Xiang, Ailing; Wang, Liangchen Boundedness and stabilization in a predator-prey model with prey-taxis and disease in predator species. (English) Zbl 07655398 J. Math. Anal. Appl. 522, No. 1, Article ID 126953, 26 p. (2023). MSC: 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{A. Xiang} and \textit{L. Wang}, J. Math. Anal. Appl. 522, No. 1, Article ID 126953, 26 p. (2023; Zbl 07655398) Full Text: DOI OpenURL
Liu, Meng; Wang, Hongbin; Jiang, Weihua Bifurcations and pattern formation in a predator-prey model with memory-based diffusion. (English) Zbl 07653523 J. Differ. Equations 350, 1-40 (2023). MSC: 35B36 35B32 35K51 35K57 37L10 PDF BibTeX XML Cite \textit{M. Liu} et al., J. Differ. Equations 350, 1--40 (2023; Zbl 07653523) Full Text: DOI OpenURL
Yang, Wenbin; Gao, Yujing Bifurcation analysis and pattern formation of predator-prey dynamics with Allee effect in predator population. (English) Zbl 07643824 Z. Angew. Math. Phys. 74, No. 1, Paper No. 37, 23 p. (2023). MSC: 35B32 35B35 35B36 35K51 35K57 PDF BibTeX XML Cite \textit{W. Yang} and \textit{Y. Gao}, Z. Angew. Math. Phys. 74, No. 1, Paper No. 37, 23 p. (2023; Zbl 07643824) Full Text: DOI OpenURL
Wu, Shi-Liang; Pang, Liyan; Ruan, Shigui Propagation dynamics in periodic predator-prey systems with nonlocal dispersal. (English. French summary) Zbl 07643189 J. Math. Pures Appl. (9) 170, 57-95 (2023). Reviewer: Guobao Zhang (Lanzhou) MSC: 35C07 35B40 35K45 35K57 92D25 PDF BibTeX XML Cite \textit{S.-L. Wu} et al., J. Math. Pures Appl. (9) 170, 57--95 (2023; Zbl 07643189) Full Text: DOI OpenURL
Browne, Cameron J.; Yahia, Fadoua Virus-immune dynamics determined by prey-predator interaction network and epistasis in viral fitness landscape. (English) Zbl 07628942 J. Math. Biol. 86, No. 1, Paper No. 9, 42 p. (2023). MSC: 92D25 92C42 92D10 92D15 34D20 PDF BibTeX XML Cite \textit{C. J. Browne} and \textit{F. Yahia}, J. Math. Biol. 86, No. 1, Paper No. 9, 42 p. (2023; Zbl 07628942) Full Text: DOI arXiv OpenURL
Liu, Xu; Zheng, Jiashan Convergence rates of solutions in a predator-prey system with indirect pursuit-evasion interaction in domains of arbitrary dimension. (English) Zbl 1502.35019 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2269-2293 (2023). MSC: 35B40 35K51 35K59 92C17 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zheng}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2269--2293 (2023; Zbl 1502.35019) Full Text: DOI OpenURL
Sugie, Jitsuro Uniform global asymptotic stability for nonautonomous nonlinear dynamical systems. (English) Zbl 07616175 J. Math. Anal. Appl. 519, No. 1, Article ID 126768, 22 p. (2023). MSC: 93D20 93C10 34D23 92D40 92D25 PDF BibTeX XML Cite \textit{J. Sugie}, J. Math. Anal. Appl. 519, No. 1, Article ID 126768, 22 p. (2023; Zbl 07616175) Full Text: DOI OpenURL
Heihoff, Frederic; Yokota, Tomomi Global existence and stabilization in a diffusive predator-prey model with population flux by attractive transition. (English) Zbl 1502.35018 Nonlinear Anal., Real World Appl. 69, Article ID 103757, 24 p. (2023). MSC: 35B40 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{F. Heihoff} and \textit{T. Yokota}, Nonlinear Anal., Real World Appl. 69, Article ID 103757, 24 p. (2023; Zbl 1502.35018) Full Text: DOI arXiv OpenURL
Gökçe, Aytül Dynamical behaviour of a predator-prey system encapsulating the fear affecting death rate of prey and intra-specific competition: revisited in a fluctuating environment. (English) Zbl 07614141 J. Comput. Appl. Math. 421, Article ID 114849, 13 p. (2023). Reviewer: Carlos A. dos Santos Braumann (Évora) MSC: 92D25 60H30 34A34 34D20 PDF BibTeX XML Cite \textit{A. Gökçe}, J. Comput. Appl. Math. 421, Article ID 114849, 13 p. (2023; Zbl 07614141) Full Text: DOI OpenURL
Chen, Tongtong; Chu, Jixun Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. (English) Zbl 1498.35032 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 408-425 (2023). MSC: 35B32 35B10 35B40 35F61 35L04 47D06 92D25 PDF BibTeX XML Cite \textit{T. Chen} and \textit{J. Chu}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 408--425 (2023; Zbl 1498.35032) Full Text: DOI OpenURL
Brahim, Boukabcha; Benali, Abdelkader; Hakem, Ali; Djilali, Salih; Zeb, Anwar; Khan, Zareen A. Effect of harvesting on a three-species predator-prey interaction with fractional derivative. (English) Zbl 07659545 Fractals 30, No. 8, Article ID 2240234, 14 p. (2022). MSC: 34Cxx 92Dxx 37Nxx PDF BibTeX XML Cite \textit{B. Brahim} et al., Fractals 30, No. 8, Article ID 2240234, 14 p. (2022; Zbl 07659545) Full Text: DOI OpenURL
Yan, Xiang-Ping; Zhang, Cun-Hua Spatiotemporal dynamics in a diffusive predator-prey system with Beddington-DeAngelis functional response. (English) Zbl 07636954 Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 166, 49 p. (2022). MSC: 35B40 35K57 37G15 92D25 PDF BibTeX XML Cite \textit{X.-P. Yan} and \textit{C.-H. Zhang}, Qual. Theory Dyn. Syst. 21, No. 4, Paper No. 166, 49 p. (2022; Zbl 07636954) Full Text: DOI OpenURL
