Lee, Seungheon; Choi, Geon; Park, Jinseo Prime producing polynomials with some degrees. (English) Zbl 07597452 Korean J. Math. 30, No. 2, 335-339 (2022). MSC: 11N32 11N80 PDF BibTeX XML Cite \textit{S. Lee} et al., Korean J. Math. 30, No. 2, 335--339 (2022; Zbl 07597452) Full Text: DOI OpenURL
Ramírez Viñas, Víctor Julio Class number one criteria for quadratic fields. (English) Zbl 07523837 Math. Rep., Buchar. 22(72), No. 3-4, 293-296 (2020). MSC: 11R29 11R11 11N32 PDF BibTeX XML Cite \textit{V. J. Ramírez Viñas}, Math. Rep., Buchar. 22(72), No. 3--4, 293--296 (2020; Zbl 07523837) Full Text: Link OpenURL
Ramírez Viñas, Víctor Julio A simple criterion for the class number of a quadratic number field to be one. (English) Zbl 1436.11129 Int. J. Number Theory 15, No. 9, 1857-1862 (2019). Reviewer: Anitha Srinivasan (Madrid) MSC: 11R11 11C08 11R29 11N32 PDF BibTeX XML Cite \textit{V. J. Ramírez Viñas}, Int. J. Number Theory 15, No. 9, 1857--1862 (2019; Zbl 1436.11129) Full Text: DOI OpenURL
Mollin, Richard A. New class number one criteria for real quadratic fields of Richaud-Degert type and prime-producing polynomials. (English) Zbl 1309.11077 Far East J. Math. Sci. (FJMS) 74, No. 2, 201-247 (2013). MSC: 11R29 11R11 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin}, Far East J. Math. Sci. (FJMS) 74, No. 2, 201--247 (2013; Zbl 1309.11077) Full Text: Link OpenURL
Mollin, Richard A.; Srinivasan, Anitha Class number one criteria for real quadratic fields with discriminant \(k^2p^2\pm 4p\). (English) Zbl 1297.11137 J. Comb. Number Theory 4, No. 1, 21-34 (2012). Reviewer: Le Maohua (Zhanjiang) MSC: 11R11 11R29 11C08 11D09 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{A. Srinivasan}, J. Comb. Number Theory 4, No. 1, 21--34 (2012; Zbl 1297.11137) OpenURL
Mollin, Richard A.; Srinivasan, Anitha Ideal class groups and generalized Euler-Rabinowitsch polynomials. (English) Zbl 1278.11097 Pioneer J. Math. Math. Sci. 1, No. 1, 1-17 (2011). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R11 11N32 11R29 11Y65 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{A. Srinivasan}, Pioneer J. Math. Math. Sci. 1, No. 1, 1--17 (2011; Zbl 1278.11097) OpenURL
Mollin, Richard A.; Srinivasan, Anitha Euler-Rabinowitsch polynomials and class number problems revisited. (English) Zbl 1296.11138 Funct. Approximatio, Comment. Math. 45, No. 2, 271-288 (2011). MSC: 11R11 11R29 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{A. Srinivasan}, Funct. Approximatio, Comment. Math. 45, No. 2, 271--288 (2011; Zbl 1296.11138) Full Text: DOI Euclid OpenURL
Mollin, R. A. Class number two for real quadratic fields of Richaud-Degert type. (English) Zbl 1224.11091 Serdica Math. J. 35, No. 3, 287-300 (2009). Reviewer: Ivan D. Chipchakov (Sofia) MSC: 11R29 11R11 11A55 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin}, Serdica Math. J. 35, No. 3, 287--300 (2009; Zbl 1224.11091) OpenURL
Ribenboim, Paulo My numbers, my friends. Popular lectures on number theory. Transl. from the English by Jörg Richstein. (Meine Zahlen, meine Freunde. Glanzlichter der Zahlentheorie.) (German) Zbl 1160.11001 Springer-Lehrbuch. Berlin: Springer (ISBN 978-3-540-87955-8/pbk; 978-3-540-87957-2/ebook). x, 391 p. (2009). Reviewer: Franz Lemmermeyer (Jagstzell) MSC: 11-01 11Axx 11B39 11Nxx PDF BibTeX XML Cite \textit{P. Ribenboim}, Meine Zahlen, meine Freunde. Glanzlichter der Zahlentheorie. Berlin: Springer (2009; Zbl 1160.11001) Full Text: DOI OpenURL
Srinivasan, Anitha Prime producing quadratic polynomials and class number one or two. (English) Zbl 1151.11058 Ramanujan J. 10, No. 1, 5-22 (2005). MSC: 11R29 11R11 11N32 PDF BibTeX XML Cite \textit{A. Srinivasan}, Ramanujan J. 10, No. 1, 5--22 (2005; Zbl 1151.11058) Full Text: DOI OpenURL
