×

Two-level preconditioning for \(h\)-version boundary element approximation of hypersingular operator with GenEO. (English) Zbl 1451.65215

Summary: In the present contribution, we consider symmetric positive definite operators stemming from boundary integral equation, and we study a two-level preconditioner where the coarse space is built using local generalized eigenproblems in the overlap. We will refer to this coarse space as the GenEO coarse space.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs

Software:

DLMF; Gmsh; LAPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ainsworth, M.; Guo, B., An additive Schwarz preconditioner for p-version boundary element approximation of the hypersingular operator in three dimensions, Numer. Math., 85, 3, 343-366 (2000) · Zbl 0953.65084
[2] Alléon, G.; Benzi, M.; Giraud, L., Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics, Numer. Algorithms, 16, 1, 1-15 (1997) · Zbl 0895.65017
[3] Alouges, F.; Aussal, M., The sparse cardinal sine decomposition and its application for fast numerical convolution, Numer. Algorithms, 70, 2, 427-448 (2015) · Zbl 1326.65183
[4] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammerling, S.; McKenney, A.; Sorensen, D., LAPACK Users’ Guide (1999), New Delhi: SIAM, New Delhi
[5] Aurada, M.; Feischl, M.; Führer, T.; Karkulik, M.; Praetorius, D., Energy norm based error estimators for adaptive BEM for hypersingular integral equations, Appl. Numer. Math., 95, 15-35 (2015) · Zbl 1320.65184
[6] Bebendorf, M., Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in Computational Science and Engineering (2008), Berlin: Springer-Verlag, Berlin · Zbl 1151.65090
[7] Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. (eds.) NIST Digital Library of Mathematical Functions. Release 1.0.21 of 15 Dec 2018. http://dlmf.nist.gov/
[8] Dolean, V.; Jolivet, P.; Nataf, F., An Introduction to Domain Decomposition Methods. Algorithms, Theory, and Parallel Implementation (2015), Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1364.65277
[9] Gander, MJ, Schwarz methods over the course of time, Electron. Trans. Numer. Anal., 31, 228-255 (2008) · Zbl 1171.65020
[10] Geuzaine, C.; Remacle, J-F, GMSH: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[11] Greengard, L.; Gueyffier, D.; Martinsson, P-G; Rokhlin, V., Fast direct solvers for integral equations in complex three-dimensional domains, Acta Numer., 18, 243 (2009) · Zbl 1176.65141
[12] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 2, 325-348 (1987) · Zbl 0629.65005
[13] Griebel, M.; Oswald, P., On the abstract theory of additive and multiplicative Schwarz algorithms, Numer. Math., 70, 2, 163-180 (1995) · Zbl 0826.65098
[14] Hackbusch, W., Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computational Mathematics (2016), Berlin: Springer-Verlag, Berlin
[15] Hestenes, M.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bureau Stand., 49, 6, 409-436 (1952) · Zbl 0048.09901
[16] Heuer, N., Additive Schwarz Methods for Weakly Singular Integral Equations \(In \mathbb{R}^3\)—The p-Version, 126-135 (1996), Wiesbaden: Vieweg+Teubner Verlag, Wiesbaden · Zbl 0881.65109
[17] Hiptmair, R., Operator preconditioning, Comput. Math. Appl., 52, 5, 699-706 (2006) · Zbl 1125.65037
[18] Hiptmair, R., Jerez-Hanckes, C., Urzúa-Torres, C.: Optimal operator preconditioning for hypersingular operator over 3d screens. Technical report 2016-09, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2016) · Zbl 1310.65155
[19] Jolivet, P., Hecht, F., Nataf, F., Prud’homme, C.: Scalable domain decomposition preconditioners for heterogeneous elliptic problems. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on—SC ’13. ACM Press (2013)
[20] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 1, 359-392 (1998) · Zbl 0915.68129
[21] Martinsson, P.; Rokhlin, V., A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys., 205, 1, 1-23 (2005) · Zbl 1078.65112
[22] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge: Cambridge University Press, Cambridge
[23] McLean, W.; Steinbach, O., Boundary element preconditioners for a hypersingular integral equation on an interval, Adv. Comput. Math., 11, 4, 271-286 (1999) · Zbl 0951.65145
[24] Nepomnyaschikh, S.V.: Decomposition and fictitious domains methods for elliptic boundary value problems. In: Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations: Philadelphia, pp. 62-72. Society for Industrial and Applied Mathematics, PA (1992) · Zbl 0770.65089
[25] Rjasanow, S.; Steinbach, O., The Fast Solution of Boundary Integral Equations. Mathematical and Analytical Techniques with Applications to Engineering (2007), Berlin: Springer, Berlin
[26] Saad, Y.; Schultz, MH, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[27] Sauter, SA; Schwab, C., Boundary Element Methods (2011), Berlin: Springer-Verlag, Berlin
[28] Spillane, N.; Dolean, V.; Hauret, P.; Nataf, F.; Pechstein, C.; Scheichl, R., Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps, Numer. Math., 126, 4, 741-770 (2014) · Zbl 1291.65109
[29] Steinbach, O.; Wendland, WL, The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math., 9, 1-2, 191-216 (1998) · Zbl 0922.65076
[30] Stephan, EP, Boundary integral equations for screen problems in \(\mathbb{R}^3\), Integr. Eqn. Oper. Theory, 10, 2, 236-257 (1987) · Zbl 0653.35016
[31] Toselli, A.; Widlund, OB, Domain Decomposition Methods: Algorithms and Theory (2005), Berlin: Springer, Berlin · Zbl 1069.65138
[32] Tran, T.; Stephan, EP, Additive Schwarz methods for the h-version boundary element method, Appl. Anal., 60, 1-2, 63-84 (1996) · Zbl 0877.65075
[33] West, DB, Introduction to Graph Theory (2000), London: Pearson, London
[34] Widlund, O., Dryja, M.: An additive variant of the Schwarz alternating method for the case of many subregions. Technical report 339, Department of Computer Science, Courant Institute (1987)
[35] Xu, J., The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing, 56, 3, 215-235 (1996) · Zbl 0857.65129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.