Misra, O. P.; Dhar, Joydip; Sisodiya, Omprakash Singh Dynamical study of SVIRB epidemic model for water-borne disease with seasonal variability. (English) Zbl 07285391 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 351-374 (2020). MSC: 92D30 92C60 34B18 PDF BibTeX XML Cite \textit{O. P. Misra} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 351--374 (2020; Zbl 07285391) Full Text: Link
Tang, Xiaosong; Ouyang, Peichang Spatiotemporal dynamics in a diffusive bacterial and viral diseases propagation model with chemotaxis. (English) Zbl 1452.35024 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 91, 19 p. (2020). MSC: 35B32 35B35 35B36 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{X. Tang} and \textit{P. Ouyang}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 91, 19 p. (2020; Zbl 1452.35024) Full Text: DOI
Xu, Xiaofeng; Liu, Ming Global Hopf bifurcation of a general predator-prey system with diffusion and stage structures. (English) Zbl 1442.35026 J. Differ. Equations 269, No. 10, 8370-8386 (2020). MSC: 35B32 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{X. Xu} and \textit{M. Liu}, J. Differ. Equations 269, No. 10, 8370--8386 (2020; Zbl 1442.35026) Full Text: DOI
Ma, Li; Luo, Youquan Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms. (English) Zbl 1445.35218 Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2555-2582 (2020). MSC: 35K58 35B40 35K57 35Q92 92D25 PDF BibTeX XML Cite \textit{L. Ma} and \textit{Y. Luo}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2555--2582 (2020; Zbl 1445.35218) Full Text: DOI
Zhou, Jun Bifurcation analysis of a single species reaction-diffusion model with nonlocal delay. (English) Zbl 1439.35255 J. Korean Math. Soc. 57, No. 1, 249-281 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 35K55 35Q92 92C15 92C40 PDF BibTeX XML Cite \textit{J. Zhou}, J. Korean Math. Soc. 57, No. 1, 249--281 (2020; Zbl 1439.35255) Full Text: DOI
Wang, Qi Some global dynamics of a Lotka-Volterra competition-diffusion-advection system. (English) Zbl 1446.35052 Commun. Pure Appl. Anal. 19, No. 6, 3245-3255 (2020). MSC: 35K51 35B09 35B35 35K57 92D25 35Q92 PDF BibTeX XML Cite \textit{Q. Wang}, Commun. Pure Appl. Anal. 19, No. 6, 3245--3255 (2020; Zbl 1446.35052) Full Text: DOI
Lian, Tong; Yang, Wenbin; Li, Yanling Qualitative analysis of a predator-prey system with Smith growth for prey. (Chinese. English summary) Zbl 1449.35266 J. Biomath. 34, No. 2, 312-322 (2019). MSC: 35K57 35B09 35B35 PDF BibTeX XML Cite \textit{T. Lian} et al., J. Biomath. 34, No. 2, 312--322 (2019; Zbl 1449.35266)
Li, Xingxing; Nie, Hua Coexistence solutions of the unstirred chemostat model with internal storage. (Chinese. English summary) Zbl 1449.35270 Math. Appl. 32, No. 3, 503-514 (2019). MSC: 35K57 35B09 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Nie}, Math. Appl. 32, No. 3, 503--514 (2019; Zbl 1449.35270)
Wang, Rong; Yang, Wenbin; Li, Yanling Qualitative analysis of a class of predator-prey model with fear effect. (Chinese. English summary) Zbl 1449.35271 Chin. J. Eng. Math. 36, No. 4, 439-450 (2019). MSC: 35K57 35B09 35B35 92D40 PDF BibTeX XML Cite \textit{R. Wang} et al., Chin. J. Eng. Math. 36, No. 4, 439--450 (2019; Zbl 1449.35271) Full Text: DOI
Ren, Xinzhi; Liu, Xianning A competition un-stirred chemostat model with virus in an aquatic system. (English) Zbl 1423.35209 Appl. Anal. 98, No. 13, 2329-2358 (2019). MSC: 35K57 35B32 35B40 37N25 35K51 35Q92 PDF BibTeX XML Cite \textit{X. Ren} and \textit{X. Liu}, Appl. Anal. 98, No. 13, 2329--2358 (2019; Zbl 1423.35209) Full Text: DOI
Wang, Yu-Xia; Li, Wan-Tong Spatial patterns of a predator-prey model with Beddington-DeAngelis functional response. (English) Zbl 1432.35208 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950145, 16 p. (2019). MSC: 35Q92 35B32 35B36 35J66 35K57 92D25 PDF BibTeX XML Cite \textit{Y.-X. Wang} and \textit{W.-T. Li}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950145, 16 p. (2019; Zbl 1432.35208) Full Text: DOI
Gwiżdż, Piotr; Tyran-Kamińska, Marta Positive semigroups and perturbations of boundary conditions. (English) Zbl 07118386 Positivity 23, No. 4, 921-939 (2019). MSC: 47B65 47H07 47D06 92C40 PDF BibTeX XML Cite \textit{P. Gwiżdż} and \textit{M. Tyran-Kamińska}, Positivity 23, No. 4, 921--939 (2019; Zbl 07118386) Full Text: DOI
