Wu, Peng Einstein four-manifolds of three-nonnegative curvature operator. (English) Zbl 1428.58011 Math. Z. 293, No. 3-4, 1489-1511 (2019). MSC: 58E11 53C25 53C24 58C40 53C55 53C20 53C30 58J60 PDF BibTeX XML Cite \textit{P. Wu}, Math. Z. 293, No. 3--4, 1489--1511 (2019; Zbl 1428.58011) Full Text: DOI
Huang, Hong Exotic \(\mathbb{R}^4\)’s and positive isotropic curvature. (English) Zbl 1426.53058 Differ. Geom. Appl. 51, 112-116 (2017). Reviewer: Peter B. Gilkey (Eugene) MSC: 53C20 57R55 PDF BibTeX XML Cite \textit{H. Huang}, Differ. Geom. Appl. 51, 112--116 (2017; Zbl 1426.53058) Full Text: DOI
Wu, Peng Curvature decompositions on Einstein four-manifolds. (English) Zbl 1388.53048 New York J. Math. 23, 1739-1749 (2017). MSC: 53C25 PDF BibTeX XML Cite \textit{P. Wu}, New York J. Math. 23, 1739--1749 (2017; Zbl 1388.53048) Full Text: Link
Wu, Peng A Weitzenböck formula for canonical metrics on four-manifolds. (English) Zbl 1352.53041 Trans. Am. Math. Soc. 369, No. 2, 1079-1096 (2017). MSC: 53C25 53C24 PDF BibTeX XML Cite \textit{P. Wu}, Trans. Am. Math. Soc. 369, No. 2, 1079--1096 (2017; Zbl 1352.53041) Full Text: DOI
Chen, Bing-Long; Huang, Xian-Tao Four-manifolds with positive isotropic curvature. (English) Zbl 1446.53025 Front. Math. China 11, No. 5, 1123-1149 (2016). MSC: 53C20 53E20 57M50 PDF BibTeX XML Cite \textit{B.-L. Chen} and \textit{X.-T. Huang}, Front. Math. China 11, No. 5, 1123--1149 (2016; Zbl 1446.53025) Full Text: DOI
Chen, Bing-Long; Huang, Xian-Tao Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four-manifolds. (English) Zbl 1352.53028 Math. Ann. 366, No. 1-2, 819-851 (2016). Reviewer: Nabil L. Youssef (Giza) MSC: 53C20 53C44 57M50 58D17 57R18 PDF BibTeX XML Cite \textit{B.-L. Chen} and \textit{X.-T. Huang}, Math. Ann. 366, No. 1--2, 819--851 (2016; Zbl 1352.53028) Full Text: DOI arXiv
Yau, Shing-Tung; Ma, Hui; Tsai, Chung-Jun; Wang, Mu-Tao; Zhao, En-Tao Open problems in differential geometry. (English) Zbl 1302.53003 Ji, Lizhen (ed.) et al., Open problems and surveys of contemporary mathematics. Somerville, MA: International Press; Beijing: Higher Education Press (ISBN 978-1-57146-278-7/pbk). Surveys of Modern Mathematics 6, 397-477 (2013). Reviewer: Ioan Pop (Iaşi) MSC: 53-02 53-06 53A15 53A20 53C20 53C25 53C55 57R15 57R20 PDF BibTeX XML Cite \textit{S.-T. Yau} et al., Surv. Mod. Math. 6, 397--477 (2013; Zbl 1302.53003)
Hong Kim, Jin Addendum and erratum to “On the structure of the fundamental group of manifolds with positive scalar curvature”. (English) Zbl 1283.53036 Bull. Korean Math. Soc. 50, No. 2, 537-542 (2013). Reviewer: James Hebda (St. Louis) MSC: 53C20 PDF BibTeX XML Cite \textit{J. Hong Kim}, Bull. Korean Math. Soc. 50, No. 2, 537--542 (2013; Zbl 1283.53036) Full Text: DOI Link
Huang, Hong Ricci flow on open 4-manifolds with positive isotropic curvature. (English) Zbl 1273.53059 J. Geom. Anal. 23, No. 3, 1213-1235 (2013). MSC: 53C44 PDF BibTeX XML Cite \textit{H. Huang}, J. Geom. Anal. 23, No. 3, 1213--1235 (2013; Zbl 1273.53059) Full Text: DOI
Gururaja, H. A. Ricci flow of warped product metrics with positive isotropic curvature on \(S^{p+1} \times S^1\). (English) Zbl 1268.53071 Proc. Indian Acad. Sci., Math. Sci. 122, No. 4, 597-614 (2012). MSC: 53C44 PDF BibTeX XML Cite \textit{H. A. Gururaja}, Proc. Indian Acad. Sci., Math. Sci. 122, No. 4, 597--614 (2012; Zbl 1268.53071) Full Text: DOI