Li, Jiang; Liu, Xiaohui; Wei, Chunjin The impact of role reversal on the dynamics of predator-prey model with stage structure. (English) Zbl 07635595 Appl. Math. Modelling 104, 339-357 (2022). MSC: 92D25 34C60 34F05 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Modelling 104, 339--357 (2022; Zbl 07635595) Full Text: DOI OpenURL
Elmurodov, A. N.; Rasulov, M. S. On a uniqueness of solution for a reaction-diffusion type system with a free boundary. (English) Zbl 1503.35290 Lobachevskii J. Math. 43, No. 8, 2099-2106 (2022). MSC: 35R35 35A02 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{A. N. Elmurodov} and \textit{M. S. Rasulov}, Lobachevskii J. Math. 43, No. 8, 2099--2106 (2022; Zbl 1503.35290) Full Text: DOI OpenURL
Cintra, Willian; dos Santos, Carlos Alberto; Zhou, Jiazheng Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. (English) Zbl 1501.35181 Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3913-3931 (2022). MSC: 35J57 35J62 92D25 PDF BibTeX XML Cite \textit{W. Cintra} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 7, 3913--3931 (2022; Zbl 1501.35181) Full Text: DOI OpenURL
Wang, Biao; Wu, Jianhua The effects of dispersal and spatial heterogeneity on the dynamics of a predator-prey model. (English) Zbl 1498.35039 Calc. Var. Partial Differ. Equ. 61, No. 6, Paper No. 211, 29 p. (2022). MSC: 35B32 35B35 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{B. Wang} and \textit{J. Wu}, Calc. Var. Partial Differ. Equ. 61, No. 6, Paper No. 211, 29 p. (2022; Zbl 1498.35039) Full Text: DOI OpenURL
Wang, Xin; Li, Ruijing; Shi, Yu Global generalized solutions to a three species predator-prey model with prey-taxis. (English) Zbl 1498.35007 Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7021-7042 (2022). MSC: 35A01 35K51 35K57 92D25 92C17 PDF BibTeX XML Cite \textit{X. Wang} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 12, 7021--7042 (2022; Zbl 1498.35007) Full Text: DOI OpenURL
Ryu, Kimun; Ko, Wonlyul On dynamics and stationary pattern formations of a diffusive predator-prey system with hunting cooperation. (English) Zbl 1498.35054 Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6679-6709 (2022). MSC: 35B36 35B32 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{K. Ryu} and \textit{W. Ko}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 11, 6679--6709 (2022; Zbl 1498.35054) Full Text: DOI OpenURL
Yang, Ruizhi; Zhang, Xiaowen; Jin, Dan Spatiotemporal dynamics in a delayed diffusive predator-prey system with nonlocal competition in prey and schooling behavior among predators. (English) Zbl 1498.35041 Bound. Value Probl. 2022, Paper No. 56, 15 p. (2022). MSC: 35B32 35B35 35K51 35K58 35R09 35R10 92D25 PDF BibTeX XML Cite \textit{R. Yang} et al., Bound. Value Probl. 2022, Paper No. 56, 15 p. (2022; Zbl 1498.35041) Full Text: DOI OpenURL
Li, Shanbing; Ma, Ruyun Positive steady-state solutions for predator-prey systems with prey-taxis and Dirichlet conditions. (English) Zbl 1498.35249 Nonlinear Anal., Real World Appl. 68, Article ID 103669, 29 p. (2022). MSC: 35J57 35J62 35A01 PDF BibTeX XML Cite \textit{S. Li} and \textit{R. Ma}, Nonlinear Anal., Real World Appl. 68, Article ID 103669, 29 p. (2022; Zbl 1498.35249) Full Text: DOI OpenURL
Shanmugasundaram, Gnanasekaran; Arumugam, Gurusamy; Erhardt, André H.; Nagarajan, Nithyadevi Global existence of solutions to a two-species predator-prey parabolic chemotaxis system. (English) Zbl 1498.92035 Int. J. Biomath. 15, No. 8, Article ID 2250054, 22 p. (2022). MSC: 92C17 35A09 35K99 PDF BibTeX XML Cite \textit{G. Shanmugasundaram} et al., Int. J. Biomath. 15, No. 8, Article ID 2250054, 22 p. (2022; Zbl 1498.92035) Full Text: DOI OpenURL
Samanta, Sukumar; Sahoo, Banshidhar; Poria, Pralay; Mahato, Sanat Kumar Alternative resource and harvesting in predator-prey dynamics: analyzing a delay model. (English) Zbl 1497.37116 J. Appl. Nonlinear Dyn. 11, No. 4, 929-950 (2022). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{S. Samanta} et al., J. Appl. Nonlinear Dyn. 11, No. 4, 929--950 (2022; Zbl 1497.37116) Full Text: DOI OpenURL
Li, Shangzhi; Guo, Shangjiang Dynamics of stochastic Lotka-Volterra predator-prey models driven by three independent Brownian motions. (English) Zbl 1493.92051 Electron. J. Differ. Equ. 2022, Paper No. 32, 28 p. (2022). MSC: 92D25 34C60 34F05 60H10 PDF BibTeX XML Cite \textit{S. Li} and \textit{S. Guo}, Electron. J. Differ. Equ. 2022, Paper No. 32, 28 p. (2022; Zbl 1493.92051) Full Text: Link OpenURL
Wang, Bo; Sajjadi, Samaneh Sadat; Jahanshahi, Hadi; Karaca, Yeliz; Hou, Dingkun; Pi, Li; Xia, Wei-Feng; Aly, Ayman A. Predictive control of the variable-order fractional chaotic ecological system. (English) Zbl 1498.92310 Fractals 30, No. 5, Article ID 2240178, 17 p. (2022). MSC: 92D40 92D25 26A33 93B45 PDF BibTeX XML Cite \textit{B. Wang} et al., Fractals 30, No. 5, Article ID 2240178, 17 p. (2022; Zbl 1498.92310) Full Text: DOI OpenURL
