Friedman, Isaac; Riaño, Oscar; Roudenko, Svetlana; Son, Diana; Yang, Kai Well-posedness and dynamics of solutions to the generalized KdV with low power nonlinearity. (English) Zbl 07643215 Nonlinearity 36, No. 1, 584-635 (2023). MSC: 35Q53 35Q35 35B40 35B44 35A01 35A02 35C08 65M70 65N35 65L06 PDF BibTeX XML Cite \textit{I. Friedman} et al., Nonlinearity 36, No. 1, 584--635 (2023; Zbl 07643215) Full Text: DOI arXiv OpenURL
Fujiwara, Kazumasa Note on the lifespan estimate of solutions for non-gauge invariant semilinear massless semirelativistic equations with some scaling critical nonlinearity. (English) Zbl 1504.35419 J. Evol. Equ. 23, No. 1, Paper No. 11, 12 p. (2023). MSC: 35Q40 35Q55 35D30 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{K. Fujiwara}, J. Evol. Equ. 23, No. 1, Paper No. 11, 12 p. (2023; Zbl 1504.35419) Full Text: DOI arXiv OpenURL
Ishizuka, Kenjiro; Nakanishi, Kenji Global dynamics around 2-solitons for the nonlinear damped Klein-Gordon equations. (English) Zbl 1504.35067 Ann. PDE 9, No. 1, Paper No. 2, 79 p. (2023). MSC: 35B40 35B30 35B44 35C08 35L71 PDF BibTeX XML Cite \textit{K. Ishizuka} and \textit{K. Nakanishi}, Ann. PDE 9, No. 1, Paper No. 2, 79 p. (2023; Zbl 1504.35067) Full Text: DOI arXiv OpenURL
Klimsiak, Tomasz Asymptotics for logistic-type equations with Dirichlet fractional Laplace operator. (English) Zbl 1501.35065 Adv. Differ. Equ. 28, No. 3-4, 169-216 (2023). MSC: 35B40 35K20 35K57 35K85 35R11 PDF BibTeX XML Cite \textit{T. Klimsiak}, Adv. Differ. Equ. 28, No. 3--4, 169--216 (2023; Zbl 1501.35065) Full Text: arXiv Link OpenURL
Wei, Dongyi; Yang, Shiwu On the defocusing semilinear wave equations in three space dimension with small power. (English) Zbl 07643556 Int. Math. Res. Not. 2022, No. 24, 19501-19526 (2022). MSC: 35L71 35B45 35L15 PDF BibTeX XML Cite \textit{D. Wei} and \textit{S. Yang}, Int. Math. Res. Not. 2022, No. 24, 19501--19526 (2022; Zbl 07643556) Full Text: DOI arXiv OpenURL
Zhou, Qin; Triki, Houria; Xu, Jiakun; Zeng, Zhongliang; Liu, Wenjun; Biswas, Anjan Perturbation of chirped localized waves in a dual-power law nonlinear medium. (English) Zbl 1504.74047 Chaos Solitons Fractals 160, Article ID 112198, 6 p. (2022). MSC: 74J30 74J35 PDF BibTeX XML Cite \textit{Q. Zhou} et al., Chaos Solitons Fractals 160, Article ID 112198, 6 p. (2022; Zbl 1504.74047) Full Text: DOI OpenURL
Zuo, Jiabin; Choudhuri, Debajyoti; Repovš, Dušan D. Mixed order elliptic problems driven by a singularity, a Choquard type term and a discontinuous power nonlinearity with critical variable exponents. (English) Zbl 1503.35281 Fract. Calc. Appl. Anal. 25, No. 6, 2532-2553 (2022). MSC: 35R11 35J75 35J60 46E35 26A33 PDF BibTeX XML Cite \textit{J. Zuo} et al., Fract. Calc. Appl. Anal. 25, No. 6, 2532--2553 (2022; Zbl 1503.35281) Full Text: DOI arXiv OpenURL
Sajid, Naila; Perveen, Zahida; Sadaf, Maasoomah; Akram, Ghazala; Abbas, Muhammad; Abdeljawad, Thabet; Alqudah, Manar A. Implementation of the exp-function approach for the solution of KdV equation with dual power law nonlinearity. (English) Zbl 07610374 Comput. Appl. Math. 41, No. 8, Paper No. 338, 12 p. (2022). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{N. Sajid} et al., Comput. Appl. Math. 41, No. 8, Paper No. 338, 12 p. (2022; Zbl 07610374) Full Text: DOI OpenURL
Merle, Frank; Zaag, Hatem Behavior rigidity near non-isolated blow-up points for the semilinear heat equation. (English) Zbl 1501.35092 Int. Math. Res. Not. 2022, No. 20, 16196-16260 (2022). MSC: 35B44 35K15 35K58 PDF BibTeX XML Cite \textit{F. Merle} and \textit{H. Zaag}, Int. Math. Res. Not. 2022, No. 20, 16196--16260 (2022; Zbl 1501.35092) Full Text: DOI arXiv OpenURL
Martinez, Lorenzo J.; Gallego, Felipe A.; Salas, Alvaro H. Analytical solution to a damped and forced oscillator equation with power law nonlinearity. (English) Zbl 07604272 Int. J. Math. Comput. Sci. 17, No. 4, 1649-1655 (2022). MSC: 37Cxx 33E30 34C15 PDF BibTeX XML Cite \textit{L. J. Martinez} et al., Int. J. Math. Comput. Sci. 17, No. 4, 1649--1655 (2022; Zbl 07604272) Full Text: Link OpenURL
Askhabov, Sultan Nazhmudinovich System of inhomogeneous integral equations of convolution type with power nonlinearity. (Russian. English summary) Zbl 07597544 Vladikavkaz. Mat. Zh. 24, No. 1, 5-14 (2022). MSC: 45G05 46L05 PDF BibTeX XML Cite \textit{S. N. Askhabov}, Vladikavkaz. Mat. Zh. 24, No. 1, 5--14 (2022; Zbl 07597544) Full Text: DOI MNR OpenURL
Saini, Kezia; Garg, Manish On the higher-order nonlinearity of a Boolean bent function class (constructed via Niho power functions). (English) Zbl 1501.94124 Cryptogr. Commun. 14, No. 5, 1055-1066 (2022). MSC: 94D10 94A60 94C11 PDF BibTeX XML Cite \textit{K. Saini} and \textit{M. Garg}, Cryptogr. Commun. 14, No. 5, 1055--1066 (2022; Zbl 1501.94124) Full Text: DOI OpenURL
Rudakov, I. A. On the existence of countably many periodic solutions of a boundary value problem for the beam vibration equation with homogeneous boundary conditions. (English. Russian original) Zbl 1498.35351 Differ. Equ. 58, No. 8, 1052-1063 (2022); translation from Differ. Uravn. 58, No. 8, 1062-1072 (2022). MSC: 35L35 35B10 35L76 74H45 74K10 PDF BibTeX XML Cite \textit{I. A. Rudakov}, Differ. Equ. 58, No. 8, 1052--1063 (2022; Zbl 1498.35351); translation from Differ. Uravn. 58, No. 8, 1062--1072 (2022) Full Text: DOI OpenURL