Chen, Bing-Long; Tang, Siu-Hung; Zhu, Xi-Ping Complete classification of compact four-manifolds with positive isotropic curvature. (English) Zbl 1257.53053 J. Differ. Geom. 91, No. 1, 41-80 (2012). Reviewer: Giovanni Calvaruso (Lecce) MSC: 53C20 53C44 PDF BibTeX XML Cite \textit{B.-L. Chen} et al., J. Differ. Geom. 91, No. 1, 41--80 (2012; Zbl 1257.53053) Full Text: DOI Euclid arXiv
Andrews, Ben; Hopper, Christopher The Ricci flow in Riemannian geometry. A complete proof of the differentiable 1/4-pinching sphere theorem. (English) Zbl 1214.53002 Lecture Notes in Mathematics 2011. Berlin: Springer (ISBN 978-3-642-16285-5/pbk; 978-3-642-16286-2/ebook). xvii, 296 p. (2011). Reviewer: Alina Stancu (Lowell) MSC: 53-02 53C44 PDF BibTeX XML Cite \textit{B. Andrews} and \textit{C. Hopper}, The Ricci flow in Riemannian geometry. A complete proof of the differentiable 1/4-pinching sphere theorem. Berlin: Springer (2011; Zbl 1214.53002) Full Text: DOI
Besson, Gérard The differentiable sphere theorem (after Brendle-Schoen). (Le théorème de la sphère différentiable (d’après Brendle-Schoen).) (French) Zbl 1220.53043 Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. Paris: Société Mathématique de France (SMF) (ISBN 978-2-85629-291-4/pbk). Astérisque 332, 161-181, Exp. No. 1003 (2010). Reviewer: Maria Falcitelli (Bari) MSC: 53C20 53C21 PDF BibTeX XML Cite \textit{G. Besson}, Astérisque 332, 161--181, Exp. No. 1003 (2010; Zbl 1220.53043)
Ramachandran, Mohan; Wolfson, Jon Fill radius and the fundamental group. (English) Zbl 1192.53042 J. Topol. Anal. 2, No. 1, 99-107 (2010). Reviewer: Peter B. Gilkey (Eugene) MSC: 53C20 PDF BibTeX XML Cite \textit{M. Ramachandran} and \textit{J. Wolfson}, J. Topol. Anal. 2, No. 1, 99--107 (2010; Zbl 1192.53042) Full Text: DOI arXiv
Chen, Bing-Long; Zhu, Xi-Ping Surgical Ricci flow on four-manifolds with positive isotropic curvature. (English) Zbl 1170.53041 Lau, Ka-Sing (ed.) et al., Third international congress of Chinese mathematicians. Part 1. Proceedings of the ICCM ’04, Hong Kong, China, December 17–22, 2004. Providence, RI: American Mathematical Society (AMS); Somerville, MA: International Press (ISBN 978-0-8218-4454-0/pbk; 978-0-8218-4416-8/set). AMS/IP Studies in Advanced Mathematics 42, 1, 101-109 (2008). MSC: 53C44 53C21 PDF BibTeX XML Cite \textit{B.-L. Chen} and \textit{X.-P. Zhu}, AMS/IP Stud. Adv. Math. 42, 101--109 (2008; Zbl 1170.53041)
Ni, Lei; Wallach, Nolan On four-dimensional gradient shrinking solitons. (English) Zbl 1146.53039 Int. Math. Res. Not. 2008, Article ID rnm152, 13 p. (2008). MSC: 53C44 35K55 35K45 PDF BibTeX XML Cite \textit{L. Ni} and \textit{N. Wallach}, Int. Math. Res. Not. 2008, Article ID rnm152, 13 p. (2008; Zbl 1146.53039) Full Text: DOI arXiv
Schoen, Richard Minimal submanifolds in higher codimension. (English) Zbl 1151.53344 Mat. Contemp. 30, 169-199 (2006). MSC: 53C42 PDF BibTeX XML Cite \textit{R. Schoen}, Mat. Contemp. 30, 169--199 (2006; Zbl 1151.53344)
Chen, Binglong; Zhu, Xiping Uniqueness of the Ricci flow on complete noncompact manifolds. (English) Zbl 1104.53032 J. Differ. Geom. 74, No. 1, 119-154 (2006). Reviewer: Iskander A. Taimanov (Novosibirsk) MSC: 53C21 53C44 PDF BibTeX XML Cite \textit{B. Chen} and \textit{X. Zhu}, J. Differ. Geom. 74, No. 1, 119--154 (2006; Zbl 1104.53032) Full Text: DOI Backlinks: MO
Fraser, Ailana; Wolfson, Jon The fundamental group of manifolds of positive isotropic curvature and surface groups. (English) Zbl 1110.53027 Duke Math. J. 133, No. 2, 325-334 (2006). Reviewer: Shen Yi-Bing (Hangzhou) MSC: 53C21 58E12 PDF BibTeX XML Cite \textit{A. Fraser} and \textit{J. Wolfson}, Duke Math. J. 133, No. 2, 325--334 (2006; Zbl 1110.53027) Full Text: DOI Euclid arXiv