Fei, Lizhi; Chen, Xingwu Bifurcation and control of a predator-prey system with unfixed functional responses. (English) Zbl 1503.37093 Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5701-5721 (2022). MSC: 37N25 39A28 92D25 PDF BibTeX XML Cite \textit{L. Fei} and \textit{X. Chen}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5701--5721 (2022; Zbl 1503.37093) Full Text: DOI OpenURL
Zhang, Baifeng; Zhang, Guohong; Wang, Xiaoli Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system. (English) Zbl 1495.35023 Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4969-4993 (2022). MSC: 35B32 35B35 35B36 35K51 35K57 37L15 92C15 PDF BibTeX XML Cite \textit{B. Zhang} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4969--4993 (2022; Zbl 1495.35023) Full Text: DOI OpenURL
Liu, Chao; Liu, Bin Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction. (English) Zbl 1495.35035 Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4855-4874 (2022). MSC: 35B40 35A01 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{C. Liu} and \textit{B. Liu}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4855--4874 (2022; Zbl 1495.35035) Full Text: DOI OpenURL
Mi, Shao-Yue; Han, Bang-Sheng; Yang, Yinghui Spatial dynamics of a nonlocal predator-prey model with double mutation. (English) Zbl 1495.35038 Int. J. Biomath. 15, No. 6, Article ID 2250035, 21 p. (2022). MSC: 35B40 35B51 35K40 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{S.-Y. Mi} et al., Int. J. Biomath. 15, No. 6, Article ID 2250035, 21 p. (2022; Zbl 1495.35038) Full Text: DOI OpenURL
Narimani, Hajar; Ghaziani, Reza Khoshsiar Bifurcation analysis of an intraguild predator-prey model. (English) Zbl 07562927 Comput. Appl. Math. 41, No. 4, Paper No. 184, 21 p. (2022). MSC: 37M20 37N25 PDF BibTeX XML Cite \textit{H. Narimani} and \textit{R. K. Ghaziani}, Comput. Appl. Math. 41, No. 4, Paper No. 184, 21 p. (2022; Zbl 07562927) Full Text: DOI OpenURL
Zhang, Xuebing; Zhao, Hongyong; Yuan, Yuan Impact of discontinuous harvesting on a diffusive predator-prey model with fear and Allee effect. (English) Zbl 1494.35029 Z. Angew. Math. Phys. 73, No. 4, Paper No. 168, 29 p. (2022). MSC: 35B36 35B32 35B40 35C07 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{X. Zhang} et al., Z. Angew. Math. Phys. 73, No. 4, Paper No. 168, 29 p. (2022; Zbl 1494.35029) Full Text: DOI OpenURL
Cao, Xun; Chen, Xianyong; Jiang, Weihua Bogdanov-Takens bifurcation with \(Z_2\) symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. (English) Zbl 1494.35023 Discrete Contin. Dyn. Syst. 42, No. 8, 3747-3785 (2022). MSC: 35B32 35B35 35B36 35K51 35K58 35R09 37L10 PDF BibTeX XML Cite \textit{X. Cao} et al., Discrete Contin. Dyn. Syst. 42, No. 8, 3747--3785 (2022; Zbl 1494.35023) Full Text: DOI OpenURL
Su, Wei; Zhang, Xiang Global stability and canard explosions of the predator-prey model with the sigmoid functional response. (English) Zbl 07551031 SIAM J. Appl. Math. 82, No. 3, 976-1000 (2022). Reviewer: Xiong Li (Beijing) MSC: 34C60 92D25 34E15 34C05 34D23 34E17 34C26 34C23 PDF BibTeX XML Cite \textit{W. Su} and \textit{X. Zhang}, SIAM J. Appl. Math. 82, No. 3, 976--1000 (2022; Zbl 07551031) Full Text: DOI OpenURL
Wang, Yu-Xia; Zuo, Hui-Qin Bifurcation branch and stability of stationary solutions of a predator-prey model. (English) Zbl 1492.35111 Appl. Anal. 101, No. 7, 2511-2534 (2022). MSC: 35J57 35J61 92D25 35B32 35A01 PDF BibTeX XML Cite \textit{Y.-X. Wang} and \textit{H.-Q. Zuo}, Appl. Anal. 101, No. 7, 2511--2534 (2022; Zbl 1492.35111) Full Text: DOI OpenURL
Guo, Zhifei; Tang, Yilei; Zhang, Weinian More degeneracy but fewer bifurcations in a predator-prey system having fully null linear part. (English) Zbl 1502.37058 Z. Angew. Math. Phys. 73, No. 3, Paper No. 122, 24 p. (2022). Reviewer: Junliang Lu (Kunming) MSC: 37G10 37G05 37G20 37G25 34C23 34C20 92D25 PDF BibTeX XML Cite \textit{Z. Guo} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 122, 24 p. (2022; Zbl 1502.37058) Full Text: DOI OpenURL
Nie, Hua; Shi, Yao; Wu, Jianhua The effect of diffusion on the dynamics of a predator-prey chemostat model. (English) Zbl 1491.35025 SIAM J. Appl. Math. 82, No. 3, 821-848 (2022). MSC: 35B32 35B35 35K51 35K57 92C17 92D25 PDF BibTeX XML Cite \textit{H. Nie} et al., SIAM J. Appl. Math. 82, No. 3, 821--848 (2022; Zbl 1491.35025) Full Text: DOI OpenURL
Telch, Bruno A parabolic-quasilinear predator-prey model under pursuit-evasion dynamics. (English) Zbl 1491.35005 J. Math. Anal. Appl. 514, No. 1, Article ID 126276, 14 p. (2022). MSC: 35A01 35K51 35K59 92C17 92D25 PDF BibTeX XML Cite \textit{B. Telch}, J. Math. Anal. Appl. 514, No. 1, Article ID 126276, 14 p. (2022; Zbl 1491.35005) Full Text: DOI OpenURL
