×

Solving multispecies population games in continuous space and time. (English) Zbl 1516.91012

Summary: Game theory has emerged as an important tool to understand interacting populations in the last 50 years. Game theory has been applied to study population dynamics with optimal behavior in simple ecosystem models, but existing methods are generally not applicable to complex systems. In order to use game-theory for population dynamics in heterogeneous habitats, habitats are usually split into patches and game-theoretic methods are used to find optimal patch distributions at every instant. However, populations in the real world interact in continuous space, and the assumption of decisions based on perfect information is a large simplification. Here, we develop a method to study population dynamics for interacting populations, distributed optimally in continuous space. A continuous setting allows us to model bounded rationality, and its impact on population dynamics. This is made possible by our numerical advances in solving multiplayer games in continuous space. Our approach hinges on reformulating the instantaneous game, applying an advanced discretization method and modern optimization software to solve it. We apply the method to an idealized case involving the population dynamics and vertical distribution of forage fish preying on copepods. Incorporating continuous space and time, we can model the seasonal variation in the migration, separating the effects of light and population numbers. We arrive at qualitative agreement with empirical findings. Including bounded rationality gives rise to spatial distributions corresponding to reality, while the population dynamics for bounded rationality and complete rationality are equivalent. Our approach is general, and can easily be used for complex ecosystems.

MSC:

91A22 Evolutionary games
92D25 Population dynamics (general)
92D40 Ecology

Software:

Ipopt; CasADi; Siconos; pvlib
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrams, P. A.; Cressman, R.; Křivan, V., The role of behavioral dynamics in determining the patch distributions of interacting species, Amer. Nat., 169, 4, 505-518 (2007)
[2] Acary, V.; Bonnefon, O.; Brémond, M.; Huber, O.; Pérignon, F.; Sinclair, S., An Introduction to Siconos (2019), INRIA, (Ph.D. thesis)
[3] Andersen, K. H., Fish Ecology, Evolution, and Exploitation: A New Theoretical Synthesis (2019), Princeton University Press
[4] Andersson, J. A.E.; Gillis, J.; Horn, G.; Rawlings, J. B.; Diehl, M., CasADi - A software framework for nonlinear optimization and optimal control, Math. Program. Comput., 11, 1, 1-36 (2019) · Zbl 1411.90004
[5] Arin, L.; Morán, X. A.G.; Estrada, M., Phytoplankton size distribution and growth rates in the Alboran sea (SW Mediterranean): short term variability related to mesoscale hydrodynamics, J. Plankton Res., 24, 10, 1019-1033 (2002)
[6] Beaugrand, G.; Ibañez, F.; Lindley, J. A., Geographical distribution and seasonal and diel changes in the diversity of calanoid copepods in the north Atlantic and North sea, Mar. Ecol. Prog. Ser., 219, 189-203 (2001)
[7] Bechard, M. J., Effect of vegetative cover on foraging site selection by Swainson’s Hawk, Condor, 84, 2, 153-159 (1982)
[8] Benoit-Bird, K. J.; McManus, M. A., A critical time window for organismal interactions in a pelagic ecosystem, PLoS One, 9, 5, Article e97763 pp. (2014)
[9] Biberman, L. M., Natural levels of illumination and irradiance, (Photoelectronic Imaging Devices (1971), Springer), 39-67
[10] Blanchet, A.; Carlier, G., Optimal transport and Cournot-Nash equilibria, Math. Oper. Res., 41, 1, 125-145 (2016) · Zbl 1347.91047
[11] Bolker, B.; Holyoak, M.; Křivan, V.; Rowe, L.; Schmitz, O., Connecting theoretical and empirical studies of trait-mediated interactions, Ecology, 84, 5, 1101-1114 (2003)
[12] Broom, M.; Rychtár, J., Game-Theoretical Models in Biology (2013), CRC Press · Zbl 1264.92002
[13] Carranza, J.; Valencia, J., Red deer females collect on male clumps at mating areas, Behav. Ecol., 10, 5, 525-532 (1999)
[14] Cohen, D.; Teichman, G.; Volovich, M.; Zeevi, Y.; Elbaum, L.; Madar, A.; Louie, K.; Levy, D. J.; Rechavi, O., Bounded rationality in C. Elegans is explained by circuit-specific normalization in chemosensory pathways, Nature Commun., 10, 1, 1-12 (2019)
[15] Colebrook, J., Continuous plankton records: seasonal cycles of phytoplankton and copepods in the north Atlantic ocean and the North sea, Mar. Biol., 51, 1, 23-32 (1979)
[16] Cooper, R.; DeJong, D. V.; Forsythe, R.; Ross, T. W., Communication in the battle of the sexes game: some experimental results, Rand J. Econ., 568-587 (1989)
[17] Cressman, R.; Křivan, V., Migration dynamics for the ideal free distribution, Amer. Nat., 168, 3, 384-397 (2006)
[18] Cressman, R.; Křivan, V., The ideal free distribution as an evolutionarily stable state in density-dependent population games, Oikos, 119, 8, 1231-1242 (2010)
[19] Eaves, B. C., Polymatrix games with joint constraints, SIAM J. Appl. Math., 24, 3, 418-423 (1973) · Zbl 0253.90067
[20] Fretwell, S. D., On territorial behavior and other factors influencing habitat distribution in birds, Acta Biotheor., 19, 1, 45-52 (1969)
[21] Genkai-Kato, M., Macrophyte refuges, prey behaviour and trophic interactions: consequences for lake water clarity, Ecol. Lett., 10, 2, 105-114 (2007)
[22] González-Olivares, E.; Ramos-Jiliberto, R., Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol. Model., 166, 1-2, 135-146 (2003)
[23] Gueymard, C., SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment, Vol. 1 (1995), Florida Solar Energy Center Cocoa: Florida Solar Energy Center Cocoa FL
[24] Hay, S.; Kiørboe, T.; Matthews, A., Zooplankton biomass and production in the North sea during the autumn circulation experiment, october 1987-march 1988, Cont. Shelf Res., 11, 12, 1453-1476 (1991)
[25] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, May, 209-286 (2010) · Zbl 1242.65109
[26] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press · Zbl 0914.90287
[27] Holmgren, W. F.; Hansen, C. W.; Mikofski, M. A., pvlib python: A python package for modeling solar energy systems, J. Open Source Softw., 3, 29, 884 (2018)
[28] Howson, J. T., Equilibria of polymatrix games, Manage. Sci., 18, 5-part-1, 312-318 (1972) · Zbl 0228.90058
[29] Hurly, T. A.; Oseen, M. D., Context-dependent, risk-sensitive foraging preferences in wild rufous hummingbirds, Anim. Behav., 58, 1, 59-66 (1999)
[30] Jones, B. D., Bounded rationality, Annu. Rev. Political Sci., 2, 1, 297-321 (1999)
[31] Kawecki, T. J.; Ebert, D., Conceptual issues in local adaptation, Ecol. Lett., 7, 12, 1225-1241 (2004)
[32] Klevjer, T. A.; Irigoien, X.; Røstad, A.; Fraile-Nuez, E.; Benítez-Barrios, V. M.; Kaartvedt., S., Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers, Sci. Rep., 6, 1, 19873 (2016)
[33] Kondoh, M., Foraging adaptation and the relationship between food-web complexity and stability, Science, 299, 5611, 1388-1391 (2003)
[34] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[35] Křivan, V., Dynamic ideal free distribution: effects of optimal patch choice on predator-prey dynamics, Amer. Nat., 149, 1, 164-178 (1997)