Zhou, Jun Bifurcation analysis of a diffusive predator-prey model with Bazykin functional response. (English) Zbl 1432.35210 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950136, 27 p. (2019). MSC: 35Q92 35B32 35B35 35B36 35K40 92D25 PDF BibTeX XML Cite \textit{J. Zhou}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 10, Article ID 1950136, 27 p. (2019; Zbl 1432.35210) Full Text: DOI
Su, Yuan-Hang; Li, Wan-Tong; Yang, Fei-Ying Effects of nonlocal dispersal and spatial heterogeneity on total biomass. (English) Zbl 1430.45005 Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4929-4936 (2019). MSC: 45K05 45M20 92D25 92D40 PDF BibTeX XML Cite \textit{Y.-H. Su} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4929--4936 (2019; Zbl 1430.45005) Full Text: DOI
Adimy, Mostafa; Chekroun, Abdennasser; Kuniya, Toshikazu Coupled reaction-diffusion and difference system of cell-cycle dynamics for hematopoiesis process with Dirichlet boundary conditions. (English) Zbl 1420.92007 J. Math. Anal. Appl. 479, No. 1, 1030-1068 (2019). MSC: 92C15 92C37 35A02 35B09 34K20 35B35 35Q92 PDF BibTeX XML Cite \textit{M. Adimy} et al., J. Math. Anal. Appl. 479, No. 1, 1030--1068 (2019; Zbl 1420.92007) Full Text: DOI
Norouzi, Hamed; Atabaigi, Ali; Barati, Ali Dynamics and pattern formation in a diffusive predator-prey system. (English) Zbl 1414.35026 J. Math. Anal. Appl. 475, No. 2, 1554-1577 (2019). MSC: 35B36 35K57 92D25 35B32 PDF BibTeX XML Cite \textit{H. Norouzi} et al., J. Math. Anal. Appl. 475, No. 2, 1554--1577 (2019; Zbl 1414.35026) Full Text: DOI
Nie, Hua; Hsu, Sze-Bi; Wang, Feng-Bin Steady-state solutions of a reaction-diffusion system arising from intraguild predation and internal storage. (English) Zbl 1411.35166 J. Differ. Equations 266, No. 12, 8459-8491 (2019). Reviewer: Andrei Perjan (Chişinău) MSC: 35K57 35B40 92D25 35K51 35Q92 PDF BibTeX XML Cite \textit{H. Nie} et al., J. Differ. Equations 266, No. 12, 8459--8491 (2019; Zbl 1411.35166) Full Text: DOI
Boros, Balázs Existence of positive steady states for weakly reversible mass-action systems. (English) Zbl 1411.34062 SIAM J. Math. Anal. 51, No. 1, 435-449 (2019). MSC: 34C60 80A30 92E20 34C14 34C05 PDF BibTeX XML Cite \textit{B. Boros}, SIAM J. Math. Anal. 51, No. 1, 435--449 (2019; Zbl 1411.34062) Full Text: DOI arXiv
Gao, Xiaoyan; Cai, Yongli; Rao, Feng; Fu, Shengmao; Wang, Weiming Positive steady states in an epidemic model with nonlinear incidence rate. (English) Zbl 1409.92234 Comput. Math. Appl. 75, No. 2, 424-443 (2018). MSC: 92D30 PDF BibTeX XML Cite \textit{X. Gao} et al., Comput. Math. Appl. 75, No. 2, 424--443 (2018; Zbl 1409.92234) Full Text: DOI
Chang, Jeongwook; Shim, Seong-A Phase analysis for the predator-prey systems with prey density dependent response. (English) Zbl 1415.35263 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 25, No. 4, 345-355 (2018). MSC: 35Q92 92D25 35K55 PDF BibTeX XML Cite \textit{J. Chang} and \textit{S.-A Shim}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 25, No. 4, 345--355 (2018; Zbl 1415.35263) Full Text: DOI
Huang, Kaigang; Cai, Yongli; Rao, Feng; Fu, Shengmao; Wang, Weiming Positive steady states of a density-dependent predator-prey model with diffusion. (English) Zbl 1404.35193 Discrete Contin. Dyn. Syst., Ser. B 23, No. 8, 3087-3107 (2018). MSC: 35J65 35K57 92D25 PDF BibTeX XML Cite \textit{K. Huang} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 8, 3087--3107 (2018; Zbl 1404.35193) Full Text: DOI
Yang, Wenbin; Wei, Zhaoying; Jiang, Hongling; Li, Haixia; Li, Yanling The existence of steady states for a bimolecular model with autocatalysis and saturation law. (English) Zbl 1401.35191 Z. Angew. Math. Phys. 69, No. 5, Paper No. 131, 19 p. (2018). MSC: 35K57 35B35 PDF BibTeX XML Cite \textit{W. Yang} et al., Z. Angew. Math. Phys. 69, No. 5, Paper No. 131, 19 p. (2018; Zbl 1401.35191) Full Text: DOI
Gao, Haiyan Bifurcation structures for a Keller-Segel model with a cubic source term. (English) Zbl 1413.35058 Math. Appl. 31, No. 2, 243-249 (2018). MSC: 35B32 35K57 92D25 PDF BibTeX XML Cite \textit{H. Gao}, Math. Appl. 31, No. 2, 243--249 (2018; Zbl 1413.35058)
Gao, Jianping; Guo, Shangjiang Effect of prey-taxis and diffusion on positive steady states for a predator-prey system. (English) Zbl 1398.35250 Math. Methods Appl. Sci. 41, No. 10, 3570-3587 (2018). MSC: 35Q92 35B35 92C17 92D25 35B45 35B09 92D40 PDF BibTeX XML Cite \textit{J. Gao} and \textit{S. Guo}, Math. Methods Appl. Sci. 41, No. 10, 3570--3587 (2018; Zbl 1398.35250) Full Text: DOI