Kfoury, Perla; Le Coz, Stefan; Tsai, Tai-Peng Analysis of stability and instability for standing waves of the double power one dimensional nonlinear Schrödinger equation. (English) Zbl 1497.35435 C. R., Math., Acad. Sci. Paris 360, 867-892 (2022). MSC: 35Q55 35Q41 35B35 35C08 37K40 37C45 65M06 65N06 PDF BibTeX XML Cite \textit{P. Kfoury} et al., C. R., Math., Acad. Sci. Paris 360, 867--892 (2022; Zbl 1497.35435) Full Text: DOI arXiv OpenURL
Bai, Mengxue; Zhang, Jian Small multi solitons in a double power nonlinear Schrödinger equation. (English) Zbl 1496.35351 J. Differ. Equations 336, 239-274 (2022). MSC: 35Q55 35Q51 37K40 35C08 35B35 35J60 PDF BibTeX XML Cite \textit{M. Bai} and \textit{J. Zhang}, J. Differ. Equations 336, 239--274 (2022; Zbl 1496.35351) Full Text: DOI OpenURL
Aslan, Halit Sevki; Reissig, Michael Semilinear effectively damped wave models with general relaxation function. (English) Zbl 1491.35285 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112959, 35 p. (2022). MSC: 35L15 35L71 35R09 35A01 PDF BibTeX XML Cite \textit{H. S. Aslan} and \textit{M. Reissig}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112959, 35 p. (2022; Zbl 1491.35285) Full Text: DOI OpenURL
Akram, Ghazala; Sajid, Naila The investigation of exact solutions of Korteweg-de Vries equation with dual power law nonlinearity using the \(\exp_a\) and \(\exp(-\Phi (\xi))\) methods. (English) Zbl 1499.35533 Int. J. Comput. Math. 99, No. 3, 629-640 (2022). MSC: 35Q53 PDF BibTeX XML Cite \textit{G. Akram} and \textit{N. Sajid}, Int. J. Comput. Math. 99, No. 3, 629--640 (2022; Zbl 1499.35533) Full Text: DOI OpenURL
Fujiwara, Kazumasa Lifespan estimates of 1D non-gauge invariant semilinear semirelativistic equations. (English) Zbl 1479.35137 Appl. Math. Lett. 124, Article ID 107619, 6 p. (2022). MSC: 35B44 35B45 35R11 35Q55 PDF BibTeX XML Cite \textit{K. Fujiwara}, Appl. Math. Lett. 124, Article ID 107619, 6 p. (2022; Zbl 1479.35137) Full Text: DOI OpenURL
Askhabov, S. N. System of integro-differential equations of convolution type with power nonlinearity. (Russian. English summary) Zbl 07668743 Sib. Zh. Ind. Mat. 24, No. 3, 5-18 (2021); translation in J. Appl. Ind. Math. 15, No. 3, 365-375 (2021). MSC: 45J05 45E10 45L05 PDF BibTeX XML Cite \textit{S. N. Askhabov}, Sib. Zh. Ind. Mat. 24, No. 3, 5--18 (2021; Zbl 07668743); translation in J. Appl. Ind. Math. 15, No. 3, 365--375 (2021) Full Text: DOI MNR OpenURL
Korchemkina, Tatiana On asymptotic behavior of the first derivatives of bounded solutions to second-order differential equations with general power-law nonlinearity. (English) Zbl 07615936 Domoshnitsky, Alexander (ed.) et al., Functional differential equations and applications, FDEA-2019. Proceedings of the 7th international conference, Ariel, Israel, September 22–27, 2019. Singapore: Springer. Springer Proc. Math. Stat. 379, 251-256 (2021). Reviewer: Rodica Luca (Iaşi) MSC: 34D05 34A34 PDF BibTeX XML Cite \textit{T. Korchemkina}, Springer Proc. Math. Stat. 379, 251--256 (2021; Zbl 07615936) Full Text: DOI OpenURL
Breckner, Brigitte E.; Lisei, Hannelore Approximations of the solution of a stochastic Ginzburg-Landau equation. (English) Zbl 07577423 Stud. Univ. Babeș-Bolyai, Math. 66, No. 2, 307-319 (2021). MSC: 60H15 65C30 35Q56 PDF BibTeX XML Cite \textit{B. E. Breckner} and \textit{H. Lisei}, Stud. Univ. Babeș-Bolyai, Math. 66, No. 2, 307--319 (2021; Zbl 07577423) Full Text: DOI OpenURL
Altayeb, Yousif New scenario of decay rate for system of three nonlinear wave equations with visco-elasticities. (English) Zbl 1484.35275 AIMS Math. 6, No. 7, 7251-7265 (2021). MSC: 35L05 35B35 35L70 35Q74 PDF BibTeX XML Cite \textit{Y. Altayeb}, AIMS Math. 6, No. 7, 7251--7265 (2021; Zbl 1484.35275) Full Text: DOI OpenURL
Zayed, Elsayed M. E.; Shohib, Reham M. A.; Alngar, Mohamed E. M.; Yıldırım, Yakup Solitons and other solutions for the nonlinear convection-diffusion-reaction equation with power-law nonlinearity by the extended simplest equation method. (English) Zbl 1487.35163 Comput. Math. Model. 32, No. 2, 235-252 (2021). MSC: 35C05 35C08 35K57 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Comput. Math. Model. 32, No. 2, 235--252 (2021; Zbl 1487.35163) Full Text: DOI OpenURL
Duyckaerts, Thomas; Yang, Jianwei Urbain Scattering to a stationary solution for the superquintic radial wave equation outside an obstacle. (Diffusion vers une solution stationnaire pour l’équation des ondes radiale surquintique en dehors d’un obstacle.) (English. French summary) Zbl 1485.35295 Ann. Inst. Fourier 71, No. 5, 1845-1884 (2021). MSC: 35L71 35B40 35L20 PDF BibTeX XML Cite \textit{T. Duyckaerts} and \textit{J. U. Yang}, Ann. Inst. Fourier 71, No. 5, 1845--1884 (2021; Zbl 1485.35295) Full Text: DOI arXiv OpenURL
Korchemkina, T. On asymptotic behavior of bounded solutions to second order differential equations with general power-law nonlinearity. (English) Zbl 1490.34041 Funct. Differ. Equ. 28, No. 3-4, 117-120 (2021). MSC: 34C11 34D05 PDF BibTeX XML Cite \textit{T. Korchemkina}, Funct. Differ. Equ. 28, No. 3--4, 117--120 (2021; Zbl 1490.34041) Full Text: DOI OpenURL