Li, Haixia; Yang, Wenbin; Wei, Meihua; Wang, Aili Dynamics in a diffusive predator-prey system with double Allee effect and modified Leslie-Gower scheme. (English) Zbl 1491.35024 Int. J. Biomath. 15, No. 3, Article ID 2250001, 29 p. (2022). MSC: 35B32 35B09 35B35 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{H. Li} et al., Int. J. Biomath. 15, No. 3, Article ID 2250001, 29 p. (2022; Zbl 1491.35024) Full Text: DOI OpenURL
Nguyen, Thieu Huy; Bui, Xuan-Quang On the existence and regularity of admissibly inertial manifolds with sectorial operators. (English) Zbl 1490.35049 Dyn. Syst. 37, No. 2, 295-327 (2022). MSC: 35B42 35K51 35K58 35K90 37L25 47D06 PDF BibTeX XML Cite \textit{T. H. Nguyen} and \textit{X.-Q. Bui}, Dyn. Syst. 37, No. 2, 295--327 (2022; Zbl 1490.35049) Full Text: DOI OpenURL
Zhao, Xin; Zeng, Zhijun Stochastic dynamics of a two-species patch-system with ratio-dependent functional response. (English) Zbl 1498.34141 Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 58, 15 p. (2022). MSC: 34C60 92D25 34F05 34D05 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{Z. Zeng}, Qual. Theory Dyn. Syst. 21, No. 3, Paper No. 58, 15 p. (2022; Zbl 1498.34141) Full Text: DOI OpenURL
Chrysafinos, Konstantinos; Kostas, Dimitrios Numerical analysis of high order time stepping schemes for a predator-prey system. (English) Zbl 1485.65103 Int. J. Numer. Anal. Model. 19, No. 2-3, 404-423 (2022). MSC: 65M60 35K67 65M12 92D25 PDF BibTeX XML Cite \textit{K. Chrysafinos} and \textit{D. Kostas}, Int. J. Numer. Anal. Model. 19, No. 2--3, 404--423 (2022; Zbl 1485.65103) Full Text: Link OpenURL
Zhao, Qian; Liu, Bin Global existence and asymptotic behavior in a predator-prey-mutualist model with prey-taxis. (English) Zbl 1487.35096 East Asian J. Appl. Math. 12, No. 3, 564-589 (2022). MSC: 35B40 35J57 35K51 35K57 92C17 PDF BibTeX XML Cite \textit{Q. Zhao} and \textit{B. Liu}, East Asian J. Appl. Math. 12, No. 3, 564--589 (2022; Zbl 1487.35096) Full Text: DOI OpenURL
Asheghi, Rasoul Hopf bifurcation in a diffusive predator-prey model with a square-root singularity. (English) Zbl 1487.35044 Topol. Methods Nonlinear Anal. 59, No. 1, 193-220 (2022). MSC: 35B32 35K51 35K57 92D25 70K50 PDF BibTeX XML Cite \textit{R. Asheghi}, Topol. Methods Nonlinear Anal. 59, No. 1, 193--220 (2022; Zbl 1487.35044) Full Text: DOI OpenURL
Feliu, Elisenda; Lax, Christian; Walcher, Sebastian; Wiuf, Carsten Quasi-steady-state and singular perturbation reduction for reaction networks with noninteracting species. (English) Zbl 1496.92029 SIAM J. Appl. Dyn. Syst. 21, No. 2, 782-816 (2022). Reviewer: Dieter Erle (Dortmund) MSC: 92C45 92C42 92D25 34E15 34C20 05C92 05C90 92E10 PDF BibTeX XML Cite \textit{E. Feliu} et al., SIAM J. Appl. Dyn. Syst. 21, No. 2, 782--816 (2022; Zbl 1496.92029) Full Text: DOI arXiv OpenURL
Zhu, Zirui; Liu, Xingbo Canard cycles and relaxation oscillations in a singularly perturbed Leslie-Gower predator-prey model with Allee effect. (English) Zbl 1497.34074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 5, Article ID 2250071, 23 p. (2022). MSC: 34C60 92D25 34E15 34E17 34C26 34C05 34D20 34C20 34C37 PDF BibTeX XML Cite \textit{Z. Zhu} and \textit{X. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 32, No. 5, Article ID 2250071, 23 p. (2022; Zbl 1497.34074) Full Text: DOI OpenURL
Hong, Jialin; Ji, Lihai; Wang, Xu; Zhang, Jingjing Positivity-preserving symplectic methods for the stochastic Lotka-Volterra predator-prey model. (English) Zbl 1497.37101 BIT 62, No. 2, 493-520 (2022). MSC: 37M15 65P10 65L06 65C30 PDF BibTeX XML Cite \textit{J. Hong} et al., BIT 62, No. 2, 493--520 (2022; Zbl 1497.37101) Full Text: DOI OpenURL
Tian, Jialu; Liu, Ping Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis. (English) Zbl 1486.35063 Electron Res. Arch. 30, No. 3, 929-942 (2022). MSC: 35B40 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{J. Tian} and \textit{P. Liu}, Electron Res. Arch. 30, No. 3, 929--942 (2022; Zbl 1486.35063) Full Text: DOI OpenURL
Niu, Shiwen; Cheng, Hongmei; Yuan, Rong A free boundary problem of some modified Leslie-gower predator-prey model with nonlocal diffusion term. (English) Zbl 1485.35435 Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2189-2219 (2022). MSC: 35R35 35B40 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{S. Niu} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 2189--2219 (2022; Zbl 1485.35435) Full Text: DOI OpenURL
Khan, M. Saqib; Abbas, Mujahid; Bonyah, Ebenezer; Qi, Hengxiao Michaelis-Menten-type prey harvesting in discrete modified Leslie-Gower predator-prey model. (English) Zbl 1489.37109 J. Funct. Spaces 2022, Article ID 9575638, 23 p. (2022). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{M. S. Khan} et al., J. Funct. Spaces 2022, Article ID 9575638, 23 p. (2022; Zbl 1489.37109) Full Text: DOI OpenURL
Zhao, Min; Ma, Zhaohai; Yuan, Rong The spreading speed and the existence of planar waves for a class of predator-prey system with nonlocal diffusion. (English) Zbl 1486.35120 Taiwanese J. Math. 26, No. 2, 381-410 (2022). MSC: 35C07 35K45 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{M. Zhao} et al., Taiwanese J. Math. 26, No. 2, 381--410 (2022; Zbl 1486.35120) Full Text: DOI OpenURL