Ma, Li; Guo, Shangjiang; Chen, Ting Dynamics of a nonlocal dispersal model with a nonlocal reaction term. (English) Zbl 1388.35198 Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 3, Article ID 1850033, 18 p. (2018). MSC: 35Q92 35R09 92D25 PDF BibTeX XML Cite \textit{L. Ma} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 28, No. 3, Article ID 1850033, 18 p. (2018; Zbl 1388.35198) Full Text: DOI
Zhang, Jia-Fang; Wang, Shaoli Positive steady states for a nonlinear diffusion Beddington-DeAngelis model. (English) Zbl 1392.92087 J. Math. Phys. 59, No. 2, 022701, 10 p. (2018). MSC: 92D25 60J60 PDF BibTeX XML Cite \textit{J.-F. Zhang} and \textit{S. Wang}, J. Math. Phys. 59, No. 2, 022701, 10 p. (2018; Zbl 1392.92087) Full Text: DOI
Xie, Xianhua; Ma, Li The dynamics of a diffusive logistic model with nonlocal terms. (English) Zbl 1422.34113 Adv. Difference Equ. 2017, Paper No. 10, 14 p. (2017). MSC: 34B18 34C23 92B20 PDF BibTeX XML Cite \textit{X. Xie} and \textit{L. Ma}, Adv. Difference Equ. 2017, Paper No. 10, 14 p. (2017; Zbl 1422.34113) Full Text: DOI
Jiang, Hongling; Wang, Lijuan The uniqueness and stability of positive solution for variable-territory predator-prey model. (Chinese. English summary) Zbl 1399.35039 J. Wuhan Univ., Nat. Sci. Ed. 63, No. 6, 543-547 (2017). MSC: 35B09 35B35 35K57 PDF BibTeX XML Cite \textit{H. Jiang} and \textit{L. Wang}, J. Wuhan Univ., Nat. Sci. Ed. 63, No. 6, 543--547 (2017; Zbl 1399.35039) Full Text: DOI
Adimy, M.; Chekroun, A.; Kuniya, T. Delayed nonlocal reaction-diffusion model for hematopoietic stem cell dynamics with Dirichlet boundary conditions. (English) Zbl 1387.35583 Math. Model. Nat. Phenom. 12, No. 6, 1-22 (2017). MSC: 35Q92 92C37 35B35 37N25 35K57 35A01 35A02 35B32 35B09 PDF BibTeX XML Cite \textit{M. Adimy} et al., Math. Model. Nat. Phenom. 12, No. 6, 1--22 (2017; Zbl 1387.35583) Full Text: DOI
Shen, Lin; Zhou, Hongling Existence and bifurcation of non-constant positive steady state for predator-prey-mutualist model. (Chinese. English summary) Zbl 1389.35206 Math. Pract. Theory 47, No. 5, 267-274 (2017). MSC: 35K57 35B09 35B32 PDF BibTeX XML Cite \textit{L. Shen} and \textit{H. Zhou}, Math. Pract. Theory 47, No. 5, 267--274 (2017; Zbl 1389.35206)
Jia, Yunfeng; Li, Yi; Wu, Jianhua Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. (English) Zbl 1371.35084 Discrete Contin. Dyn. Syst. 37, No. 9, 4785-4813 (2017). MSC: 35J57 35K57 92C45 PDF BibTeX XML Cite \textit{Y. Jia} et al., Discrete Contin. Dyn. Syst. 37, No. 9, 4785--4813 (2017; Zbl 1371.35084) Full Text: DOI
Jiang, Jifa; Liu, Qiang; Niu, Lei Theoretical investigation on models of circadian rhythms based on dimerization and proteolysis of PER and TIM. (English) Zbl 1367.92012 Math. Biosci. Eng. 14, No. 5-6, 1247-1259 (2017). MSC: 92B25 34C26 34C05 PDF BibTeX XML Cite \textit{J. Jiang} et al., Math. Biosci. Eng. 14, No. 5--6, 1247--1259 (2017; Zbl 1367.92012) Full Text: DOI
Jiang, Hongling; Wang, Lijuan Analysis of steady state for variable-territory model with limited self-limitation. (English) Zbl 1360.92091 Acta Appl. Math. 148, No. 1, 103-120 (2017). MSC: 92D25 35B09 PDF BibTeX XML Cite \textit{H. Jiang} and \textit{L. Wang}, Acta Appl. Math. 148, No. 1, 103--120 (2017; Zbl 1360.92091) Full Text: DOI
Hu, Guangping; Li, Xiaoling; Lu, Shiping Qualitative analysis of a diffusive three-species model with the Holling-Tanner scheme. (English) Zbl 1358.35029 Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 35-50 (2017). MSC: 35J47 35Q92 92B05 92D25 PDF BibTeX XML Cite \textit{G. Hu} et al., Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 35--50 (2017; Zbl 1358.35029) Full Text: DOI
Jiang, Hongling The existence of steady-state positive solutions for a spider-insect model. (Chinese. English summary) Zbl 1363.35010 Acta Sci. Nat. Univ. Sunyatseni 55, No. 3, 64-67, 88 (2016). MSC: 35B09 35B45 92D25 PDF BibTeX XML Cite \textit{H. Jiang}, Acta Sci. Nat. Univ. Sunyatseni 55, No. 3, 64--67, 88 (2016; Zbl 1363.35010) Full Text: DOI
Zhou, Jun Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack. (English) Zbl 1351.35241 Math. Biosci. Eng. 13, No. 4, 857-885 (2016). MSC: 35Q92 35B35 35B32 35B05 35K57 92D40 92C15 92C40 PDF BibTeX XML Cite \textit{J. Zhou}, Math. Biosci. Eng. 13, No. 4, 857--885 (2016; Zbl 1351.35241) Full Text: DOI
Yang, Lu; Zhang, Yimin Positive steady states and dynamics for a diffusive predator-prey system with a degeneracy. (English) Zbl 1363.92046 Acta Math. Sci., Ser. B, Engl. Ed. 36, No. 2, 537-548 (2016). MSC: 92D25 35B09 35K57 PDF BibTeX XML Cite \textit{L. Yang} and \textit{Y. Zhang}, Acta Math. Sci., Ser. B, Engl. Ed. 36, No. 2, 537--548 (2016; Zbl 1363.92046) Full Text: DOI