Mollin, R. A. New prime-producing quadratic polynomials associated with class number one or two. (English) Zbl 1015.11054 New York J. Math. 8, 161-168 (2002). Reviewer: Hideo Yokoi (Aichi) MSC: 11R29 11R11 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin}, New York J. Math. 8, 161--168 (2002; Zbl 1015.11054) Full Text: EuDML EMIS OpenURL
Byeon, Dongho; Stark, H. M. On the finiteness of certain Rabinowitsch polynomials. (English) Zbl 0997.11024 J. Number Theory 94, No. 1, 177-180 (2002). Reviewer: Richard A.Mollin (Calgary) MSC: 11C08 11D85 11R29 11R11 11R09 PDF BibTeX XML Cite \textit{D. Byeon} and \textit{H. M. Stark}, J. Number Theory 94, No. 1, 177--180 (2002; Zbl 0997.11024) Full Text: DOI OpenURL
Mott, Joe L.; Rose, Kermit Prime-producing cubic polynomials. (English) Zbl 0977.11038 Anderson, Daniel D. (ed.) et al., Ideal theoretic methods in commutative algebra. Proceedings of the conference in honor of Professor James A. Huckaba’s retirement, University of Missouri, Columbia, MO, USA. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 220, 281-317 (2001). Reviewer: Richard A.Mollin (Calgary) MSC: 11N32 11C08 11R29 11R16 PDF BibTeX XML Cite \textit{J. L. Mott} and \textit{K. Rose}, Lect. Notes Pure Appl. Math. 220, 281--317 (2001; Zbl 0977.11038) OpenURL
Srinivasan, Anitha Prime producing polynomials: Proof of a conjecture by Mollin and Williams. (English) Zbl 0927.11051 Acta Arith. 89, No. 1, 1-7 (1999). Reviewer: R.Mollin (Calgary) MSC: 11R09 11R29 11E16 11N32 PDF BibTeX XML Cite \textit{A. Srinivasan}, Acta Arith. 89, No. 1, 1--7 (1999; Zbl 0927.11051) Full Text: DOI EuDML OpenURL
Mollin, R. A.; Goddard, B. Richaud-Degert prime-producers. (English) Zbl 0924.11076 Util. Math. 54, 273-286 (1998). Reviewer: Hideo Yokoi (Aichi) MSC: 11N32 11R11 11R29 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{B. Goddard}, Util. Math. 54, 273--286 (1998; Zbl 0924.11076) OpenURL
Mollin, R. A. Class number one and prime-producing quadratic polynomials revisited. (English) Zbl 0920.11078 Can. Math. Bull. 41, No. 3, 328-334 (1998). Reviewer: E.Benjamin (Belfast / Maine) MSC: 11R29 11R11 11R09 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin}, Can. Math. Bull. 41, No. 3, 328--334 (1998; Zbl 0920.11078) Full Text: DOI OpenURL
Mollin, R. A. Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields. (English) Zbl 0852.11060 Acta Arith. 74, No. 1, 17-30 (1996). Reviewer: H.Yokoi (Iwasaki) MSC: 11R09 11R11 11N32 11R29 PDF BibTeX XML Cite \textit{R. A. Mollin}, Acta Arith. 74, No. 1, 17--30 (1996; Zbl 0852.11060) Full Text: DOI EuDML OpenURL
Mollin, Richard A. Quadratics. (English) Zbl 0858.11001 CRC Press Series on Discrete Mathematics and its Applications. Boca Raton, FL: CRC Press. xx, 387 p. (1996). Reviewer: F.Halter-Koch (Graz) MSC: 11-02 11R11 11R29 11Y40 11N32 11D09 11A55 11-01 PDF BibTeX XML Cite \textit{R. A. Mollin}, Quadratics. Boca Raton, FL: CRC Press (1996; Zbl 0858.11001) OpenURL
Mollin, R. A. Real prime-producing quadratics. (English) Zbl 0888.11041 C. R. Math. Acad. Sci., Soc. R. Can. 18, No. 6, 247-252 (1996). Reviewer: H.Yokoi (Iwasaki) MSC: 11R09 11N32 11R11 PDF BibTeX XML Cite \textit{R. A. Mollin}, C. R. Math. Acad. Sci., Soc. R. Can. 18, No. 6, 247--252 (1996; Zbl 0888.11041) OpenURL
Mollin, R. A. Orders in quadratic fields. I. (English) Zbl 0795.11056 Proc. Japan Acad., Ser. A 69, No. 3, 45-48 (1993). Reviewer: H.Yokoi (Nagoya) MSC: 11R29 11R11 11R54 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin}, Proc. Japan Acad., Ser. A 69, No. 3, 45--48 (1993; Zbl 0795.11056) Full Text: DOI OpenURL
