×

Meshless point collocation for the numerical solution of Navier-Stokes flow equations inside an evaporating sessile droplet. (English) Zbl 1245.76015

Summary: The Navier-Stokes flow inside an evaporating sessile droplet is studied in the present paper, using sophisticated meshfree numerical methods for the computation of the flow field. This problem relates to numerous modern technological applications, and has attracted several analytical and numerical investigations that expanded our knowledge on the internal microflow during droplet evaporation. Two meshless point collocation methods are applied here to this problem and used for flow computations and for comparison with analytical and more traditional numerical solutions. Particular emphasis is placed on the implementation of the velocity-correction method within the meshless procedure, ensuring the continuity equation with increased precision. The Moving Least Squares (MLS) and the Radial Basis Function (RBF) approximations are employed for the construction of the shape functions, in conjunction with the general framework of the Point Collocation Method (MPC). An augmented linear system for imposing the coupled boundary conditions that apply at the liquid-gas interface, especially the zero shear-stress boundary condition at the interface, is presented. Computations are obtained for regular, Type-I embedded nodal distributions, stressing the positivity conditions that make the matrix of the system stable and convergent. Low Reynolds number (Stokes regime), and elevated Reynolds number (Navier-Stokes regime) conditions have been studied and the solutions are compared to those of analytical and traditional CFD methods. The meshless implementation has shown a relative ease of application, compared to traditional mesh-based methods, and high convergence rate and accuracy.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
41A30 Approximation by other special function classes
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs

Software:

Mfree2D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kawase, T.; Shimoda, T.; Newsome, C.; Sirringhaus, H.; Friend, R. H., Inkjet printing of polymer thin film transistors, Thin Solid Films, 438, 279-287 (2003)
[2] Dugas, V.; Broutin, J.; Souteyrand, E., Droplet evaporation study applied to DNA chip manufacturing, Langmuir, 21, 9130-9136 (2005)
[3] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A., Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389, 827-829 (1997)
[4] Petsi, A. J.; Burganos, V. N., Potential flow inside an evaporating cylindrical line, Phys. Rev. E, 72, 047301 (2005)
[5] Petsi, A. J.; Burganos, V. N., Evaporation-induced flow in an inviscid liquid line at any contact angle, Phys. Rev. E, 73, 041201 (2006)
[6] Petsi, A. J.; Burganos, V. N., Stokes flow inside an evaporating liquid line for any contact angle, Phys. Rev. E, 78, 036324 (2008)
[7] Yarin, A. L.; Szczech, J. B.; Megaridis, C. M.; Zhang, J.; Gamoda, D. R.J., Lines of dense nanoparticle colloidal suspensions evaporating on a flat surface: formation of non-uniform dried deposits, J. Colloid Interface Sci., 294, 343-354 (2006)
[8] Petsi AJ, Kalarakis AN, Skouras ED, Burganos VN. Flow and colloidal particle deposition in the interior of evaporating sessile droplets. In: AIP conference proceedings, vol. 1281; 2010. p. 686-9.; Petsi AJ, Kalarakis AN, Skouras ED, Burganos VN. Flow and colloidal particle deposition in the interior of evaporating sessile droplets. In: AIP conference proceedings, vol. 1281; 2010. p. 686-9.
[9] Ajaev, V. S., Spreading of thin volatile liquid droplets on uniformly heated surfaces, J. Fluid Mech., 528, 279, 296 (2005) · Zbl 1165.76313
[10] Dunn, G. J.; Duffy, B. R.; Wilson, S. K.; Holland, D., Quasi-steady spreading of a thin ridge of fluid with temperature-dependent surface tension on a heated or cooled substrate, Q. J. Mech. Appl. Math., 64, 365-402 (2009) · Zbl 1194.76018
[11] Atluri, S. N.; Shen, S. P., The meshless local Petrov-Galerkin (MLPG) method (2002), Tech Science Press: Tech Science Press Encino USA, 440 pp · Zbl 1012.65116
[12] Liu, G. R., Mesh free methods, moving beyond the finite element method (2002), CRC Press
[13] Lin, H.; Atluri, S. N., The meshless local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations, Comput. Model. Eng. Sci., 2, 117-142 (2001)
[14] Mohammadi, M. H., Stabilized meshless local Petrov-Galerkin (MLPG) method for incompressible viscous fluid flows, Comput. Model. Eng. Sci., 29, 75-94 (2008) · Zbl 1232.76028
[15] Arefmanesh, A.; Najafi, M.; Abdi, H., Meshless local Petrov-Galerkin method with unity test function for non-isothermal fluid flow, Comput. Model. Eng. Sci., 25, 9-22 (2008) · Zbl 1232.76024
[16] Baez, E.; Nicolas, A., Recirculation of viscous incompressible flows in enclosures, Comput. Model. Eng. Sci., 41, 107-130 (2009) · Zbl 1357.76013
[17] Grimaldi, A.; Pascazio, G.; Napolitano, M. A., Parallel multi-block method for the unsteady vorticity-velocity equations, Comput. Model. Eng. Sci., 14, 45-56 (2006) · Zbl 1232.76035
[18] Mai-Duy, N.; Tran-Cong, T., Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks, Int. J. Num. Methods Eng. Fluids, 37, 65-86 (2001) · Zbl 1047.76101
[19] Mai-Duy, N.; Mai-Cao, L.; Tran-Cong, T., Computation of transient viscous flows using indirect radial basis function networks, Comput. Model. Eng. Sci., 18, 59-77 (2007)
[20] Mariani, V. C.; Alonso, E. E.M.; Peters, S., Numerical results for a colocated finite-volume scheme on Voronoi meshes for Navier-Stokes equations, Comput. Model. Eng. Sci., 29, 15-27 (2008) · Zbl 1232.76032
[21] Nicolás, A.; Bermúdez, B., 2D incompressible viscous flows at moderate and high Reynolds numbers, Comput. Model. Eng. Sci., 6, 441-451 (2004) · Zbl 1119.76319
[22] Nicolás, A.; Bermúdez, B., Viscous incompressible flows by the velocity-vorticity Navier-Stokes equations, Comput. Model. Eng. Sci., 20, 73-83 (2007)
[23] Sanyasiraju, Y. V.S. S.; Chandhini, G., Local radial basis function based gridfree scheme for unsteady incompressible viscous flows, J. Comput. Phys., 227, 8922-8948 (2008) · Zbl 1146.76045
[24] Sellountos, E. J.; Sequeira, A., An advanced meshless LBIE/RBF method for solving two-dimensional incompressible fluid flows, Comput. Mech., 41, 617-631 (2008) · Zbl 1162.76373
[25] Shu, C.; Ding, H.; Yeo, K. S., Computation of Incompressible Navier-Stokes equations by local RBF-based differential quadrature method, Comput. Model. Eng. Sci., 7, 195-206 (2005) · Zbl 1106.76427
[26] Kim, Y.; Kim, D. W.; Jun, S.; Lee, J. H., Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 196, 3095-3109 (2007) · Zbl 1173.76386
[27] Aluru, N. R., A point collocation method based on reproducing kernel approximations, Int. J. Num. Methods Eng., 47, 1083-1121 (2000) · Zbl 0960.74078
[28] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares method, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005
[29] Bourantas, G. C.; Skouras, E. D.; Nikiforidis, G. C., Adaptive support domain implementation on the moving least squares approximation for Mfree methods applied on elliptic and parabolic PDE problems using strong-form description, Comput. Model. Eng. Sci., 43, 1-25 (2009) · Zbl 1232.65153
[30] Ligget, J. A., Fluid mechanics (1994), McGraw-Hill: McGraw-Hill New York
[31] Bourantas, G. C.; Skouras, E. D.; Loukopouls, V. C.; Nikiforidis, G. C., Meshfree point collocation schemes for 2D steady state incompressible Navier-Stokes equations in velocity-vorticity formulation for high values of Reynolds number, Comput. Model. Eng. Sci., 59, 1-33 (2010) · Zbl 1231.76069
[32] Kim, D. W.; Liu, W. K., Maximum principle and convergence analysis for the meshfree point collocation method, SIAM J. Num. Anal., 44, 515-539 (2006) · Zbl 1155.65090
[33] Sellountos, E. J.; Polyzos, D. A., MLPG (LBIE) method for solving frequency domain elastic problems, Comput. Model. Eng. Sci., 4, 619-636 (2003) · Zbl 1064.74170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.