Fang, Liting; Wang, Jinfeng The global stability and pattern formations of a predator-prey system with consuming resource. (English) Zbl 1339.35040 Appl. Math. Lett. 58, 49-55 (2016). MSC: 35B40 92D25 35B36 35K57 35B35 35K40 PDF BibTeX XML Cite \textit{L. Fang} and \textit{J. Wang}, Appl. Math. Lett. 58, 49--55 (2016; Zbl 1339.35040) Full Text: DOI
Zhou, Jun Qualitative analysis of a producer-scrounger model. (English) Zbl 1339.90122 J. Math. Anal. Appl. 440, No. 1, 33-47 (2016). MSC: 90B30 91B52 PDF BibTeX XML Cite \textit{J. Zhou}, J. Math. Anal. Appl. 440, No. 1, 33--47 (2016; Zbl 1339.90122) Full Text: DOI
Zhou, Jun Bifurcation analysis of the Oregonator model. (English) Zbl 1330.35030 Appl. Math. Lett. 52, 192-198 (2016). MSC: 35B32 92D25 35K57 PDF BibTeX XML Cite \textit{J. Zhou}, Appl. Math. Lett. 52, 192--198 (2016; Zbl 1330.35030) Full Text: DOI
Zhou, Jun Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response. (English) Zbl 1348.92139 Nonlinear Dyn. 81, No. 3, 1535-1552 (2015). MSC: 92D25 35Q92 35K57 35B32 PDF BibTeX XML Cite \textit{J. Zhou}, Nonlinear Dyn. 81, No. 3, 1535--1552 (2015; Zbl 1348.92139) Full Text: DOI
Xu, Benlong; Ni, Zhenzhang Dynamics of competing systems in general heterogeneous environments. (English) Zbl 1338.35250 Bound. Value Probl. 2015, Paper No. 110, 8 p. (2015). MSC: 35K57 92D25 PDF BibTeX XML Cite \textit{B. Xu} and \textit{Z. Ni}, Bound. Value Probl. 2015, Paper No. 110, 8 p. (2015; Zbl 1338.35250) Full Text: DOI
Zhou, Jun; Shi, Junping Pattern formation in a general glycolysis reaction-diffusion system. (English) Zbl 1338.35445 IMA J. Appl. Math. 80, No. 6, 1703-1738 (2015). MSC: 35Q92 92C15 92C40 35K57 35B32 35B09 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{J. Shi}, IMA J. Appl. Math. 80, No. 6, 1703--1738 (2015; Zbl 1338.35445) Full Text: DOI
Wang, Lijuan; Jiang, Hongling; Li, Ying Positive steady state solutions of a plant-pollinator model with diffusion. (English) Zbl 1336.92049 Discrete Contin. Dyn. Syst., Ser. B 20, No. 6, 1805-1819 (2015). Reviewer: Andrea Tellini (Paris) MSC: 92C80 35J57 92D25 35Q92 35K57 PDF BibTeX XML Cite \textit{L. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 20, No. 6, 1805--1819 (2015; Zbl 1336.92049) Full Text: DOI
Wang, Luxin; Li, Bo A further qualitative analysis of a predator-prey model with cross diffusion. (Chinese. English summary) Zbl 1340.35149 Acta Math. Appl. Sin. 38, No. 2, 254-260 (2015). MSC: 35K57 35B09 92D40 PDF BibTeX XML Cite \textit{L. Wang} and \textit{B. Li}, Acta Math. Appl. Sin. 38, No. 2, 254--260 (2015; Zbl 1340.35149)
Zha, Shu-ling; Li, Bing-fang; Yang, Xiu-xiang; Qu, Gai-zhu Non-constant positive steady states of the epidemic model with non-monotonic incidence rate. (English) Zbl 1333.35116 Acta Math. Appl. Sin., Engl. Ser. 31, No. 3, 783-798 (2015). MSC: 35K57 35B09 35B35 35B65 35A01 35B32 92D30 PDF BibTeX XML Cite \textit{S.-l. Zha} et al., Acta Math. Appl. Sin., Engl. Ser. 31, No. 3, 783--798 (2015; Zbl 1333.35116) Full Text: DOI
Yang, Liu; Zhong, Shouming Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive Allee effect. (English) Zbl 1325.35239 Comput. Appl. Math. 34, No. 2, 671-690 (2015). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35Q92 92D25 35B40 PDF BibTeX XML Cite \textit{L. Yang} and \textit{S. Zhong}, Comput. Appl. Math. 34, No. 2, 671--690 (2015; Zbl 1325.35239) Full Text: DOI
Wang, Feng-Bin; Hsu, Sze-Bi; Zhao, Xiao-Qiang A reaction-diffusion-advection model of harmful algae growth with toxin degradation. (English) Zbl 1337.35012 J. Differ. Equations 259, No. 7, 3178-3201 (2015). Reviewer: J. Michel Tchuenche (Atlanta) MSC: 35B40 35K57 92D25 35B41 PDF BibTeX XML Cite \textit{F.-B. Wang} et al., J. Differ. Equations 259, No. 7, 3178--3201 (2015; Zbl 1337.35012) Full Text: DOI
Li, Shanbing; Wu, Jianhua; Dong, Yaying Turing patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme. (English) Zbl 1323.35087 J. Differ. Equations 259, No. 5, 1990-2029 (2015). Reviewer: Peixuan Weng (Guangzhou) MSC: 35K57 35B35 35B32 35B36 PDF BibTeX XML Cite \textit{S. Li} et al., J. Differ. Equations 259, No. 5, 1990--2029 (2015; Zbl 1323.35087) Full Text: DOI
Zhou, Jun Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. (English) Zbl 1312.35015 Commun. Pure Appl. Anal. 14, No. 3, 1127-1145 (2015). MSC: 35B32 35B50 35J65 35K57 37C25 92D25 35B35 PDF BibTeX XML Cite \textit{J. Zhou}, Commun. Pure Appl. Anal. 14, No. 3, 1127--1145 (2015; Zbl 1312.35015) Full Text: DOI