Rakhmelevich, I. V. Modified Bianchi equation with nonlinear right-hand side. (English. Russian original) Zbl 1481.35128 Russ. Math. 65, No. 10, 44-51 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 10, 51-59 (2021). MSC: 35G20 35A22 35C05 PDF BibTeX XML Cite \textit{I. V. Rakhmelevich}, Russ. Math. 65, No. 10, 44--51 (2021; Zbl 1481.35128); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 10, 51--59 (2021) Full Text: DOI OpenURL
Hafez, Md. Golam; Iqbal, Sayed Allamah; Asaduzzaman; Hammouch, Zakia Dynamical behaviors and oblique resonant nonlinear waves with dual-power law nonlinearity and conformable temporal evolution. (English) Zbl 1479.35196 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2245-2260 (2021). MSC: 35C07 35Q55 35Q60 74J35 82B23 PDF BibTeX XML Cite \textit{Md. G. Hafez} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2245--2260 (2021; Zbl 1479.35196) Full Text: DOI OpenURL
Li, Zhao; Han, Tianyong New exact traveling wave solutions of the time fractional complex Ginzburg-Landau equation via the conformable fractional derivative. (English) Zbl 1478.35077 Adv. Math. Phys. 2021, Article ID 8887512, 12 p. (2021). MSC: 35C07 35Q56 35R11 PDF BibTeX XML Cite \textit{Z. Li} and \textit{T. Han}, Adv. Math. Phys. 2021, Article ID 8887512, 12 p. (2021; Zbl 1478.35077) Full Text: DOI OpenURL
Fujiwara, Kazumasa; Ikeda, Masahiro; Wakasugi, Yuta On the Cauchy problem for a class of semilinear second order evolution equations with fractional Laplacian and damping. (English) Zbl 1476.35041 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 6, Paper No. 63, 40 p. (2021). MSC: 35B40 35L15 35L71 35A01 PDF BibTeX XML Cite \textit{K. Fujiwara} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 6, Paper No. 63, 40 p. (2021; Zbl 1476.35041) Full Text: DOI arXiv OpenURL
Hamza, Mohamed Ali; Zaag, Hatem The blow-up rate for a non-scaling invariant semilinear wave equations in higher dimensions. (English) Zbl 1472.35240 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 212, Article ID 112445, 23 p. (2021). MSC: 35L71 35B40 35B44 35L15 PDF BibTeX XML Cite \textit{M. A. Hamza} and \textit{H. Zaag}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 212, Article ID 112445, 23 p. (2021; Zbl 1472.35240) Full Text: DOI arXiv OpenURL
Palmieri, Alessandro Semilinear wave equation on compact Lie groups. (English) Zbl 1472.35067 J. Pseudo-Differ. Oper. Appl. 12, No. 3, Paper No. 43, 13 p. (2021). MSC: 35B44 35L15 35L71 35R03 43A30 43A77 58J45 PDF BibTeX XML Cite \textit{A. Palmieri}, J. Pseudo-Differ. Oper. Appl. 12, No. 3, Paper No. 43, 13 p. (2021; Zbl 1472.35067) Full Text: DOI arXiv OpenURL
Bahri, Yakine; Ibrahim, Slim; Kikuchi, Hiroaki Transverse stability of line soliton and characterization of ground state for wave guide Schrödinger equations. (English) Zbl 1471.76018 J. Dyn. Differ. Equations 33, No. 3, 1297-1339 (2021). MSC: 76B25 76E30 35Q51 35Q55 PDF BibTeX XML Cite \textit{Y. Bahri} et al., J. Dyn. Differ. Equations 33, No. 3, 1297--1339 (2021; Zbl 1471.76018) Full Text: DOI arXiv OpenURL
Askhabov, Sultan N. Nonlinear convolution integro-differential equation with variable coefficient. (English) Zbl 1498.45005 Fract. Calc. Appl. Anal. 24, No. 3, 848-864 (2021). MSC: 45G10 45D05 26A33 47H05 47N20 PDF BibTeX XML Cite \textit{S. N. Askhabov}, Fract. Calc. Appl. Anal. 24, No. 3, 848--864 (2021; Zbl 1498.45005) Full Text: DOI OpenURL
Liu, Fei Justina; Tsai, Tai-Peng; Zwiers, Ian Existence and stability of standing waves for one dimensional NLS with triple power nonlinearities. (English) Zbl 1487.35170 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112409, 34 p. (2021). MSC: 35C07 34B40 35Q55 PDF BibTeX XML Cite \textit{F. J. Liu} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 211, Article ID 112409, 34 p. (2021; Zbl 1487.35170) Full Text: DOI arXiv OpenURL
Chen, Yujie; Ren, Yuan; Liu, Zhengliang; Liu, Tong; Wu, Hao; Xiong, Zhenyu; Wang, Ying; Cheng, Quan; Wang, Ruquan Bright soliton dynamics in higher-dimensional system with power-law nonlinearity. (English) Zbl 1465.35357 Int. J. Mod. Phys. B 35, No. 10, Article ID 2150138, 6 p. (2021). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{Y. Chen} et al., Int. J. Mod. Phys. B 35, No. 10, Article ID 2150138, 6 p. (2021; Zbl 1465.35357) Full Text: DOI OpenURL
Looi, Shi-Zhuo; Tohaneanu, Mihai Scattering for critical wave equations with variable coefficients. (English) Zbl 1467.35230 Proc. Edinb. Math. Soc., II. Ser. 64, No. 2, 298-316 (2021). MSC: 35P25 35L15 35L71 PDF BibTeX XML Cite \textit{S.-Z. Looi} and \textit{M. Tohaneanu}, Proc. Edinb. Math. Soc., II. Ser. 64, No. 2, 298--316 (2021; Zbl 1467.35230) Full Text: DOI arXiv OpenURL
Choi, Sun-Ho; Seo, Hyowon Synchronization in a power balance system with inertia and nonlinear derivatives. (English) Zbl 1471.34110 SIAM J. Appl. Math. 81, No. 3, 1202-1225 (2021). Reviewer: Carlo Laing (Auckland) MSC: 34D06 34A34 34C15 PDF BibTeX XML Cite \textit{S.-H. Choi} and \textit{H. Seo}, SIAM J. Appl. Math. 81, No. 3, 1202--1225 (2021; Zbl 1471.34110) Full Text: DOI OpenURL