Cao, Qian; Cai, Yongli; Luo, Yong Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. (English) Zbl 1484.35047 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1397-1420 (2022). MSC: 35B40 35B09 35K51 35K57 92C15 92C17 PDF BibTeX XML Cite \textit{Q. Cao} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1397--1420 (2022; Zbl 1484.35047) Full Text: DOI OpenURL
Cai, Yongli; Cao, Qian; Wang, Zhi-An Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis. (English) Zbl 1484.35046 Appl. Anal. 101, No. 1, 81-99 (2022). MSC: 35B40 35B36 35B44 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Cai} et al., Appl. Anal. 101, No. 1, 81--99 (2022; Zbl 1484.35046) Full Text: DOI OpenURL
Ren, Guoqiang; Liu, Bin Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. (English) Zbl 1482.35043 Discrete Contin. Dyn. Syst. 42, No. 2, 759-779 (2022). MSC: 35B40 35K51 35K57 92C17 92D25 PDF BibTeX XML Cite \textit{G. Ren} and \textit{B. Liu}, Discrete Contin. Dyn. Syst. 42, No. 2, 759--779 (2022; Zbl 1482.35043) Full Text: DOI OpenURL
Kim, Kwangjoong; Choi, Wonhyung; Ahn, Inkyung Diffusive epidemiological predator-prey models with ratio-dependent functional responses and nonlinear incidence rate. (English) Zbl 1481.35183 J. Dyn. Control Syst. 28, No. 1, 43-57 (2022). MSC: 35J57 35K57 92D25 PDF BibTeX XML Cite \textit{K. Kim} et al., J. Dyn. Control Syst. 28, No. 1, 43--57 (2022; Zbl 1481.35183) Full Text: DOI OpenURL
Fuest, Mario Global weak solutions to fully cross-diffusive systems with nonlinear diffusion and saturated taxis sensitivity. (English) Zbl 1481.35253 Nonlinearity 35, No. 1, 608-657 (2022). MSC: 35K51 35K59 35B45 35D30 92C17 PDF BibTeX XML Cite \textit{M. Fuest}, Nonlinearity 35, No. 1, 608--657 (2022; Zbl 1481.35253) Full Text: DOI arXiv OpenURL
Geng, Dongxu; Wang, Hongbin Normal form formulations of double-Hopf bifurcation for partial functional differential equations with nonlocal effect. (English) Zbl 1480.35020 J. Differ. Equations 309, 741-785 (2022). MSC: 35B32 35B15 35K20 35K58 35R10 37L10 PDF BibTeX XML Cite \textit{D. Geng} and \textit{H. Wang}, J. Differ. Equations 309, 741--785 (2022; Zbl 1480.35020) Full Text: DOI OpenURL
Zhang, Shengqiang; Yuan, Sanling; Zhang, Tonghua A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments. (English) Zbl 07427434 Appl. Math. Comput. 413, Article ID 126598, 26 p. (2022). MSC: 34F05 60H10 93E15 92B05 PDF BibTeX XML Cite \textit{S. Zhang} et al., Appl. Math. Comput. 413, Article ID 126598, 26 p. (2022; Zbl 07427434) Full Text: DOI OpenURL
Jin, Hai-Yang; Wang, Zhi-An Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. (English) Zbl 07629672 Eur. J. Appl. Math. 32, No. 4, 652-682 (2021). Reviewer: Wan-Tong Li (Lanzhou) MSC: 35B40 35K51 35K57 92D25 35B36 PDF BibTeX XML Cite \textit{H.-Y. Jin} and \textit{Z.-A. Wang}, Eur. J. Appl. Math. 32, No. 4, 652--682 (2021; Zbl 07629672) Full Text: DOI arXiv OpenURL
Cortés-García, Christian Bifurcations in model gause predator-prey with discontinuity. (Spanish. English summary) Zbl 07603770 Rev. Mat. Teor. Apl. 28, No. 2, 183-208 (2021). MSC: 34A36 34C23 34D20 34D23 92D25 PDF BibTeX XML Cite \textit{C. Cortés-García}, Rev. Mat. Teor. Apl. 28, No. 2, 183--208 (2021; Zbl 07603770) Full Text: DOI OpenURL
Ghimire, Srijana; Wang, Xiang-Sheng Traveling waves in cooperative predation: relaxation of sublinearity. (English) Zbl 1498.92160 Math. Appl. Sci. Eng. 2, No. 1, 22-31 (2021). MSC: 92D25 35C07 37C29 PDF BibTeX XML Cite \textit{S. Ghimire} and \textit{X.-S. Wang}, Math. Appl. Sci. Eng. 2, No. 1, 22--31 (2021; Zbl 1498.92160) Full Text: DOI OpenURL
Owolabi, Kolade M.; Pindza, Edson; Atangana, Abdon Analysis and pattern formation scenarios in the superdiffusive system of predation described with Caputo operator. (English) Zbl 07577354 Chaos Solitons Fractals 152, Article ID 111468, 14 p. (2021). MSC: 35R11 26A33 35B36 35K57 65L05 65M06 92D25 93C10 PDF BibTeX XML Cite \textit{K. M. Owolabi} et al., Chaos Solitons Fractals 152, Article ID 111468, 14 p. (2021; Zbl 07577354) Full Text: DOI OpenURL
Zhang, Qiumei; Jiang, Daqing Dynamics of stochastic predator-prey systems with continuous time delay. (English) Zbl 1493.92060 Chaos Solitons Fractals 152, Article ID 111431, 9 p. (2021). MSC: 92D25 34K20 34K50 60H10 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{D. Jiang}, Chaos Solitons Fractals 152, Article ID 111431, 9 p. (2021; Zbl 1493.92060) Full Text: DOI OpenURL
Gao, Yang Global stability for a new predator-prey model with cross-dispersal among patches based on graph theory. (English) Zbl 1494.92128 Adv. Difference Equ. 2021, Paper No. 507, 21 p. (2021). MSC: 92D30 37N25 PDF BibTeX XML Cite \textit{Y. Gao}, Adv. Difference Equ. 2021, Paper No. 507, 21 p. (2021; Zbl 1494.92128) Full Text: DOI OpenURL