Pao, C. V. Dynamics of Lotka-Volterra competition reaction-diffusion systems with degenerate diffusion. (English) Zbl 1297.35042 J. Math. Anal. Appl. 421, No. 2, 1721-1742 (2015). MSC: 35B40 92D25 35K57 35K51 35K65 PDF BibTeX XML Cite \textit{C. V. Pao}, J. Math. Anal. Appl. 421, No. 2, 1721--1742 (2015; Zbl 1297.35042) Full Text: DOI
Zhou, Jun On existence, multiplicity, uniqueness and stability of positive solutions of a Leslie-Gower type diffusive predator-prey system. (English) Zbl 1416.92148 Nonlinear Anal., Model. Control 19, No. 4, 669-688 (2014). MSC: 92D25 92D40 34C23 34D20 34B18 PDF BibTeX XML Cite \textit{J. Zhou}, Nonlinear Anal., Model. Control 19, No. 4, 669--688 (2014; Zbl 1416.92148) Full Text: DOI
Baštinec, Jaromír; Berezansky, Leonid; Diblík, Josef; Šmarda, Zdeněk On a delay population model with a quadratic nonlinearity without positive steady state. (English) Zbl 1365.92087 Appl. Math. Comput. 227, 622-629 (2014). MSC: 92D25 PDF BibTeX XML Cite \textit{J. Baštinec} et al., Appl. Math. Comput. 227, 622--629 (2014; Zbl 1365.92087) Full Text: DOI
Zhang, Cun-Hua; Li, Zhi-Zhen Dynamics in a diffusive plant-herbivore model with toxin-determined functional response. (English) Zbl 1347.37140 Comput. Math. Appl. 67, No. 8, 1439-1449 (2014). MSC: 37N25 92D25 37L10 37L15 37G10 35K57 PDF BibTeX XML Cite \textit{C.-H. Zhang} and \textit{Z.-Z. Li}, Comput. Math. Appl. 67, No. 8, 1439--1449 (2014; Zbl 1347.37140) Full Text: DOI
Wang, Ying; Jia, Yunfeng Bifurcation solutions of a predator-prey model with diffusion. (Chinese. English summary) Zbl 1340.92061 Basic Sci. J. Text. Univ. 27, No. 4, 443-446 (2014). MSC: 92D25 35B32 35B09 92D30 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{Y. Jia}, Basic Sci. J. Text. Univ. 27, No. 4, 443--446 (2014; Zbl 1340.92061)
Antón, I.; López-Gómez, J. Dynamics of a parabolic problem arising in nuclear engineering. (English) Zbl 1340.35111 Differ. Integral Equ. 27, No. 7-8, 691-720 (2014). Reviewer: Lubomira Softova (Aversa) MSC: 35K40 35K55 35B09 PDF BibTeX XML Cite \textit{I. Antón} and \textit{J. López-Gómez}, Differ. Integral Equ. 27, No. 7--8, 691--720 (2014; Zbl 1340.35111)
Hu, Guangping; Li, Xiaoling; Lu, Shiping Stationary patterns for a Leslie-Gower type three species model with diffusion. (English) Zbl 1309.35022 Int. J. Biomath. 7, No. 6, Article ID 1450069, 17 p. (2014). MSC: 35J47 35Q92 92B05 92D25 35K57 35B09 PDF BibTeX XML Cite \textit{G. Hu} et al., Int. J. Biomath. 7, No. 6, Article ID 1450069, 17 p. (2014; Zbl 1309.35022) Full Text: DOI
Zhou, Jun; Kim, Chan-Gyun Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response. (English) Zbl 1315.35089 Sci. China, Math. 57, No. 5, 991-1010 (2014). Reviewer: Peixuan Weng (Guangzhou) MSC: 35J47 35J66 37C25 92D25 35B35 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{C.-G. Kim}, Sci. China, Math. 57, No. 5, 991--1010 (2014; Zbl 1315.35089) Full Text: DOI
Zhou, Jun; Kim, Chan-Gyun; Shi, Junping Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. (English) Zbl 1304.35275 Discrete Contin. Dyn. Syst. 34, No. 9, 3875-3899 (2014). MSC: 35J57 35K55 92C15 92C40 92D25 35B09 35B40 PDF BibTeX XML Cite \textit{J. Zhou} et al., Discrete Contin. Dyn. Syst. 34, No. 9, 3875--3899 (2014; Zbl 1304.35275) Full Text: DOI
Kantrowitz, Robert; Neumann, Michael M. A fixed point approach to the steady state for stochastic matrices. (English) Zbl 1317.15032 Rocky Mt. J. Math. 44, No. 4, 1243-1250 (2014). Reviewer: Huang Wenxue (Scarborough) MSC: 15B51 15A18 15B48 47H10 47H09 PDF BibTeX XML Cite \textit{R. Kantrowitz} and \textit{M. M. Neumann}, Rocky Mt. J. Math. 44, No. 4, 1243--1250 (2014; Zbl 1317.15032) Full Text: DOI Euclid
Nie, Hua; Liu, Na; Wu, Jianhua Coexistence solutions and their stability of an unstirred chemostat model with toxins. (English) Zbl 1295.35067 Nonlinear Anal., Real World Appl. 20, 36-51 (2014). MSC: 35B35 92C17 35B32 35K51 PDF BibTeX XML Cite \textit{H. Nie} et al., Nonlinear Anal., Real World Appl. 20, 36--51 (2014; Zbl 1295.35067) Full Text: DOI
Jun, Zhou; Kim, Chan-Gyun Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion of fractional type. (English) Zbl 1293.35139 Result. Math. 65, No. 3-4, 293-320 (2014). MSC: 35K51 35B32 35K57 92D25 PDF BibTeX XML Cite \textit{Z. Jun} and \textit{C.-G. Kim}, Result. Math. 65, No. 3--4, 293--320 (2014; Zbl 1293.35139) Full Text: DOI
Zhou, Jun; Shi, Junping Qualitative analysis of an autocatalytic chemical reaction model with decay. (English) Zbl 1292.35150 Proc. R. Soc. Edinb., Sect. A, Math. 144, No. 2, 427-446 (2014). MSC: 35K57 92E20 35K51 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{J. Shi}, Proc. R. Soc. Edinb., Sect. A, Math. 144, No. 2, 427--446 (2014; Zbl 1292.35150) Full Text: DOI