Palmieri, Alessandro Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime. (English) Zbl 1464.35044 Z. Angew. Math. Phys. 72, No. 2, Paper No. 64, 32 p. (2021). MSC: 35B44 35L15 35L71 35B33 33C10 PDF BibTeX XML Cite \textit{A. Palmieri}, Z. Angew. Math. Phys. 72, No. 2, Paper No. 64, 32 p. (2021; Zbl 1464.35044) Full Text: DOI arXiv OpenURL
Ammari, Kaïs; Bchatnia, Ahmed; Mehenaoui, Naima Exponential stability for the nonlinear Schrödinger equation on a star-shaped network. (English) Zbl 1470.35047 Z. Angew. Math. Phys. 72, No. 1, Paper No. 35, 19 p. (2021). Reviewer: Rainer Mandel (Karlsruhe) MSC: 35B35 34K35 35B40 35G61 35Q55 35R02 PDF BibTeX XML Cite \textit{K. Ammari} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 35, 19 p. (2021; Zbl 1470.35047) Full Text: DOI arXiv OpenURL
Khomrutai, Sujin; Manui, Auttawich; Schikorra, Armin Non-blowup at critical exponent for a semilinear nonlocal diffusion equation. (English) Zbl 1462.35057 Appl. Math. Lett. 116, Article ID 107063, 7 p. (2021). MSC: 35B33 35K58 35K15 35B44 35R09 PDF BibTeX XML Cite \textit{S. Khomrutai} et al., Appl. Math. Lett. 116, Article ID 107063, 7 p. (2021; Zbl 1462.35057) Full Text: DOI OpenURL
D’Abbicco, Marcello; Palmieri, Alessandro A note on \(L^p - L^q\) estimates for semilinear critical dissipative Klein-Gordon equations. (English) Zbl 1465.35296 J. Dyn. Differ. Equations 33, No. 1, 63-74 (2021). Reviewer: Michael Reissig (Freiberg) MSC: 35L15 35L71 35B45 35B33 35B40 PDF BibTeX XML Cite \textit{M. D'Abbicco} and \textit{A. Palmieri}, J. Dyn. Differ. Equations 33, No. 1, 63--74 (2021; Zbl 1465.35296) Full Text: DOI OpenURL
Bryukhanov, Yuri A.; Krasavin, Kirill S. Output power amplifier effects on harmonic and amplitude modulated signals distortions. (English) Zbl 1501.94005 Favorskaya, Margarita (ed.) et al., Advances in signal processing. Theories, algorithms, and system control. Cham: Springer. Intell. Syst. Ref. Libr. 184, 21-44 (2020). MSC: 94A12 PDF BibTeX XML Cite \textit{Y. A. Bryukhanov} and \textit{K. S. Krasavin}, Intell. Syst. Ref. Libr. 184, 21--44 (2020; Zbl 1501.94005) Full Text: DOI OpenURL
Ray, S. Saha Dispersive optical solitons of time-fractional Schrödinger-Hirota equation in nonlinear optical fibers. (English) Zbl 07571784 Physica A 537, Article ID 122619, 11 p. (2020). MSC: 82-XX 26A33 PDF BibTeX XML Cite \textit{S. S. Ray}, Physica A 537, Article ID 122619, 11 p. (2020; Zbl 07571784) Full Text: DOI OpenURL
Khater, Mostafa M. A.; Chu, Yu-Ming; Attia, Raghda A. M.; Inc, Mustafa; Lu, Dianchen On the analytical and numerical solutions in the quantum magnetoplasmas: the Atangana conformable derivative \((1+3)\)-ZK equation with power-law nonlinearity. (English) Zbl 1478.35177 Adv. Math. Phys. 2020, Article ID 5809289, 10 p. (2020). MSC: 35Q35 76A05 76X05 81Q80 35C08 35B20 65D07 26A33 35R11 PDF BibTeX XML Cite \textit{M. M. A. Khater} et al., Adv. Math. Phys. 2020, Article ID 5809289, 10 p. (2020; Zbl 1478.35177) Full Text: DOI OpenURL
Askhabov, Sultan Nazhmudinovich A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part. (Russian. English summary) Zbl 1474.45016 Vladikavkaz. Mat. Zh. 22, No. 4, 16-27 (2020). MSC: 45D05 45E10 PDF BibTeX XML Cite \textit{S. N. Askhabov}, Vladikavkaz. Mat. Zh. 22, No. 4, 16--27 (2020; Zbl 1474.45016) Full Text: DOI MNR OpenURL
Bakhshandeh Chamazkoti, Rohollah; Alipour, Mohsen Lie symmetry classification and numerical analysis of KdV equation with power-law nonlinearity. (English) Zbl 07340536 Math. Rep., Buchar. 22(72), No. 2, 163-176 (2020). MSC: 53B21 53C56 53A55 PDF BibTeX XML Cite \textit{R. Bakhshandeh Chamazkoti} and \textit{M. Alipour}, Math. Rep., Buchar. 22(72), No. 2, 163--176 (2020; Zbl 07340536) Full Text: arXiv OpenURL
Rezazadeh, Hadi; Vahidi, Javad; Zafar, Asim; Bekir, Ahmet The functional variable method to find new exact solutions of the nonlinear evolution equations with dual-power-law nonlinearity. (English) Zbl 07336594 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3-4, 249-257 (2020). MSC: 35-XX 39-XX PDF BibTeX XML Cite \textit{H. Rezazadeh} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 3--4, 249--257 (2020; Zbl 07336594) Full Text: DOI OpenURL
Chan, Hardy; González, María Del Mar; Huang, Yanghong; Mainini, Edoardo; Volzone, Bruno Uniqueness of entire ground states for the fractional plasma problem. (English) Zbl 1455.35280 Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 195, 41 p. (2020). MSC: 35R11 35B08 35J61 49K20 92C17 PDF BibTeX XML Cite \textit{H. Chan} et al., Calc. Var. Partial Differ. Equ. 59, No. 6, Paper No. 195, 41 p. (2020; Zbl 1455.35280) Full Text: DOI arXiv OpenURL
Aslan, Halit Sevki; Reissig, Michael Influence of strong time-dependent oscillations in semilinear damped wave models. (English) Zbl 1455.35014 J. Hyperbolic Differ. Equ. 17, No. 2, 395-442 (2020). MSC: 35B40 35L15 35L71 PDF BibTeX XML Cite \textit{H. S. Aslan} and \textit{M. Reissig}, J. Hyperbolic Differ. Equ. 17, No. 2, 395--442 (2020; Zbl 1455.35014) Full Text: DOI OpenURL