Vinoth, S.; Sivasamy, R.; Sathiyanathan, K.; Unyong, Bundit; Rajchakit, Grienggrai; Vadivel, R.; Gunasekaran, Nallappan The dynamics of a Leslie type predator-prey model with fear and Allee effect. (English) Zbl 1494.92110 Adv. Difference Equ. 2021, Paper No. 338, 22 p. (2021). MSC: 92D25 37N25 PDF BibTeX XML Cite \textit{S. Vinoth} et al., Adv. Difference Equ. 2021, Paper No. 338, 22 p. (2021; Zbl 1494.92110) Full Text: DOI OpenURL
Li, Yanfeng; Liu, Haicheng; Yang, Ruizhi Time-delay effect on a diffusive predator-prey model with habitat complexity. (English) Zbl 1494.92103 Adv. Difference Equ. 2021, Paper No. 320, 24 p. (2021). MSC: 92D25 37N25 92D40 PDF BibTeX XML Cite \textit{Y. Li} et al., Adv. Difference Equ. 2021, Paper No. 320, 24 p. (2021; Zbl 1494.92103) Full Text: DOI OpenURL
Djilali, Salih; Ghanbari, Behzad Dynamical behavior of two predators-one prey model with generalized functional response and time-fractional derivative. (English) Zbl 1494.92096 Adv. Difference Equ. 2021, Paper No. 235, 19 p. (2021). MSC: 92D25 37N25 PDF BibTeX XML Cite \textit{S. Djilali} and \textit{B. Ghanbari}, Adv. Difference Equ. 2021, Paper No. 235, 19 p. (2021; Zbl 1494.92096) Full Text: DOI OpenURL
Sirisubtawee, Sekson; Khansai, Nattawut; Charoenloedmongkhon, Akapak Investigation on dynamics of an impulsive predator-prey system with generalized Holling type IV functional response and anti-predator behavior. (English) Zbl 1494.92107 Adv. Difference Equ. 2021, Paper No. 160, 26 p. (2021). MSC: 92D25 37N25 PDF BibTeX XML Cite \textit{S. Sirisubtawee} et al., Adv. Difference Equ. 2021, Paper No. 160, 26 p. (2021; Zbl 1494.92107) Full Text: DOI OpenURL
Gazi, Nurul Huda; Biswas, Subrata Kumar Holling-Tanner predator-prey model with type-IV functional response and harvesting. (English) Zbl 1492.37085 Discontin. Nonlinearity Complex. 10, No. 1, 151-159 (2021). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{N. H. Gazi} and \textit{S. K. Biswas}, Discontin. Nonlinearity Complex. 10, No. 1, 151--159 (2021; Zbl 1492.37085) Full Text: DOI OpenURL
Surendar, M. S.; Sambath, M. Qualitative analysis for a phytoplankton-zooplankton model with Allee effect and Holling type II response. (English) Zbl 1492.37092 Discontin. Nonlinearity Complex. 10, No. 1, 1-18 (2021). MSC: 37N25 92D25 92D40 PDF BibTeX XML Cite \textit{M. S. Surendar} and \textit{M. Sambath}, Discontin. Nonlinearity Complex. 10, No. 1, 1--18 (2021; Zbl 1492.37092) Full Text: DOI OpenURL
Luo, Demou Global bifurcation for a reaction-diffusion predator-prey model with Holling-II functional response and prey-taxis. (English) Zbl 1486.35037 Chaos Solitons Fractals 147, Article ID 110975, 8 p. (2021). MSC: 35B32 35J57 35K57 92D25 92D40 PDF BibTeX XML Cite \textit{D. Luo}, Chaos Solitons Fractals 147, Article ID 110975, 8 p. (2021; Zbl 1486.35037) Full Text: DOI OpenURL
Zhang, Chunmei; Shi, Lin Graph-theoretic method on the periodicity of coupled predator-prey systems with infinite delays on a dispersal network. (English) Zbl 1492.92076 Physica A 561, Article ID 125255, 15 p. (2021). MSC: 92D25 05C90 34K13 PDF BibTeX XML Cite \textit{C. Zhang} and \textit{L. Shi}, Physica A 561, Article ID 125255, 15 p. (2021; Zbl 1492.92076) Full Text: DOI OpenURL
Qin, Wen; Zhang, Hanjun; He, Qingsong Survival and ergodicity of a stochastic Holling-III predator-prey model with Markovian switching in an impulsive polluted environment. (English) Zbl 1487.92023 Adv. Difference Equ. 2021, Paper No. 80, 20 p. (2021). MSC: 92D25 92D40 37N25 34F05 60H10 PDF BibTeX XML Cite \textit{W. Qin} et al., Adv. Difference Equ. 2021, Paper No. 80, 20 p. (2021; Zbl 1487.92023) Full Text: DOI OpenURL
Dai, Lihua; Wang, Junjie; Ni, Yonggen; Xu, Bin Dynamical analysis of a new fractional-order predator-prey system with Holling type-III functional. (English) Zbl 1487.92015 Adv. Difference Equ. 2021, Paper No. 76, 14 p. (2021). MSC: 92D25 34A08 26A33 37N25 PDF BibTeX XML Cite \textit{L. Dai} et al., Adv. Difference Equ. 2021, Paper No. 76, 14 p. (2021; Zbl 1487.92015) Full Text: DOI OpenURL
Wu, Yumin; Chen, Fengde; Du, Caifeng Dynamic behaviors of a nonautonomous predator-prey system with Holling type II schemes and a prey refuge. (English) Zbl 1487.92027 Adv. Difference Equ. 2021, Paper No. 62, 15 p. (2021). MSC: 92D25 37N25 PDF BibTeX XML Cite \textit{Y. Wu} et al., Adv. Difference Equ. 2021, Paper No. 62, 15 p. (2021; Zbl 1487.92027) Full Text: DOI OpenURL
Yang, Ruizhi; Ma, Yuxin; Zhang, Chiyu Time delay induced Hopf bifurcation in a diffusive predator-prey model with prey toxicity. (English) Zbl 1487.92029 Adv. Difference Equ. 2021, Paper No. 47, 17 p. (2021). MSC: 92D25 37N25 PDF BibTeX XML Cite \textit{R. Yang} et al., Adv. Difference Equ. 2021, Paper No. 47, 17 p. (2021; Zbl 1487.92029) Full Text: DOI OpenURL