Zhou, Jun Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response. (English) Zbl 1293.35349 Z. Angew. Math. Phys. 65, No. 1, 1-18 (2014). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35Q92 92D25 35B09 35K55 92C15 PDF BibTeX XML Cite \textit{J. Zhou}, Z. Angew. Math. Phys. 65, No. 1, 1--18 (2014; Zbl 1293.35349) Full Text: DOI
Pao, C. V. A Lotka-Volterra cooperating reaction-diffusion system with degenerate density-dependent diffusion. (English) Zbl 1284.35240 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95, 460-467 (2014). MSC: 35K65 35K57 35B40 92D25 35K59 PDF BibTeX XML Cite \textit{C. V. Pao}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95, 460--467 (2014; Zbl 1284.35240) Full Text: DOI
Zhou, Jun Spatiotemporal pattern formation of a diffusive bimolecular model with autocatalysis and saturation law. (English) Zbl 1345.92170 Comput. Math. Appl. 66, No. 10, 2003-2018 (2013). MSC: 92E10 35Q92 35B35 PDF BibTeX XML Cite \textit{J. Zhou}, Comput. Math. Appl. 66, No. 10, 2003--2018 (2013; Zbl 1345.92170) Full Text: DOI
Zhou, Jun; Shi, Junping The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses. (English) Zbl 1306.92054 J. Math. Anal. Appl. 405, No. 2, 618-630 (2013). MSC: 92D25 PDF BibTeX XML Cite \textit{J. Zhou} and \textit{J. Shi}, J. Math. Anal. Appl. 405, No. 2, 618--630 (2013; Zbl 1306.92054) Full Text: DOI
Wen, Zijuan Turing instability and stationary patterns in a predator-prey systems with nonlinear cross-diffusions. (English) Zbl 1295.35256 Bound. Value Probl. 2013, Paper No. 155, 17 p. (2013). MSC: 35K51 35K59 35B36 92D25 35B35 PDF BibTeX XML Cite \textit{Z. Wen}, Bound. Value Probl. 2013, Paper No. 155, 17 p. (2013; Zbl 1295.35256) Full Text: DOI
Peng, Rui; Yi, Fengqi Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement. (English) Zbl 1321.92076 Physica D 259, 8-25 (2013). MSC: 92D30 PDF BibTeX XML Cite \textit{R. Peng} and \textit{F. Yi}, Physica D 259, 8--25 (2013; Zbl 1321.92076) Full Text: DOI
Zhang, Cunhua Positive solutions bifurcating from zero solution of an elliptic system in population dynamics. (Chinese. English summary) Zbl 1299.92057 Chin. Ann. Math., Ser. A 34, No. 2, 129-138 (2013). MSC: 92D25 35K57 35B32 35B09 PDF BibTeX XML Cite \textit{C. Zhang}, Chin. Ann. Math., Ser. A 34, No. 2, 129--138 (2013; Zbl 1299.92057)
Shi, Hong-Bo Qualitative analysis of a diffusive food web consisting of a prey and two predators. (English) Zbl 1278.92049 Bull. Korean Math. Soc. 50, No. 6, 1827-1840 (2013). MSC: 92D40 35Q92 35B35 PDF BibTeX XML Cite \textit{H.-B. Shi}, Bull. Korean Math. Soc. 50, No. 6, 1827--1840 (2013; Zbl 1278.92049) Full Text: DOI Link
Hu, Guangping; Li, Xiaoling Stationary patterns of a Leslie-Gower-type three-species model with cross-diffusions. (Chinese. English summary) Zbl 1289.92042 Acta Math. Sci., Ser. A, Chin. Ed. 33, No. 1, 16-27 (2013). MSC: 92D25 35Q92 35J48 92D40 PDF BibTeX XML Cite \textit{G. Hu} and \textit{X. Li}, Acta Math. Sci., Ser. A, Chin. Ed. 33, No. 1, 16--27 (2013; Zbl 1289.92042)
Bolaños-Servin, Jorge R.; Quezada, Roberto A cycle decomposition and entropy production for circulant quantum Markov semigroups. (English) Zbl 1302.46051 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16, No. 2, Article ID 1350016, 23 p. (2013). Reviewer: Andrej V. Bulinski (Moskva) MSC: 46L53 82C10 60J27 46L57 PDF BibTeX XML Cite \textit{J. R. Bolaños-Servin} and \textit{R. Quezada}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 16, No. 2, Article ID 1350016, 23 p. (2013; Zbl 1302.46051) Full Text: DOI
Zhou, Jun Positive steady state solutions of a Leslie-Gower predator-prey model with Holling type II functional response and density-dependent diffusion. (English) Zbl 1318.92045 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 82, 47-65 (2013). MSC: 92D25 35K55 PDF BibTeX XML Cite \textit{J. Zhou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 82, 47--65 (2013; Zbl 1318.92045) Full Text: DOI
Li, Yan; Wang, Mingxin Stationary pattern of a diffusive prey-predator model with trophic intersections of three levels. (English) Zbl 1261.35017 Nonlinear Anal., Real World Appl. 14, No. 3, 1806-1816 (2013). MSC: 35B32 35B35 35B09 35B36 35K57 92D25 35K51 PDF BibTeX XML Cite \textit{Y. Li} and \textit{M. Wang}, Nonlinear Anal., Real World Appl. 14, No. 3, 1806--1816 (2013; Zbl 1261.35017) Full Text: DOI