Fino, Ahmad Z. Finite time blow-up for wave equations with strong damping in an exterior domain. (English) Zbl 1452.35044 Mediterr. J. Math. 17, No. 6, Paper No. 174, 20 p. (2020). MSC: 35B44 35L71 35B33 34K10 35L20 PDF BibTeX XML Cite \textit{A. Z. Fino}, Mediterr. J. Math. 17, No. 6, Paper No. 174, 20 p. (2020; Zbl 1452.35044) Full Text: DOI arXiv OpenURL
Mezadek, Mourad Kainane; Mezadek, Mohamed Kainane; Reissig, Michael Semilinear wave models with friction and viscoelastic damping. (English) Zbl 1447.35211 Math. Methods Appl. Sci. 43, No. 6, 3117-3147 (2020). MSC: 35L15 35L71 PDF BibTeX XML Cite \textit{M. K. Mezadek} et al., Math. Methods Appl. Sci. 43, No. 6, 3117--3147 (2020; Zbl 1447.35211) Full Text: DOI OpenURL
Hwang, Gyeongha Well-posedness and scattering for the critical fractional Schrödinger equations. (English) Zbl 1447.35297 Funkc. Ekvacioj, Ser. Int. 63, No. 2, 231-245 (2020). MSC: 35Q55 35A01 35A02 35R11 26A33 35P25 PDF BibTeX XML Cite \textit{G. Hwang}, Funkc. Ekvacioj, Ser. Int. 63, No. 2, 231--245 (2020; Zbl 1447.35297) Full Text: DOI OpenURL
Dimova, Milena; Kolkovska, Natalia; Kutev, Nikolai Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. (English) Zbl 1442.35260 Electron Res. Arch. 28, No. 2, 671-689 (2020). MSC: 35L71 35B44 35B40 35L15 PDF BibTeX XML Cite \textit{M. Dimova} et al., Electron Res. Arch. 28, No. 2, 671--689 (2020; Zbl 1442.35260) Full Text: DOI OpenURL
Chen, Wenhui; Palmieri, Alessandro Nonexistence of global solutions for the semilinear Moore - Gibson - Thompson equation in the conservative case. (English) Zbl 1441.35067 Discrete Contin. Dyn. Syst. 40, No. 9, 5513-5540 (2020). MSC: 35B44 35L30 35L76 35B33 PDF BibTeX XML Cite \textit{W. Chen} and \textit{A. Palmieri}, Discrete Contin. Dyn. Syst. 40, No. 9, 5513--5540 (2020; Zbl 1441.35067) Full Text: DOI arXiv OpenURL
Shen, Ruipeng Bounded solutions to an energy subcritical non-linear wave equation on \(\mathbb{R}^3\). (English) Zbl 1439.35340 J. Differ. Equations 269, No. 4, 3943-3986 (2020). MSC: 35L71 35L15 35B40 PDF BibTeX XML Cite \textit{R. Shen}, J. Differ. Equations 269, No. 4, 3943--3986 (2020; Zbl 1439.35340) Full Text: DOI arXiv OpenURL
Chang, Xiuling; Gao, Wenjie An evolution \(p\)-Kirchhoff equation with power exponential nonlinearity and its steady state form. (Chinese. English summary) Zbl 1449.35258 J. Jilin Univ., Sci. 57, No. 4, 729-735 (2019). MSC: 35K55 35K90 35B40 PDF BibTeX XML Cite \textit{X. Chang} and \textit{W. Gao}, J. Jilin Univ., Sci. 57, No. 4, 729--735 (2019; Zbl 1449.35258) Full Text: DOI OpenURL
Saha Ray, S. A novel method for new solutions of time fractional \((1+2)\)-dimensional nonlinear Schrödinger equation involving dual-power law nonlinearity. (English) Zbl 1428.35536 Int. J. Mod. Phys. B 33, No. 24, Article ID 1950280, 12 p. (2019). MSC: 35Q55 35R11 35A25 PDF BibTeX XML Cite \textit{S. Saha Ray}, Int. J. Mod. Phys. B 33, No. 24, Article ID 1950280, 12 p. (2019; Zbl 1428.35536) Full Text: DOI OpenURL
Verma, Pallavi; Kaur, Lakhveer Solitary wave solutions for \((1+2)\)-dimensional nonlinear Schrödinger equation with dual power law nonlinearity. (English) Zbl 1431.35185 Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 128, 15 p. (2019). MSC: 35Q55 35C08 35B10 35C07 78A60 PDF BibTeX XML Cite \textit{P. Verma} and \textit{L. Kaur}, Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 128, 15 p. (2019; Zbl 1431.35185) Full Text: DOI OpenURL
Kumar, V. Senthil; Rezazadeh, Hadi; Eslami, Mostafa; Izadi, Franoosh; Osman, M. S. Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity. (English) Zbl 1431.35155 Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 127, 10 p. (2019). MSC: 35Q53 35C07 35C08 33E05 35R11 PDF BibTeX XML Cite \textit{V. S. Kumar} et al., Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 127, 10 p. (2019; Zbl 1431.35155) Full Text: DOI OpenURL
Shi, Qihong; Zhang, Xiao-Bing; Wang, Changyou; Wang, Shu Finite time blowup for Klein-Gordon-Schrödinger system. (English) Zbl 1428.35057 Math. Methods Appl. Sci. 42, No. 11, 3929-3941 (2019). MSC: 35B44 35Q55 35L71 35L52 PDF BibTeX XML Cite \textit{Q. Shi} et al., Math. Methods Appl. Sci. 42, No. 11, 3929--3941 (2019; Zbl 1428.35057) Full Text: DOI OpenURL
Barros, Vanessa; Ferreira, Lucas C. F.; Pastor, Ademir On the two-power nonlinear Schrödinger equation with non-local terms in Sobolev-Lorentz spaces. (English) Zbl 1428.35481 NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 5, Paper No. 39, 29 p. (2019). MSC: 35Q55 35Q60 35A01 35A02 35B40 35B06 35A23 35B30 78A45 PDF BibTeX XML Cite \textit{V. Barros} et al., NoDEA, Nonlinear Differ. Equ. Appl. 26, No. 5, Paper No. 39, 29 p. (2019; Zbl 1428.35481) Full Text: DOI arXiv OpenURL
Palmieri, Alessandro Global existence results for a semilinear wave equation with scale-invariant damping and mass in odd space dimension. (English) Zbl 1428.35230 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 305-369 (2019). MSC: 35L71 35L15 35B33 PDF BibTeX XML Cite \textit{A. Palmieri}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 305--369 (2019; Zbl 1428.35230) Full Text: DOI OpenURL