[36] Křivan, V., The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, Amer. Nat., 170, 5, 771-782 (2007)
[37] Křivan, V.; Cressman, R., On evolutionary stability in predator-prey models with fast behavioural dynamics, Evol. Ecol. Res., 11, 2, 227-251 (2009)
[38] Křivan, V.; Cressman, R.; Schneider, C., The ideal free distribution: a review and synthesis of the game-theoretic perspective, Theor. Popul. Biol., 73, 3, 403-425 (2008) · Zbl 1210.92053
[39] Křivan, V.; Sirot, E., Habitat selection by two competing species in a two-habitat environment, Amer. Nat., 160, 2, 214-234 (2002)
[40] Křivan, V., Effects of optimal antipredator behavior of prey on predator-prey dynamics: The role of refuges, Theor. Popul. Biol., 53, 2, 131-142 (1998) · Zbl 0945.92021
[41] Lasry, J.-M.; Lions, P.-L., Mean field games, Jpn. J. Math., 2, 1, 229-260 (2007) · Zbl 1156.91321
[42] Lima, S. L., Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation, Biol. Rev., 84, 3, 485-513 (2009)
[43] Mangasarian, O. L., Equilibrium points of bimatrix games, J. Soc. Ind. Appl. Math., 12, 4, 778-780 (1964) · Zbl 0132.14002
[44] Mariani, P.; Křivan, V.; MacKenzie, B. R.; Mullon, C., The migration game in habitat network: the case of tuna, Theor. Ecol., 9, 2, 219-232 (2016)
[45] Maynard Smith, J.; Price, G. R., The logic of animal conflict, Nature, 246, 5427, 15-18 (1973) · Zbl 1369.92134
[46] McGlade, J. M., 12 The North sea large marine ecosystem, (Large Marine Ecosystems, Vol. 10 (2002), Elsevier), 339-412
[47] Miller, D. A.; Zucker, S. W., Copositive-plus Lemke algorithm solves polymatrix games, Oper. Res. Lett., 10, 5, 285-290 (1991) · Zbl 0742.90077
[48] Mougi, A., Adaptive migration promotes food web persistence, Sci. Rep., 9, 1, 1-5 (2019)
[49] Nonacs, P.; Dill, L. M., Is satisficing an alternative to optimal foraging theory?, Oikos, 371-375 (1993)
[50] Pinti, J.; Andersen, K. H.; Visser, A. W., Co-adaptive behavior of interacting populations in a habitat selection game significantly impacts ecosystem functions, J. Theoret. Biol., Article 110663 pp. (2021) · Zbl 1466.92233
[51] Pinti, J.; Kiørboe, T.; Thygesen, U. H.; Visser, A. W., Trophic interactions drive the emergence of diel vertical migration patterns: a game-theoretic model of copepod communities, Proc. R. Soc. B, 286, 1911, Article 20191645 pp. (2019)
[52] Pinti, J.; Visser, A. W., Predator-prey games in multiple habitats reveal mixed strategies in diel vertical migration, Amer. Nat., 193, 3, E000 (2019)
[53] Rapoport, A., Exploiter, Leader, Hero, and Martyr: the four archetypes of the \(2 \times 2\) game, Behav. Sci., 12, 2, 81-84 (1967)
[54] Sadowski, J. S.; Grosholz, E. D., Predator foraging mode controls the effect of antipredator behavior in a tritrophic model, Theor. Ecol., 12, 4, 531-544 (2019)
[55] Schaechter, M., Encyclopedia of Microbiology (2009), Academic Press
[56] Schmitz, O. J.; Beckerman, A. P.; O’Brien, K. M., Behaviorally mediated trophic cascades: effects of predation risk on food web interactions, Ecology, 78, 5, 1388-1399 (1997)
[57] Sih, A., Prey uncertainty and the balancing of antipredator and feeding needs, Am. Nat., 139, 5, 1052-1069 (1992)
[58] Simon, H. A., A behavioral model of rational choice, Q. J. Econ., 69, 1, 99-118 (1955)
[59] Simon, H. A., Rational choice and the structure of the environment, Psychol. Rev., 63, 2, 129 (1956)
[60] Stakgold, I.; Holst, M. J., Green’s Functions and Boundary Value Problems (2011), John Wiley & Sons · Zbl 1221.35001
[61] Sutton, T., Vertical ecology of the pelagic ocean: classical patterns and new perspectives, J. Fish Biol., 83, 6, 1508-1527 (2013)
[62] Tew, T.; Todd, I.; Macdonald, D., Arable habitat use by wood mice (Apodemus sylvaticus). 2. Microhabitat, J. Zool., 250, 3, 305-311 (2000)
[63] Thuijsman, F.; Peleg, B.; Amitai, M.; Shmida, A., Automata, matching and foraging behavior of bees, J. Theoret. Biol., 175, 3, 305-316 (1995)
[64] Thygesen, U.; Patterson, T., Oceanic diel vertical migrations arising from a predator-prey game, Theor. Ecol., 12, 1, 17-29 (2018)
[65] Valdovinos, F. S.; Ramos-Jiliberto, R.; Garay-Narváez, L.; Urbani, P.; Dunne, J. A., Consequences of adaptive behaviour for the structure and dynamics of food webs, Ecol. Lett., 13, 12, 1546-1559 (2010)
[66] Visser, A.; Saito, H.; Saiz, E.; Kiørboe, T., Observations of copepod feeding and vertical distribution under natural turbulent conditions in the North sea, Mar. Biol., 138, 5, 1011-1019 (2001)
[67] Wächter, A.; Biegler, L. T., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106, 1, 25-57 (2006) · Zbl 1134.90542
[68] Wang, Z.; DiMarco, S. F.; Ingle, S.; Belabbassi, L.; Al-Kharusi, L. H., Seasonal and annual variability of vertically migrating scattering layers in the northern Arabian sea, Deep Sea Res. I: Oceanogr. Res. Pap., 90, 152-165 (2014)
[69] Wheeler, A., Collins guide to the sea fishes of Britain and north-western Europe, by BJ Muus and P. Dahlstrom. Collins, Oryx, 13, 1, 94 (1975)
[70] Yodzis, P.; Innes, S., Body size and consumer-resource dynamics, Amer. Nat., 139, 6, 1151-1175 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.