Hu, Guang-Ping; Li, Xiao-Ling Turing patterns of a predator-prey model with a modified Leslie-Gower term and cross-diffusions. (English) Zbl 1297.92063 Int. J. Biomath. 5, No. 6, Article ID 1250060, 17 p. (2012). MSC: 92D25 PDF BibTeX XML Cite \textit{G.-P. Hu} and \textit{X.-L. Li}, Int. J. Biomath. 5, No. 6, Article ID 1250060, 17 p. (2012; Zbl 1297.92063) Full Text: DOI
Ye, Guangbi; Li, Yanling An equilibrium analysis for a class of predator-prey models. (Chinese. English summary) Zbl 1289.92049 J. Anhui Norm. Univ., Nat. Sci. 35, No. 6, 525-529 (2012). MSC: 92D25 PDF BibTeX XML Cite \textit{G. Ye} and \textit{Y. Li}, J. Anhui Norm. Univ., Nat. Sci. 35, No. 6, 525--529 (2012; Zbl 1289.92049)
Oeda, Kazuhiro Coexistence states of a prey-predator model with cross-diffusion and a protection zone. (English) Zbl 1300.92084 Adv. Math. Sci. Appl. 22, No. 2, 501-520 (2012). MSC: 92D25 35J65 35B32 PDF BibTeX XML Cite \textit{K. Oeda}, Adv. Math. Sci. Appl. 22, No. 2, 501--520 (2012; Zbl 1300.92084)
Su, Ying; Wei, Junjie; Shi, Junping Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence. (English) Zbl 1263.35028 J. Dyn. Differ. Equations 24, No. 4, 897-925 (2012). Reviewer: Sebastian Anita (Iaşi) MSC: 35B32 35K57 35B10 92D25 35B35 35K20 PDF BibTeX XML Cite \textit{Y. Su} et al., J. Dyn. Differ. Equations 24, No. 4, 897--925 (2012; Zbl 1263.35028) Full Text: DOI
Delgado, Manuel; Morales-Rodrigo, Cristian; Suárez, Antonio Anti-angiogenic therapy based on the binding to receptors. (English) Zbl 1250.35170 Discrete Contin. Dyn. Syst. 32, No. 11, 3871-3894 (2012). MSC: 35Q92 35K51 35K57 92C17 35B32 35B09 PDF BibTeX XML Cite \textit{M. Delgado} et al., Discrete Contin. Dyn. Syst. 32, No. 11, 3871--3894 (2012; Zbl 1250.35170) Full Text: DOI
Zhao, Yuhua; Wang, Yuwen; Shi, Junping Steady states and dynamics of an autocatalytic chemical reaction model with decay. (English) Zbl 1258.35115 J. Differ. Equations 253, No. 2, 533-552 (2012). Reviewer: Yaping Liu (Pittsburg) MSC: 35K51 35A01 92E99 35B32 35K58 PDF BibTeX XML Cite \textit{Y. Zhao} et al., J. Differ. Equations 253, No. 2, 533--552 (2012; Zbl 1258.35115) Full Text: DOI
Li, Huiling; Pang, Peter Y. H.; Wang, Mingxin Qualitative analysis of a diffusive prey-predator model with trophic interactions of three levels. (English) Zbl 1243.34067 Discrete Contin. Dyn. Syst., Ser. B 17, No. 1, 127-152 (2012). Reviewer: Jiaqi Mo (Wuhu) MSC: 34C60 34C23 92D25 34B15 PDF BibTeX XML Cite \textit{H. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 17, No. 1, 127--152 (2012; Zbl 1243.34067) Full Text: DOI
Gakkhar, Sunita; Melese, Dawit Gebru Non-constant positive steady state of a diffusive Leslie-Gower type food web system. (English) Zbl 1304.92128 J. Appl. Anal. Comput. 1, No. 4, 467-485 (2011). MSC: 92D40 35K57 35Q92 PDF BibTeX XML Cite \textit{S. Gakkhar} and \textit{D. G. Melese}, J. Appl. Anal. Comput. 1, No. 4, 467--485 (2011; Zbl 1304.92128) Full Text: Link
Wei, Xi; Wu, Jianhua Qualitative analysis for a prey-predator model with disease infected by contact and external source. (Chinese. English summary) Zbl 1265.35167 Appl. Math., Ser. A (Chin. Ed.) 26, No. 4, 423-433 (2011). MSC: 35K57 92D40 PDF BibTeX XML Cite \textit{X. Wei} and \textit{J. Wu}, Appl. Math., Ser. A (Chin. Ed.) 26, No. 4, 423--433 (2011; Zbl 1265.35167)
Zhang, Yun; Zeng, Xianzhong Existence of positive stationary solutions for a prey-predator model with Holling-II type interactions and the mixed boundary conditions. (Chinese. English summary) Zbl 1247.92029 Pure Appl. Math. 27, No. 4, 523-532 (2011). MSC: 92D25 35Q92 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{X. Zeng}, Pure Appl. Math. 27, No. 4, 523--532 (2011; Zbl 1247.92029)
Li, Ping; Zeng, Xianzhong Existence of positive steady-state solutions for a ratio-dependent predator-prey model with mixed boundary conditions. (Chinese. English summary) Zbl 1249.35096 J. Biomath. 26, No. 2, 311-321 (2011). MSC: 35J56 35B09 92D40 PDF BibTeX XML Cite \textit{P. Li} and \textit{X. Zeng}, J. Biomath. 26, No. 2, 311--321 (2011; Zbl 1249.35096)
Zhang, Cunhua; Yan, Xiangping Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects. (English) Zbl 1249.35326 Appl. Math., Ser. B (Engl. Ed.) 26, No. 3, 342-352 (2011). MSC: 35Q92 35B32 35J67 92D25 35B09 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{X. Yan}, Appl. Math., Ser. B (Engl. Ed.) 26, No. 3, 342--352 (2011; Zbl 1249.35326) Full Text: DOI
Zhang, Cun-Hua; Yan, Xiang-Ping Positive solutions bifurcating from zero solution in a predator-prey reaction-diffusion system. (English) Zbl 1242.35038 Math. Model. Anal. 16, No. 4, 558-568 (2011). MSC: 35B32 35B09 35B35 35J57 35J61 92D25 PDF BibTeX XML Cite \textit{C.-H. Zhang} and \textit{X.-P. Yan}, Math. Model. Anal. 16, No. 4, 558--568 (2011; Zbl 1242.35038) Full Text: DOI