Nakamura, Makoto; Wadade, Hidemitsu The Cauchy problem for dissipative wave equations with weighted nonlinear terms. (English) Zbl 1428.35194 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 281-303 (2019). MSC: 35L15 35L71 35L81 PDF BibTeX XML Cite \textit{M. Nakamura} and \textit{H. Wadade}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 281--303 (2019; Zbl 1428.35194) Full Text: DOI OpenURL
Girardi, Giovanni Semilinear damped Klein-Gordon models with time-dependent coefficients. (English) Zbl 1428.35225 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 203-216 (2019). MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{G. Girardi}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 203--216 (2019; Zbl 1428.35225) Full Text: DOI OpenURL
Ebert, Marcelo Rempel; Lourenço, Linniker Monteiro The critical exponent for evolution models with power non-linearity. (English) Zbl 1428.35060 D’Abbicco, Marcello (ed.) et al., New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 153-177 (2019). MSC: 35B45 35B33 35R11 35L15 35L71 PDF BibTeX XML Cite \textit{M. R. Ebert} and \textit{L. M. Lourenço}, in: New tools for nonlinear PDEs and application. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 153--177 (2019; Zbl 1428.35060) Full Text: DOI OpenURL
Miao, Shuang On large future-global-in-time solutions to energy-supercritical nonlinear wave equation. (English) Zbl 1428.35229 Zheng, Shijun (ed.) et al., Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 725, 187-214 (2019). MSC: 35L71 35L15 PDF BibTeX XML Cite \textit{S. Miao}, Contemp. Math. 725, 187--214 (2019; Zbl 1428.35229) Full Text: DOI OpenURL
Muñoz Rivera, J.; Poblete, Verónica; Sepúlveda, Mauricio; Vargas, Hector; Vera, Octavio Remark on the stabilization for a Schrödinger equation with double power nonlinearity. (English) Zbl 1428.35530 Appl. Math. Lett. 98, 63-69 (2019). MSC: 35Q55 35B35 65M06 PDF BibTeX XML Cite \textit{J. Muñoz Rivera} et al., Appl. Math. Lett. 98, 63--69 (2019; Zbl 1428.35530) Full Text: DOI OpenURL
Erbay, H. A.; Erbay, S.; Erkip, A. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. (English) Zbl 1428.35221 Discrete Contin. Dyn. Syst. 39, No. 5, 2877-2891 (2019). MSC: 35L70 35A01 35L15 35Q74 74B20 PDF BibTeX XML Cite \textit{H. A. Erbay} et al., Discrete Contin. Dyn. Syst. 39, No. 5, 2877--2891 (2019; Zbl 1428.35221) Full Text: DOI arXiv OpenURL
D’Abbicco, M.; Girardi, G.; Reissig, M. A scale of critical exponents for semilinear waves with time-dependent damping and mass terms. (English) Zbl 1415.35039 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 15-40 (2019). MSC: 35B40 35L15 35L71 35B33 PDF BibTeX XML Cite \textit{M. D'Abbicco} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 15--40 (2019; Zbl 1415.35039) Full Text: DOI Link OpenURL
Okrasińska-Płociniczak, Hanna; Płociniczak, Łukasz Numerical method for Volterra equation with a power-type nonlinearity. (English) Zbl 1427.65423 Appl. Math. Comput. 337, 452-460 (2018). MSC: 65R20 45D05 45G10 PDF BibTeX XML Cite \textit{H. Okrasińska-Płociniczak} and \textit{Ł. Płociniczak}, Appl. Math. Comput. 337, 452--460 (2018; Zbl 1427.65423) Full Text: DOI arXiv OpenURL
Osman, M. S.; Rezazadeh, Hadi; Eslami, Mostafa; Neirameh, Ahmad; Mirzazadeh, Mohammad Analytical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by using three methods. (English) Zbl 1438.35365 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 4, 267-278 (2018). MSC: 35Q53 35C08 35C07 PDF BibTeX XML Cite \textit{M. S. Osman} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 4, 267--278 (2018; Zbl 1438.35365) OpenURL
Fujiwara, Kazumasa; Ozawa, Tohru On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. (English) Zbl 1405.35195 Evol. Equ. Control Theory 7, No. 2, 275-280 (2018). MSC: 35Q55 35B10 PDF BibTeX XML Cite \textit{K. Fujiwara} and \textit{T. Ozawa}, Evol. Equ. Control Theory 7, No. 2, 275--280 (2018; Zbl 1405.35195) Full Text: DOI arXiv OpenURL
Clapp, Mónica; Maia, Liliane A. Existence of a positive solution to a nonlinear scalar field equation with zero mass at infinity. (English) Zbl 1406.35348 Adv. Nonlinear Stud. 18, No. 4, 745-762 (2018). MSC: 35Q55 35B09 35J20 PDF BibTeX XML Cite \textit{M. Clapp} and \textit{L. A. Maia}, Adv. Nonlinear Stud. 18, No. 4, 745--762 (2018; Zbl 1406.35348) Full Text: DOI arXiv OpenURL
Rakhmelevich, I. V. A multidimensional nonautonomous equation containing a product of powers of partial derivatives. (English. Russian original) Zbl 1402.35063 Vestn. St. Petersbg. Univ., Math. 51, No. 1, 87-94 (2018); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 5(63), No. 1, 114-124 (2018). MSC: 35C05 35C07 PDF BibTeX XML Cite \textit{I. V. Rakhmelevich}, Vestn. St. Petersbg. Univ., Math. 51, No. 1, 87--94 (2018; Zbl 1402.35063); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 5(63), No. 1, 114--124 (2018) Full Text: DOI OpenURL
Garg, Manish A note on the higher-order nonlinearity of Niho function. (English) Zbl 1421.94050 Fundam. Inform. 162, No. 1, 37-42 (2018). MSC: 94A60 PDF BibTeX XML Cite \textit{M. Garg}, Fundam. Inform. 162, No. 1, 37--42 (2018; Zbl 1421.94050) Full Text: DOI OpenURL