Tian, Xuan; Guo, Shangjiang Spatio-temporal patterns of predator-prey model with Allee effect and constant stocking rate for predator. (English) Zbl 1486.35038 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150249, 19 p. (2021). MSC: 35B32 35B36 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{X. Tian} and \textit{S. Guo}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 16, Article ID 2150249, 19 p. (2021; Zbl 1486.35038) Full Text: DOI OpenURL
Amin, Rohul; Yüzbaşı, Şuayip; Syam, Muhammed A computational algorithm for solution of population models for single and interacting species. (English) Zbl 1486.92145 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 186, 17 p. (2021). MSC: 92D25 34A34 PDF BibTeX XML Cite \textit{R. Amin} et al., Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 186, 17 p. (2021; Zbl 1486.92145) Full Text: DOI OpenURL
Sivasamy, R.; Nivethitha, K.; Maheswari, S. Qualitative analysis of a modified Leslie-Gower model with gestation delay. (English) Zbl 1492.37091 J. Appl. Nonlinear Dyn. 10, No. 3, 397-411 (2021). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{R. Sivasamy} et al., J. Appl. Nonlinear Dyn. 10, No. 3, 397--411 (2021; Zbl 1492.37091) Full Text: DOI OpenURL
Baishya, Chandrali Dynamics of fractional Holling type-II predator-prey model with prey refuge and additional food to predator. (English) Zbl 1478.92147 J. Appl. Nonlinear Dyn. 10, No. 2, 315-328 (2021). MSC: 92D25 34A08 37N25 PDF BibTeX XML Cite \textit{C. Baishya}, J. Appl. Nonlinear Dyn. 10, No. 2, 315--328 (2021; Zbl 1478.92147) Full Text: DOI OpenURL
Díaz-Marín, Homero G.; Osuna, Osvaldo Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models. (English. French summary) Zbl 1478.92154 Cubo 23, No. 3, 343-355 (2021). MSC: 92D25 34C25 34M25 34M35 37N25 PDF BibTeX XML Cite \textit{H. G. Díaz-Marín} and \textit{O. Osuna}, Cubo 23, No. 3, 343--355 (2021; Zbl 1478.92154) Full Text: DOI OpenURL
Fagioli, Simone; Jaafra, Yahya Multiple patterns formation for an aggregation/diffusion predator-prey system. (English) Zbl 1481.35054 Netw. Heterog. Media 16, No. 3, 377-411 (2021). MSC: 35B40 35B25 35B36 45K05 92D25 PDF BibTeX XML Cite \textit{S. Fagioli} and \textit{Y. Jaafra}, Netw. Heterog. Media 16, No. 3, 377--411 (2021; Zbl 1481.35054) Full Text: DOI arXiv OpenURL
Ferrara, Massimiliano; Gangemi, Mariangela; Pansera, Bruno Antonio Dynamics of a delayed mathematical model for one predator sharing teams of two preys. (English) Zbl 1486.92155 Appl. Sci. 23, 39-48 (2021). Reviewer: Paul Georgescu (Iaşi) MSC: 92D25 34C20 PDF BibTeX XML Cite \textit{M. Ferrara} et al., Appl. Sci. 23, 39--48 (2021; Zbl 1486.92155) Full Text: Link OpenURL
Wang, Xiaopan; Li, Shuang Research of a Leslie-Gower predator-prey model with Allee effect and Lévy noise. (Chinese. English summary) Zbl 1488.34294 J. Henan Norm. Univ., Nat. Sci. 49, No. 5, 12-18 (2021). MSC: 34C60 34D20 60H10 92D25 34F05 34D05 PDF BibTeX XML Cite \textit{X. Wang} and \textit{S. Li}, J. Henan Norm. Univ., Nat. Sci. 49, No. 5, 12--18 (2021; Zbl 1488.34294) Full Text: DOI OpenURL
Guo, Jong-Shenq Traveling wave solutions for some three-species predator-prey systems. (English) Zbl 1479.35195 Tamkang J. Math. 52, No. 1, 25-36 (2021). MSC: 35C07 35B40 35K40 35K57 92D25 92D40 PDF BibTeX XML Cite \textit{J.-S. Guo}, Tamkang J. Math. 52, No. 1, 25--36 (2021; Zbl 1479.35195) Full Text: DOI OpenURL
Zhang, Xiangming; Liu, Zhihua Hopf bifurcation analysis in a predator-prey model with predator-age structure and predator-prey reaction time delay. (English) Zbl 1481.92125 Appl. Math. Modelling 91, 530-548 (2021). MSC: 92D25 34K18 34K60 37L10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Z. Liu}, Appl. Math. Modelling 91, 530--548 (2021; Zbl 1481.92125) Full Text: DOI OpenURL
Liu, Yuqing; Li, Xianyi Dynamics of a discrete predator-prey model with Holling-II functional response. (English) Zbl 1479.39023 Int. J. Biomath. 14, No. 8, Article ID 2150068, 20 p. (2021). MSC: 39A60 37N25 39A28 39A30 92D25 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{X. Li}, Int. J. Biomath. 14, No. 8, Article ID 2150068, 20 p. (2021; Zbl 1479.39023) Full Text: DOI OpenURL
Kaur, Manpreet; Rani, Reenu; Bhatia, Rachna; Verma, Govinder Nath; Ahirwar, Satyaprakash Dynamical study of quadrating harvesting of a predator-prey model with Monod-Haldane functional response. (English) Zbl 1478.37090 J. Appl. Math. Comput. 66, No. 1-2, 397-422 (2021). MSC: 37N25 39A30 92D25 PDF BibTeX XML Cite \textit{M. Kaur} et al., J. Appl. Math. Comput. 66, No. 1--2, 397--422 (2021; Zbl 1478.37090) Full Text: DOI OpenURL
Zuo, Wenjie; Song, Yongli Stability and double-Hopf bifurcations of a Gause-Kolmogorov-type predator-prey system with indirect prey-taxis. (English) Zbl 1478.35025 J. Dyn. Differ. Equations 33, No. 4, 1917-1957 (2021). MSC: 35B32 35B35 35K51 35K57 35K58 92D25 PDF BibTeX XML Cite \textit{W. Zuo} and \textit{Y. Song}, J. Dyn. Differ. Equations 33, No. 4, 1917--1957 (2021; Zbl 1478.35025) Full Text: DOI OpenURL