Wang, Yu-Xia; Li, Wan-Tong; Shi, Hong-Bo Stationary patterns of a ratio-dependent predator-prey system with cross-diffusion. (English) Zbl 1230.35049 Math. Model. Anal. 16, No. 3, 461-474 (2011). MSC: 35K51 35K57 35R20 92D25 35B36 35K58 PDF BibTeX XML Cite \textit{Y.-X. Wang} et al., Math. Model. Anal. 16, No. 3, 461--474 (2011; Zbl 1230.35049) Full Text: DOI
Zhang, Xiao; Xu, Rui; Li, Zhe Global stability of a three-species food-chain model with diffusion and nonlocal delays. (English) Zbl 1233.35029 Math. Model. Anal. 16, No. 3, 376-389 (2011). Reviewer: Jiaqi Mo (Wuhu) MSC: 35B35 92D25 35K57 35R10 35K51 PDF BibTeX XML Cite \textit{X. Zhang} et al., Math. Model. Anal. 16, No. 3, 376--389 (2011; Zbl 1233.35029) Full Text: DOI
Feng, Wei; Pao, C. V.; Lu, Xin Global attractors of reaction-diffusion systems modeling food chain populations with delays. (English) Zbl 1228.35256 Commun. Pure Appl. Anal. 10, No. 5, 1463-1478 (2011). MSC: 35Q92 35K57 35B40 92D25 PDF BibTeX XML Cite \textit{W. Feng} et al., Commun. Pure Appl. Anal. 10, No. 5, 1463--1478 (2011; Zbl 1228.35256) Full Text: DOI
Xu, Shihe Global stability of a reaction-diffusion system of a competitor-competitor-mutualist model. (English) Zbl 1233.35028 Taiwanese J. Math. 15, No. 4, 1617-1627 (2011). Reviewer: Jiaqi Mo (Wuhu) MSC: 35B35 35K57 92D25 PDF BibTeX XML Cite \textit{S. Xu}, Taiwanese J. Math. 15, No. 4, 1617--1627 (2011; Zbl 1233.35028) Full Text: DOI
Cantrell, Robert S.; Cosner, Chris; Martínez, Salomé Steady state solutions of a logistic equation with nonlinear boundary conditions. (English) Zbl 1220.35057 Rocky Mt. J. Math. 41, No. 2, 445-455 (2011). Reviewer: Stepan Agop Tersian (Rousse) MSC: 35J61 35J66 35B09 PDF BibTeX XML Cite \textit{R. S. Cantrell} et al., Rocky Mt. J. Math. 41, No. 2, 445--455 (2011; Zbl 1220.35057) Full Text: DOI
Tang, Qiulin; Lin, Zhigui The asymptotic analysis of an insect dispersal model on a growing domain. (English) Zbl 1213.35113 J. Math. Anal. Appl. 378, No. 2, 649-656 (2011). MSC: 35B40 35K57 35Q92 35B51 PDF BibTeX XML Cite \textit{Q. Tang} and \textit{Z. Lin}, J. Math. Anal. Appl. 378, No. 2, 649--656 (2011; Zbl 1213.35113) Full Text: DOI
Du, Yihong; Mei, Linfeng On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics. (English) Zbl 1223.35063 Nonlinearity 24, No. 1, 319-349 (2011). MSC: 35B40 35K57 86A05 35K15 PDF BibTeX XML Cite \textit{Y. Du} and \textit{L. Mei}, Nonlinearity 24, No. 1, 319--349 (2011; Zbl 1223.35063) Full Text: DOI
Bie, Qunyi Non-existence of positive non-constant steady-states of a certain class of reaction-diffusion systems. (Chinese. English summary) Zbl 1240.35248 J. Shandong Univ., Nat. Sci. 45, No. 11, 88-92 (2010). MSC: 35K57 35B45 PDF BibTeX XML Cite \textit{Q. Bie}, J. Shandong Univ., Nat. Sci. 45, No. 11, 88--92 (2010; Zbl 1240.35248)
Dhahri, Ameur; Fagnola, Franco; Rebolledo, Rolando The decoherence-free subalgebra of a quantum Markov semigroup with unbounded generator. (English) Zbl 1209.46041 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 3, 413-433 (2010). MSC: 46L55 46L57 47D07 47N50 81S25 82C10 PDF BibTeX XML Cite \textit{A. Dhahri} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 3, 413--433 (2010; Zbl 1209.46041) Full Text: DOI
Wen, Zijuan; Zhong, Chengkui Non-constant positive steady states for the HP food chain system with cross-diffusions. (English) Zbl 1198.35125 Math. Comput. Modelling 51, No. 9-10, 1026-1036 (2010). MSC: 35K57 35Q92 92D25 PDF BibTeX XML Cite \textit{Z. Wen} and \textit{C. Zhong}, Math. Comput. Modelling 51, No. 9--10, 1026--1036 (2010; Zbl 1198.35125) Full Text: DOI
Peng, Rui; Wang, Ming Xin; Yang, Guo Ying A note on a diffusive predator-prey model and its steady-state system. (English) Zbl 1213.35258 Acta Math. Sin., Engl. Ser. 26, No. 5, 963-974 (2010). Reviewer: Sebastian Anita (Iaşi) MSC: 35K57 37B25 92D25 35K51 35B40 PDF BibTeX XML Cite \textit{R. Peng} et al., Acta Math. Sin., Engl. Ser. 26, No. 5, 963--974 (2010; Zbl 1213.35258) Full Text: DOI
Su, Ying; Wan, Aying; Wei, Junjie Bifurcation analysis in a diffusive ‘food-limited’ model with time delay. (English) Zbl 1201.35037 Appl. Anal. 89, No. 7, 1161-1181 (2010). Reviewer: Laura Iulia Aniţa (Iaşi) MSC: 35B32 35K57 92B05 35R10 35B35 PDF BibTeX XML Cite \textit{Y. Su} et al., Appl. Anal. 89, No. 7, 1161--1181 (2010; Zbl 1201.35037) Full Text: DOI