×

Construction of noisy bound entangled states and the range criterion. (English) Zbl 1476.81013

Summary: In this work we consider bipartite noisy bound entangled states with positive partial transpose, that is, such a state can be written as a convex combination of an edge state and a separable state. In particular, we present schemes to construct distinct classes of noisy bound entangled states which satisfy the range criterion. As a consequence of the present study we also identify noisy bound entangled states which do not satisfy the range criterion. All of the present states are constituted by exploring different types of product bases.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P42 Entanglement measures, concurrencies, separability criteria
81P55 Special bases (entangled, mutual unbiased, etc.)

Software:

QETLAB
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865-942 (2009) · Zbl 1205.81012
[2] Gühne, O.; Tóth, G., Entanglement detection, Phys. Rep., 474, 1-75 (2009)
[3] Horodecki, P., Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A, 232, 333-339 (1997) · Zbl 1053.81504
[4] Horodecki, M.; Horodecki, P.; Horodecki, R., Mixed-state entanglement and distillation: is there a “bound” entanglement in nature?, Phys. Rev. Lett., 80, 5239-5242 (1998) · Zbl 0947.81005
[5] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413-1415 (1996) · Zbl 0947.81003
[6] Horodecki, M.; Horodecki, P.; Horodecki, R., Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A, 223, 1-8 (1996) · Zbl 0984.81007
[7] Gurvits, L., Classical complexity and quantum entanglement, J. Comput. Syst. Sci., 69, 448-484 (2004) · Zbl 1093.81012
[8] DiVincenzo, D. P.; Shor, P. W.; Smolin, J. A.; Terhal, B. M.; Thapliyal, A. V., Evidence for bound entangled states with negative partial transpose, Phys. Rev. A, 61, Article 062312 pp. (2000)
[9] Dür, W.; Cirac, J. I.; Lewenstein, M.; Bruß, D., Distillability and partial transposition in bipartite systems, Phys. Rev. A, 61, Article 062313 pp. (2000)
[10] Pankowski, Ł.; Piani, M.; Horodecki, M.; Horodecki, P., A few steps more towards NPT bound entanglement, IEEE Trans. Inf. Theory, 56, 4085-4100 (2010) · Zbl 1366.81069
[11] Bandyopadhyay, S.; Ghosh, S.; Roychowdhury, V., Non-full-rank bound entangled states satisfying the range criterion, Phys. Rev. A, 71, Article 012316 pp. (2005)
[12] Bandyopadhyay, S.; Ghosh, S.; Roychowdhury, V., Robustness of entangled states that are positive under partial transposition, Phys. Rev. A, 77, Article 032318 pp. (2008)
[13] Bennett, C. H.; DiVincenzo, D. P.; Mor, T.; Shor, P. W.; Smolin, J. A.; Terhal, B. M., Unextendible product bases and bound entanglement, Phys. Rev. Lett., 82, 5385-5388 (1999)
[14] Lewenstein, M.; Kraus, B.; Horodecki, P.; Cirac, J. I., Characterization of separable states and entanglement witnesses, Phys. Rev. A, 63, Article 044304 pp. (2001) · Zbl 1255.81031
[15] DiVincenzo, D. P.; Mor, T.; Shor, P. W.; Smolin, J. A.; Terhal, B. M., Unextendible product bases, uncompletable product bases and bound entanglement, Commun. Math. Phys., 238, 379-410 (2003) · Zbl 1027.81004
[16] Horodecki, K.; Horodecki, M.; Horodecki, P.; Oppenheim, J., Secure key from bound entanglement, Phys. Rev. Lett., 94, Article 160502 pp. (2005)
[17] Horodecki, K.; Pankowski, Ł.; Horodecki, M.; Horodecki, P., Low-dimensional bound entanglement with one-way distillable cryptographic key, IEEE Trans. Inf. Theory, 54, 2621-2625 (2008) · Zbl 1328.94069
[18] Horodecki, K.; Horodecki, M.; Horodecki, P.; Oppenheim, J., General paradigm for distilling classical key from quantum states, IEEE Trans. Inf. Theory, 55, 1898-1929 (2009) · Zbl 1367.81045
[19] Tóth, G.; Vértesi, T., Quantum states with a positive partial transpose are useful for metrology, Phys. Rev. Lett., 120, Article 020506 pp. (2018)
[20] Moroder, T.; Gittsovich, O.; Huber, M.; Gühne, O., Steering bound entangled states: a counterexample to the stronger peres conjecture, Phys. Rev. Lett., 113, Article 050404 pp. (2014)
[21] Vértesi, T.; Brunner, N., Disproving the peres conjecture by showing bell nonlocality from bound entanglement, Nat. Commun., 5, 5297 (2014)
[22] Yu, S.; Oh, C. H., Family of nonlocal bound entangled states, Phys. Rev. A, 95, Article 032111 pp. (2017)
[23] Sindici, E.; Piani, M., Simple class of bound entangled states based on the properties of the antisymmetric subspace, Phys. Rev. A, 97, Article 032319 pp. (2018)
[24] Sentís, G.; Greiner, J. N.; Shang, J.; Siewert, J.; Kleinmann, M., Bound entangled states fit for robust experimental verification, Quantum, 2, 113 (2018)
[25] Choi, M. D., Positive semidefinite biquadratic forms, Linear Algebra Appl., 12, 95-100 (1975) · Zbl 0336.15014
[26] Chruściński, D.; Sarbicki, G., Entanglement witnesses: construction, analysis and classification, J. Phys. A, Math. Theor., 47, Article 483001 pp. (2014) · Zbl 1317.81023
[27] Terhal, B. M., A family of indecomposable positive linear maps based on entangled quantum states, Linear Algebra Appl., 323, 61-73 (2001) · Zbl 0977.15014
[28] Gühne, O.; Hyllus, P.; Gittsovich, O.; Eisert, J., Covariance matrices and the separability problem, Phys. Rev. Lett., 99, Article 130504 pp. (2007) · Zbl 1228.81066
[29] Sengupta, R.; Arvind, Extremal extensions of entanglement witnesses and their connection with unextendable product bases, Phys. Rev. A, 87, Article 012318 pp. (2013)
[30] Halder, S.; Banik, M.; Ghosh, S., New family of bound entangled states residing on the boundary of peres set (2018)
[31] Bandyopadhyay, S.; Cosentino, A.; Johnston, N.; Russo, V.; Watrous, J.; Yu, N., Limitations on separable measurements by convex optimization, IEEE Trans. Inf. Theory, 61, 3593-3604 (2015) · Zbl 1359.94236
[32] Yang, Y.-H.; Gao, F.; Xu, G.-B.; Zuo, H.-J.; Zhang, Z.-C.; Wen, Q.-Y., Characterizing unextendible product bases in qutrit-ququad system, Sci. Rep., 5, Article 11963 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.