Colombo, Rinaldo M.; Rossi, Elena Well-posedness and control in a hyperbolic-parabolic parasitoid-parasite system. (English) Zbl 1476.35101 Stud. Appl. Math. 147, No. 3, 839-871 (2021). MSC: 35G55 35L65 35Q92 35Q93 PDF BibTeX XML Cite \textit{R. M. Colombo} and \textit{E. Rossi}, Stud. Appl. Math. 147, No. 3, 839--871 (2021; Zbl 1476.35101) Full Text: DOI OpenURL
Ambrosio, Benjamin; Ducrot, Arnaud; Ruan, Shigui Generalized traveling waves for time-dependent reaction-diffusion systems. (English) Zbl 1475.35100 Math. Ann. 381, No. 1-2, 1-27 (2021). MSC: 35C07 35K57 92D25 92D30 PDF BibTeX XML Cite \textit{B. Ambrosio} et al., Math. Ann. 381, No. 1--2, 1--27 (2021; Zbl 1475.35100) Full Text: DOI OpenURL
Choi, Wonhyung; Giletti, Thomas; Guo, Jong-Shenq Persistence of species in a predator-prey system with climate change and either nonlocal or local dispersal. (English) Zbl 1475.35177 J. Differ. Equations 302, 807-853 (2021). MSC: 35K45 35K57 35K58 92D25 PDF BibTeX XML Cite \textit{W. Choi} et al., J. Differ. Equations 302, 807--853 (2021; Zbl 1475.35177) Full Text: DOI arXiv HAL OpenURL
Azhar, Halik; Ahmadjan, Muhammadhaji Dynamics in a non-autonomous predator-prey system with Crowley-Martin functional response. (English) Zbl 1488.34264 J. Xinjiang Univ., Nat. Sci. 38, No. 2, 144-152 (2021). MSC: 34C60 37C60 34C25 34D05 34D20 92D25 PDF BibTeX XML Cite \textit{H. Azhar} and \textit{M. Ahmadjan}, J. Xinjiang Univ., Nat. Sci. 38, No. 2, 144--152 (2021; Zbl 1488.34264) Full Text: DOI OpenURL
López-Gómez, Julián; Muñoz-Hernández, Eduardo; Zanolin, Fabio The Poincaré-Birkhoff theorem for a class of degenerate planar Hamiltonian systems. (English) Zbl 1479.37065 Adv. Nonlinear Stud. 21, No. 3, 489-499 (2021). MSC: 37J46 70K42 70H12 PDF BibTeX XML Cite \textit{J. López-Gómez} et al., Adv. Nonlinear Stud. 21, No. 3, 489--499 (2021; Zbl 1479.37065) Full Text: DOI OpenURL
Cheng, Qi; Zhang, Yanlin; Deng, Shengfu Qualitative analysis of a degenerate fixed point of a discrete predator-prey model with cooperative hunting. (English) Zbl 1479.37090 Math. Methods Appl. Sci. 44, No. 14, 11059-11075 (2021). MSC: 37N25 37C75 37G05 39A30 92D25 PDF BibTeX XML Cite \textit{Q. Cheng} et al., Math. Methods Appl. Sci. 44, No. 14, 11059--11075 (2021; Zbl 1479.37090) Full Text: DOI OpenURL
Zhang, Yan; Gao, Shujing; Chen, Shihua Modelling and analysis of a stochastic nonautonomous predator-prey model with impulsive effects and nonlinear functional response. (English) Zbl 1471.92276 Math. Biosci. Eng. 18, No. 2, 1485-1512 (2021). MSC: 92D25 34A37 34F05 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Math. Biosci. Eng. 18, No. 2, 1485--1512 (2021; Zbl 1471.92276) Full Text: DOI OpenURL
Song, Yongli; Peng, Yahong; Zhang, Tonghua The spatially inhomogeneous Hopf bifurcation induced by memory delay in a memory-based diffusion system. (English) Zbl 1472.35034 J. Differ. Equations 300, 597-624 (2021). MSC: 35B32 35B10 35K51 35K58 35R10 37L10 37G05 92D25 PDF BibTeX XML Cite \textit{Y. Song} et al., J. Differ. Equations 300, 597--624 (2021; Zbl 1472.35034) Full Text: DOI arXiv OpenURL
Chen, Xianfeng; Zhang, Xiang Dynamics of the predator-prey model with the sigmoid functional response. (English) Zbl 1482.92062 Stud. Appl. Math. 147, No. 1, 300-318 (2021). Reviewer: Xiong Li (Beijing) MSC: 92D25 34C60 34E15 34E17 34C05 34D20 34C23 PDF BibTeX XML Cite \textit{X. Chen} and \textit{X. Zhang}, Stud. Appl. Math. 147, No. 1, 300--318 (2021; Zbl 1482.92062) Full Text: DOI OpenURL
Wang, Liang; Jiang, Daqing Ergodicity and threshold behaviors of a predator-prey model in stochastic chemostat driven by regime switching. (English) Zbl 1472.34098 Math. Methods Appl. Sci. 44, No. 1, 325-344 (2021). MSC: 34C60 92D25 34F05 60H10 34D05 PDF BibTeX XML Cite \textit{L. Wang} and \textit{D. Jiang}, Math. Methods Appl. Sci. 44, No. 1, 325--344 (2021; Zbl 1472.34098) Full Text: DOI OpenURL
Ni, Wenjie; Shi, Junping; Wang, Mingxin Global stability of spatially nonhomogeneous steady state solution in a diffusive Holling-Tanner predator-prey model. (English) Zbl 1469.35039 Proc. Am. Math. Soc. 149, No. 9, 3781-3794 (2021). MSC: 35B40 35K51 35K58 92D25 PDF BibTeX XML Cite \textit{W. Ni} et al., Proc. Am. Math. Soc. 149, No. 9, 3781--3794 (2021; Zbl 1469.35039) Full Text: DOI arXiv OpenURL
Gokila, C.; Sambath, M. Analysis on stochastic predator-prey model with distributed delay. (English) Zbl 1469.92088 Random Oper. Stoch. Equ. 29, No. 2, 97-110 (2021). MSC: 92D25 34D20 34F05 PDF BibTeX XML Cite \textit{C. Gokila} and \textit{M. Sambath}, Random Oper. Stoch. Equ. 29, No. 2, 97--110 (2021; Zbl 1469.92088) Full Text: DOI OpenURL
Xue, Pan; Jia, Yunfeng; Ren, Cuiping; Li, Xingjun Non-constant positive solutions of a general gause-type predator-prey system with self- and cross-diffusions. (English) Zbl 1471.35130 Math. Model. Nat. Phenom. 16, Paper No. 25, 15 p. (2021). MSC: 35J57 35K57 92D25 35A01 PDF BibTeX XML Cite \textit{P. Xue} et al., Math. Model. Nat. Phenom. 16, Paper No. 25, 15 p. (2021; Zbl 1471.35130) Full Text: DOI OpenURL