×

Equations \(ax = c\) and \(xb = d\) in rings and rings with involution with applications to Hilbert space operators. (English) Zbl 1149.47011

The authors review the equations \(ax = c\) and \(xb = d\) in the setting of associative rings with or without involution. The study of common solutions of the equations above in the framework of matrices dates back to the early 20th century; see F. Cecioni [“Sopra alcune operazioni algebriche sulle matrici” (Pisa Ann.11) (1910; JFM 41.0193.02)]. The authors give necessary and sufficient conditions for the existence of the Hermitian, skew-Hermitian, reflexive, antireflexive, positive and real-positive solutions, and describe the general solutions in terms of the original elements or operators.

MSC:

47A62 Equations involving linear operators, with operator unknowns
15A24 Matrix equations and identities
16W10 Rings with involution; Lie, Jordan and other nonassociative structures
16B99 General and miscellaneous

Citations:

JFM 41.0193.02
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albert, A., Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math., 17, 434-440 (1969) · Zbl 0265.15002
[2] Ben-Israel, Adi; Greville, T. N.R., Generalized Inverses, Theory and Applications (1974), Springer: Springer New York · Zbl 0305.15001
[3] Berberian, S. K., Baer \(\ast \)-Rings, Die Grundlehren der mathematischen Wissenschaften, Band 195 (1972), Springer: Springer New York
[4] Bhaskara Rao, K. P.S., The Theory of Generalized Inverses Over Commutative Rings. The Theory of Generalized Inverses Over Commutative Rings, Algebra, Logic and Applications Series, vol. 17 (2002), Taylor & Francis: Taylor & Francis London · Zbl 0992.15003
[5] Campbell, S. L.; Meyer, C. D., Generalized Inverses of Linear Transformations (1979), Pitman: Pitman London · Zbl 0417.15002
[6] Cecioni, F., Sopra alcune operazioni algebriche sulle matrici, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., 11 (1910) · JFM 41.0193.02
[7] Chu, K.-W. E., Symmetric solutions of linear matric equations by matrix decompositions, Linear Algebra Appl., 119, 35-50 (1989) · Zbl 0688.15003
[8] Cvetković-Ilić, D. S.; Djordjević, D. S.; Rakočević, V., Schur complements in \(C^\ast \)-algebras, Math. Nachr., 278, 1-7 (2005)
[9] Dai, Hua, On the symmetric solutions of linear matrix equations, Linear Algebra Appl., 131, 1-7 (1990) · Zbl 0712.15009
[10] Dajić, Alegra; Koliha, J. J., Positive solutions to the equations \(AX = C\) and \(XB = D\) for Hilbert space operators, J. Math. Anal. Appl., 333, 567-576 (2007) · Zbl 1120.47009
[11] Don, F. J.H., On the symmetric solutions of a linear matrix equation, Linear Algebra Appl., 93, 1-7 (1987) · Zbl 0622.15001
[12] Groß, J., Explicit solutions to the matrix inverse problem \(AX = B\), Linear Algebra Appl., 289, 131-134 (1999) · Zbl 0941.15010
[13] Harte, R. E.; Mbekhta, M., On generalized inverses in \(C^\ast \)-algebras, Studia Math., 103, 71-77 (1992) · Zbl 0810.46062
[14] Haverić, M., On solutions of a matrix equations system \(AX = B, XD = E\), Matematicki Vesnik, 36, 11-16 (1984) · Zbl 0543.15012
[15] Higham, N. J., The symmetric Procrustes problem, BIT, 28, 133-143 (1988) · Zbl 0641.65034
[16] Hodges, J. H., The matrix equation \(AX = B\) in a finite field, Amer. Math. Monthly, 63, 243-244 (1956) · Zbl 0070.01706
[17] Horn, R. A.; Sergeichuk, V.; Shaked-Monderer, N., Solution of linear matrix equations in a \({}^\ast\) congruence class, Electron. J. Linear Algebra, 174, 153-156 (2005) · Zbl 1092.15010
[18] Khatri, C. G.; Mitra, S. K., Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31, 579-585 (1976) · Zbl 0359.65033
[19] Koliha, J. J.; Patrício, P., Elements of rings with equal spectral idempotents, J. Aust. Math. Soc., 72, 137-150 (2002) · Zbl 0999.16025
[20] Koliha, J. J.; Rakočević, V., Range projections and the Moore-Penrose inverse in rings with involution, Linear and Multilinear Algebra, 55, 103-112 (2007) · Zbl 1116.46042
[21] Meng, Chunjun; Hu, Xiyan; Zhang, Lei, The skew-symmetric orthogonal solutions of the matrix equation \(AX = B\), Linear Algebra Appl., 402, 303-318 (2005) · Zbl 1128.15301
[22] Mitra, S. K., The matrix equations \(AX = C, XB = D\), Linear Algebra Appl., 59, 171-181 (1984) · Zbl 0543.15011
[23] Patrício, P.; Puystjens, R., About the von Neumann regularity of triangular block matrices, Linear Algebra Appl., 332-334, 485-502 (2001) · Zbl 1002.15001
[24] Peng, Zhenyun; Hu, Xiyan, The reflexive and anti-reflexive solutions of the matrix equation \(AX = B\), Linear Algebra Appl., 375, 147-155 (2003) · Zbl 1050.15016
[25] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51, 406-413 (1955) · Zbl 0065.24603
[26] Phadke, S. V.; Thakare, N. K., Generalized inverses and operator equations, Linear Algebra Appl., 23, 191-199 (1979) · Zbl 0403.47005
[27] Porter, A. D., Solvability of the matric equation \(AX = B\), Linear Algebra Appl., 13, 177-184 (1976) · Zbl 0333.15008
[28] Porter, A. D.; Mousouris, N., Ranked solutions of \(AXC = B\) and \(AX = B\), Linear Algebra Appl., 24, 217-224 (1979) · Zbl 0411.15009
[29] Rao, C. R.; Mitra, S. K., Generalized Inverse of Matrices and Its Applications (1971), Wiley: Wiley New York
[30] Tian, Y.; Takane, Y., Schur complements and Banachiewicz-Schur forms, Electron. J. Linear Algebra, 13, 405-418 (2005) · Zbl 1095.15006
[31] Uhlig, F., On the matrix equation \(AX = B\) with applications to the generators of a controllability matrix, Linear Algebra Appl., 85, 203-209 (1987) · Zbl 0612.15006
[32] Wu, L., The Re-positive definite solution to the matrix inverse problem \(AX = B\), Linear Algebra Appl., 174, 145-151 (1992) · Zbl 0754.15003
[33] Wu, L.; Cain, B., The Re-nonnegative definite solutions to the matrix inverse problem \(AX = B\), Linear Algebra Appl., 236, 137-146 (1996) · Zbl 0851.15004
[34] Xie, D.; Zhang, Lei; Hu, X., The solvability conditions for the inverse problem of bisymmetric nonnegative definite matrices, J. Comput. Math., 18, 597-608 (2000) · Zbl 0966.15008
[35] Qingxiang Xu, Common Hermitian and positive solutions to the adjointable operator equations \(\mathit{AX} = C , \mathit{XB} = D\), J. Math. Anal. Appl., in press.; Qingxiang Xu, Common Hermitian and positive solutions to the adjointable operator equations \(\mathit{AX} = C , \mathit{XB} = D\), J. Math. Anal. Appl., in press. · Zbl 1153.47012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.