pure Appl. Math. 24, No. 4, 736--741 (2008; Zbl 1199.11082)
Lin, Muyuan On the Schinzel-Sierpiński equation. (Chinese. English summary) Zbl 1174.11369 J. Math., Wuhan Univ. 28, No. 3, 287-289 (2008). MSC: 11D25 PDF BibTeX XML Cite \textit{M. Lin}, J. Math., Wuhan Univ. 28, No. 3, 287--289 (2008; Zbl 1174.11369)
Yan, Xiaoxia An equation involving the pseudo-Smarandache function and the Smarandache multiplicative function. (Chinese. English summary) Zbl 1174.11334 Pure Appl. Math. 24, No. 2, 372-374 (2008). MSC: 11A99 PDF BibTeX XML Cite \textit{X. Yan}, Pure Appl. Math. 24, No. 2, 372--374 (2008; Zbl 1174.11334)
Le, Maohua On the Diophantine system \(a^2+ b^2 = c^3\) and \(a^x + b^y = c^z\) for \(b\) is an odd prime. (English) Zbl 1218.11037 Acta Math. Sin., Engl. Ser. 24, No. 6, 917-924 (2008). Reviewer: Olaf Ninnemann (Berlin) MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, Acta Math. Sin., Engl. Ser. 24, No. 6, 917--924 (2008; Zbl 1218.11037) Full Text: DOI