Fraser, Ailana M. Fundamental groups of manifolds with positive isotropic curvature. (English) Zbl 1044.53023 Ann. Math. (2) 158, No. 1, 345-354 (2003). Reviewer: Rosa Anna Marinosci (Lecce) MSC: 53C20 PDF BibTeX XML Cite \textit{A. M. Fraser}, Ann. Math. (2) 158, No. 1, 345--354 (2003; Zbl 1044.53023) Full Text: DOI arXiv
Fraser, Ailana M. Minimal disks and two-convex hypersurfaces. (English) Zbl 1043.53050 Am. J. Math. 124, No. 3, 483-493 (2002). Reviewer: Jean-Pierre Ezin (Porto-Novo) MSC: 53C42 53C56 53A10 PDF BibTeX XML Cite \textit{A. M. Fraser}, Am. J. Math. 124, No. 3, 483--493 (2002; Zbl 1043.53050) Full Text: DOI Link
Gromov, Misha Spaces and questions. (English) Zbl 1006.53035 Alon, N. (ed.) et al., GAFA 2000. Visions in mathematics–Towards 2000. Proceedings of a meeting, Tel Aviv, Israel, August 25-September 3, 1999. Part I. Basel: Birkhäuser, 118-161 (2000). Reviewer: Katharina Habermann (Greifswald) MSC: 53C23 57-02 53-02 00A27 PDF BibTeX XML Cite \textit{M. Gromov}, in: GAFA 2000. Visions in mathematics---Towards 2000. Proceedings of a meeting, Tel Aviv, Israel, August 25--September 3, 1999. Part I. Basel: Birkhäuser. 118--161 (2000; Zbl 1006.53035)
Labbi, M.-L. On compact manifolds with positive isotropic curvature. (English) Zbl 0948.53017 Proc. Am. Math. Soc. 128, No. 5, 1467-1474 (2000). Reviewer: G.Tsagas (Thessaloniki) MSC: 53C20 53C56 PDF BibTeX XML Cite \textit{M. L. Labbi}, Proc. Am. Math. Soc. 128, No. 5, 1467--1474 (2000; Zbl 0948.53017) Full Text: DOI
Hamilton, Richard S. Four-manifolds with positive isotropic curvature. (English) Zbl 0892.53018 Commun. Anal. Geom. 5, No. 1, 1-92 (1997). Reviewer: M.Helena Noronha (Northridge) MSC: 53C20 57N13 PDF BibTeX XML Cite \textit{R. S. Hamilton}, Commun. Anal. Geom. 5, No. 1, 1--92 (1997; Zbl 0892.53018) Full Text: DOI
Abramenko, L. E.; Shevchenko, V. P. The stress-strain state of shells under the action of concentrated heat sources. (English. Russian original) Zbl 0943.74537 J. Math. Sci., New York 84, No. 6, 1515-1520 (1997); translation from Teor. Prikl. Mekh. 25, 70-80 (1995). MSC: 74K25 80A20 PDF BibTeX XML Cite \textit{L. E. Abramenko} and \textit{V. P. Shevchenko}, J. Math. Sci., New York 84, No. 6, 1 (1995; Zbl 0943.74537); translation from Teor. Prikl. Mekh. 25, 70--80 (1995)
Bean, Steve P. Riemannian manifolds satisfying \([\text{Ric}\wedge g,W]=0\). (English) Zbl 0905.53028 Note Mat. 15, No. 2, 161-168 (1995). Reviewer: M.Helena Noronha (Northridge) MSC: 53C20 PDF BibTeX XML Cite \textit{S. P. Bean}, Note Mat. 15, No. 2, 161--168 (1995; Zbl 0905.53028)
Micallef, Mario J.; Wang, McKenzie Y. Metrics with nonnegative isotropic curvature. (English) Zbl 0804.53058 Duke Math. J. 72, No. 3, 649-672 (1993). Reviewer: A.P.Stone (Albuquerque) MSC: 53C20 53C55 PDF BibTeX XML Cite \textit{M. J. Micallef} and \textit{M. Y. Wang}, Duke Math. J. 72, No. 3, 649--672 (1993; Zbl 0804.53058) Full Text: DOI
Micallef, Mario J.; Moore, John Douglas Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. (English) Zbl 0661.53027 Ann. Math. (2) 127, No. 1, 199-227 (1988). Reviewer: C.S.Houh MSC: 53C20 53C42 PDF BibTeX XML Cite \textit{M. J. Micallef} and \textit{J. D. Moore}, Ann. Math. (2) 127, No. 1, 199--227 (1988; Zbl 0661.53027) Full Text: DOI
Okolowski, J. A. Nonlinear classical scalar field theory in curved space-time. (English) Zbl 0615.70016 J. Math. Phys. 27, 2047-2050 (1986). Reviewer: C.W.Kilmister MSC: 70H40 83D05 70Sxx PDF BibTeX XML Cite \textit{J. A. Okolowski}, J. Math. Phys. 27, 2047--2050 (1986; Zbl 0615.70016) Full Text: DOI