Qi, Wei; Li, Zi-Hao; Cai, Jiang-Tao; Li, Guan-Qiang; Li, Hai-Feng Modulational instability and localized breather in discrete Schrödinger equation with helicoidal hopping and a power-law nonlinearity. (English) Zbl 1396.81086 Phys. Lett., A 382, No. 27, 1778-1786 (2018). MSC: 81Q05 35Q55 PDF BibTeX XML Cite \textit{W. Qi} et al., Phys. Lett., A 382, No. 27, 1778--1786 (2018; Zbl 1396.81086) Full Text: DOI OpenURL
Merle, Frank; Zaag, Hatem Blowup solutions to the semilinear wave equation with a stylized pyramid as a blowup surface. (English) Zbl 1402.35181 Commun. Pure Appl. Math. 71, No. 9, 1850-1937 (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35L71 35B44 PDF BibTeX XML Cite \textit{F. Merle} and \textit{H. Zaag}, Commun. Pure Appl. Math. 71, No. 9, 1850--1937 (2018; Zbl 1402.35181) Full Text: DOI arXiv OpenURL
Pava, Jaime Angulo; Goloshchapova, Nataliia On the orbital instability of excited states for the NLS equation with the \(\delta\)-interaction on a star graph. (English) Zbl 1397.35288 Discrete Contin. Dyn. Syst. 38, No. 10, 5039-5066 (2018). MSC: 35Q55 81Q35 37K40 37K45 47E05 35B35 35B20 PDF BibTeX XML Cite \textit{J. A. Pava} and \textit{N. Goloshchapova}, Discrete Contin. Dyn. Syst. 38, No. 10, 5039--5066 (2018; Zbl 1397.35288) Full Text: DOI arXiv OpenURL
Felmer, Patricio; Ikoma, Norihisa Existence and nonexistence of positive solutions to some fully nonlinear equation in one dimension. (English) Zbl 1406.35020 J. Funct. Anal. 275, No. 8, 2162-2196 (2018). MSC: 35B09 35J60 PDF BibTeX XML Cite \textit{P. Felmer} and \textit{N. Ikoma}, J. Funct. Anal. 275, No. 8, 2162--2196 (2018; Zbl 1406.35020) Full Text: DOI arXiv OpenURL
Korchemkina, Tatiana On the behavior of solutions to second-order differential equation with general power-law nonlinearity. (English) Zbl 1404.34037 Mem. Differ. Equ. Math. Phys. 73, 101-111 (2018). Reviewer: Adeleke Timothy Ademola (Ile-Ife) MSC: 34C11 34A12 34D05 PDF BibTeX XML Cite \textit{T. Korchemkina}, Mem. Differ. Equ. Math. Phys. 73, 101--111 (2018; Zbl 1404.34037) Full Text: Link OpenURL
Cipolatti, R.; Lira, Y.de Macedo; Trallero-Giner, C. Nonlinear Schrödinger equations with single power nonlinearity and harmonic potential. (English) Zbl 1391.35352 J. Phys. A, Math. Theor. 51, No. 11, Article ID 115201, 17 p. (2018). MSC: 35Q55 35A15 35C08 35B35 35A01 PDF BibTeX XML Cite \textit{R. Cipolatti} et al., J. Phys. A, Math. Theor. 51, No. 11, Article ID 115201, 17 p. (2018; Zbl 1391.35352) Full Text: DOI OpenURL
Duyckaerts, Thomas; Yang, Jianwei Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equations. (English) Zbl 1395.35043 Anal. PDE 11, No. 4, 983-1028 (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35B44 35L71 35B40 PDF BibTeX XML Cite \textit{T. Duyckaerts} and \textit{J. Yang}, Anal. PDE 11, No. 4, 983--1028 (2018; Zbl 1395.35043) Full Text: DOI arXiv OpenURL
Rakhmelevich, I. V. Two-dimensional non-autonomous hyperbolic equation of the second order with power-law nonlinearities. (Russian. English summary) Zbl 07607619 Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2017, No. 49, 52-60 (2017). MSC: 35-XX 34-XX PDF BibTeX XML Cite \textit{I. V. Rakhmelevich}, Vestn. Tomsk. Gos. Univ., Mat. Mekh. 2017, No. 49, 52--60 (2017; Zbl 07607619) Full Text: DOI MNR OpenURL
Rakhmelevich, Igor’ Vladimirovich On multi-dimensional partial differential equations with power nonlinearities in first derivatives. (Russian. English summary) Zbl 1463.35190 Ufim. Mat. Zh. 9, No. 1, 98-108 (2017); translation in Ufa Math. J. 9, No. 1, 98-108 (2017). MSC: 35G20 PDF BibTeX XML Cite \textit{I. V. Rakhmelevich}, Ufim. Mat. Zh. 9, No. 1, 98--108 (2017; Zbl 1463.35190); translation in Ufa Math. J. 9, No. 1, 98--108 (2017) Full Text: DOI MNR OpenURL
Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong; Liu, De-Yin Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium. (English) Zbl 1485.35343 Commun. Nonlinear Sci. Numer. Simul. 45, 93-103 (2017). MSC: 35Q55 35C08 35B10 PDF BibTeX XML Cite \textit{J. Chai} et al., Commun. Nonlinear Sci. Numer. Simul. 45, 93--103 (2017; Zbl 1485.35343) Full Text: DOI OpenURL
Dai, Chao-Qing; Zhang, Xiao-Fei; Fan, Yan; Chen, Liang Localized modes of the (n+1)-dimensional Schrödinger equation with power-law nonlinearities in \(\mathcal{PT}\)-symmetric potentials. (English) Zbl 1466.35324 Commun. Nonlinear Sci. Numer. Simul. 43, 239-250 (2017). MSC: 35Q55 35B35 35C08 PDF BibTeX XML Cite \textit{C.-Q. Dai} et al., Commun. Nonlinear Sci. Numer. Simul. 43, 239--250 (2017; Zbl 1466.35324) Full Text: DOI OpenURL
Han, Lijia; Gao, Jin Stability of solitary waves for the generalized nonautonomous dual-power nonlinear Schrödinger equations with time-dependent coefficients. (English) Zbl 1473.35505 Commun. Nonlinear Sci. Numer. Simul. 42, 520-531 (2017). MSC: 35Q55 35B35 35C08 PDF BibTeX XML Cite \textit{L. Han} and \textit{J. Gao}, Commun. Nonlinear Sci. Numer. Simul. 42, 520--531 (2017; Zbl 1473.35505) Full Text: DOI OpenURL
Mhlanga, I. E.; Khalique, C. M. Travelling wave solutions and conservation laws of the Korteweg-de Vries-Burgers equation with power law nonlinearity. (English) Zbl 07174192 Malays. J. Math. Sci. 11, Spec. Iss.: 2nd International Conference and Workshop on Mathematical Analysis (ICWOMA 2016), 1-8 (2017). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{I. E. Mhlanga} and \textit{C. M. Khalique}, Malays. J. Math. Sci. 11, 1--8 (2017; Zbl 07174192) Full Text: Link OpenURL
Khachatryan, Kh. A. On the solvability of one class of two-dimensional Urysohn integral equations. (Russian, English) Zbl 1413.45019 Mat. Tr. 20, No. 2, 193-205 (2017); translation in Sib. Adv. Math. 28, No. 3, 166-174 (2018). MSC: 45M20 45G10 47H30 PDF BibTeX XML Cite \textit{Kh. A. Khachatryan}, Mat. Tr. 20, No. 2, 193--205 (2017; Zbl 1413.45019); translation in Sib. Adv. Math. 28, No. 3, 166--174 (2018) Full Text: DOI OpenURL
D’Abbicco, M. The critical exponent for the dissipative plate equation with power nonlinearity. (English) Zbl 1393.35236 Comput. Math. Appl. 74, No. 5, 1006-1014 (2017). Reviewer: Dongbing Zha (Shanghai) MSC: 35Q74 35B33 74K20 PDF BibTeX XML Cite \textit{M. D'Abbicco}, Comput. Math. Appl. 74, No. 5, 1006--1014 (2017; Zbl 1393.35236) Full Text: DOI OpenURL
Fujiwara, Kazumasa; Ozawa, Tohru Lifespan of strong solutions to the periodic nonlinear Schrödinger equation without gauge invariance. (English) Zbl 1381.35160 J. Evol. Equ. 17, No. 3, 1023-1030 (2017). MSC: 35Q55 35D35 35B44 PDF BibTeX XML Cite \textit{K. Fujiwara} and \textit{T. Ozawa}, J. Evol. Equ. 17, No. 3, 1023--1030 (2017; Zbl 1381.35160) Full Text: DOI OpenURL
Akbari, M. The bifurcation analysis of the Schrödinger equation with power law nonlinearity. (English) Zbl 1371.35016 Electron. J. Math. Anal. Appl. 5, No. 2, 260-265 (2017). MSC: 35C07 35Q55 PDF BibTeX XML Cite \textit{M. Akbari}, Electron. J. Math. Anal. Appl. 5, No. 2, 260--265 (2017; Zbl 1371.35016) Full Text: Link OpenURL
do Nascimento, Wanderley Nunes; Palmieri, Alessandro; Reissig, Michael Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. (English) Zbl 1382.35166 Math. Nachr. 290, No. 11-12, 1779-1805 (2017). MSC: 35L71 35L15 35B44 35B33 PDF BibTeX XML Cite \textit{W. N. do Nascimento} et al., Math. Nachr. 290, No. 11--12, 1779--1805 (2017; Zbl 1382.35166) Full Text: DOI OpenURL
Taghizadeh, Nasir; Akbari, Mozhgan; Esmaeelnejhad, Parirokh Application of Bernoulli sub-ODE method for finding travelling wave solutions of Schrödinger equation power law nonlinearity. (English) Zbl 1368.35062 Appl. Appl. Math. 12, No. 1, 596-603 (2017). MSC: 35C07 35C08 35L05 35Q55 PDF BibTeX XML Cite \textit{N. Taghizadeh} et al., Appl. Appl. Math. 12, No. 1, 596--603 (2017; Zbl 1368.35062) Full Text: Link OpenURL
D’Abbicco, Marcello \(L^1-L^1\) estimates for a doubly dissipative semilinear wave equation. (English) Zbl 1367.35092 NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 1, Paper No. 5, 23 p. (2017). Reviewer: Michael Reissig (Freiberg) MSC: 35L71 35L15 35B45 35B33 PDF BibTeX XML Cite \textit{M. D'Abbicco}, NoDEA, Nonlinear Differ. Equ. Appl. 24, No. 1, Paper No. 5, 23 p. (2017; Zbl 1367.35092) Full Text: DOI OpenURL
Silvestre, Luis Upper bounds for parabolic equations and the Landau equation. (English) Zbl 1357.35066 J. Differ. Equations 262, No. 3, 3034-3055 (2017). MSC: 35B45 35R45 35K15 PDF BibTeX XML Cite \textit{L. Silvestre}, J. Differ. Equations 262, No. 3, 3034--3055 (2017; Zbl 1357.35066) Full Text: DOI arXiv OpenURL
Karimov, Ruslan Khalikovich; Kozhevnikova, Larisa Mikhaĭlovna; Khadzhi, Anna Aleksandrovna Behavior of solutions to elliptic equations with non-power nonlinearities in unbounded domains. (Russian. English summary) Zbl 1463.35269 Ufim. Mat. Zh. 8, No. 3, 99-112 (2016); translation in Ufa Math. J. 8, No. 3, 95-108 (2016). MSC: 35J62 PDF BibTeX XML Cite \textit{R. K. Karimov} et al., Ufim. Mat. Zh. 8, No. 3, 99--112 (2016; Zbl 1463.35269); translation in Ufa Math. J. 8, No. 3, 95--108 (2016) Full Text: DOI MNR OpenURL
Rakhmelevich, Igor’ Vladimirovich On the solutions of a multidimensional differential equation of arbitrary order with mixed higher partial derivatives and power-law nonlinearities. (Russian. English summary) Zbl 1474.35218 Vladikavkaz. Mat. Zh. 18, No. 4, 41-49 (2016). MSC: 35G05 35C05 PDF BibTeX XML Cite \textit{I. V. Rakhmelevich}, Vladikavkaz. Mat. Zh. 18, No. 4, 41--49 (2016; Zbl 1474.35218) Full Text: MNR OpenURL
Neirameh, A. New soliton solutions to the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity. (English) Zbl 1369.35086 S\(\vec{\text{e}}\)MA J. 73, No. 4, 309-323 (2016). MSC: 35Q55 35G99 35R11 35C08 35B20 PDF BibTeX XML Cite \textit{A. Neirameh}, S\(\vec{\text{e}}\)MA J. 73, No. 4, 309--323 (2016; Zbl 1369.35086) Full Text: DOI OpenURL
Jagatheesan, K.; Anand, B.; Baskaran, K.; Dey, Nilanjan Evolutionary computational technique in automatic generation control of multi-area power systems with nonlinearity and energy storage unit. (English) Zbl 1359.93152 Azar, Ahmad Taher (ed.) et al., Advances in chaos theory and intelligent control. Cham: Springer (ISBN 978-3-319-30338-3/hbk; 978-3-319-30340-6/ebook). Studies in Fuzziness and Soft Computing 337, 655-680 (2016). MSC: 93B51 90C59 93C10 93C15 PDF BibTeX XML Cite \textit{K. Jagatheesan} et al., Stud. Fuzziness Soft Comput. 337, 655--680 (2016; Zbl 1359.93152) Full Text: DOI OpenURL