Louboutin, S.; Mollin, R. A.; Williams, H. C. Class numbers of real quadratic fields, continued fractions, reduced ideals, prime-producing quadratic polynomials and quadratic residue covers. (English) Zbl 0771.11039 Can. J. Math. 44, No. 4, 824-842 (1992). Reviewer: Franz Halter-Koch (Graz) MSC: 11R11 11R29 11N32 11A41 PDF BibTeX XML Cite \textit{S. Louboutin} et al., Can. J. Math. 44, No. 4, 824--842 (1992; Zbl 0771.11039) Full Text: DOI OpenURL
Louboutin, Stéphane On the Frobenius-Rabinovich theorem. (Extensions du théorème de Frobenius-Rabinovitsch.) (French) Zbl 0746.11044 C. R. Acad. Sci., Paris, Sér. I 312, No. 10, 711-714 (1991). Reviewer: Richard A. Mollin (Calgary) MSC: 11R29 11R11 11N32 PDF BibTeX XML Cite \textit{S. Louboutin}, C. R. Acad. Sci., Paris, Sér. I 312, No. 10, 711--714 (1991; Zbl 0746.11044) OpenURL
Kobayashi, Masaki Prime producing quadratic polynomials and class-number one problem for real quadratic fields. (English) Zbl 0714.11069 Proc. Japan Acad., Ser. A 66, No. 5, 119-121 (1990). Reviewer: H.Yokoi MSC: 11R29 11R11 11N32 PDF BibTeX XML Cite \textit{M. Kobayashi}, Proc. Japan Acad., Ser. A 66, No. 5, 119--121 (1990; Zbl 0714.11069) Full Text: DOI OpenURL
Louboutin, Stéphane Prime producing quadratic polynomials and class-numbers of real quadratic fields. (English) Zbl 0711.11041 Can. J. Math. 42, No. 2, 315-341 (1990). Reviewer: R.Mollin MSC: 11R29 11N32 11R11 PDF BibTeX XML Cite \textit{S. Louboutin}, Can. J. Math. 42, No. 2, 315--341 (1990; Zbl 0711.11041) Full Text: DOI OpenURL
Mollin, R. A.; Williams, H. C. Continued fractions of period five and real quadratic fields of class number one. (English) Zbl 0705.11059 Acta Arith. 56, No. 1, 55-63 (1990). Reviewer: H.Yokoi MSC: 11R11 11R29 11A55 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{H. C. Williams}, Acta Arith. 56, No. 1, 55--63 (1990; Zbl 0705.11059) Full Text: DOI EuDML OpenURL
Mollin, R. A.; Williams, H. C. Class number problems for real quadratic fields. (English) Zbl 0705.11057 Number theory and cryptography, Pap. 33rd Annu. Meet. Aust. Math. Soc. and Workshop Number Theory Cryptography Telecommun., Sydney/Aust. 1989, Lond. Math. Soc. Lect. Note Ser. 154, 177-195 (1990). Reviewer: A.Pethö MSC: 11R11 11R29 11A55 11N32 PDF BibTeX XML OpenURL
Mollin, Richard A. Prime valued polynomials and class numbers of quadratic fields. (English) Zbl 0702.11072 Int. J. Math. Math. Sci. 13, No. 1, 1-11 (1990). Reviewer: H.Yokoi MSC: 11R29 11-02 11R11 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin}, Int. J. Math. Math. Sci. 13, No. 1, 1--11 (1990; Zbl 0702.11072) Full Text: DOI EuDML OpenURL
Mollin, R. A. An overview of the solution to the class of number one problem for real quadratic fields of Richaud-Degert type. (English) Zbl 0702.11071 Number theory. Vol. II. Diophantine and algebraic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51, 871-888 (1990). Reviewer: H.Yokoi MSC: 11R29 11-02 11R11 11N32 PDF BibTeX XML OpenURL
Sasaki, Ryuji Criteria for the class number of real quadratic fields to be one. (English) Zbl 0696.12003 Number theory, Proc. 1st Conf. Can. Number Theory Assoc., Banff/Alberta (Can.) 1988, 501-508 (1990). Reviewer: H.C.Williams MSC: 11R11 11R23 PDF BibTeX XML OpenURL
Mollin, R. A.; Williams, H. C. Class number one for real quadratic fields, continued fractions and reduced ideals. (English) Zbl 0714.11067 Number theory and applications, Proc. NATO ASI, Banff/Can. 1988, NATO ASI Ser., Ser. C 265, 481-496 (1989). Reviewer: M. D. Hendy (Palmerston North) MSC: 11R29 11R11 11N32 11A55 11R09 PDF BibTeX XML OpenURL
Mollin, R. A.; Williams, H. C. Quadratic non-residues and prime-producing polynomials. (English) Zbl 0714.11066 Can. Math. Bull. 32, No. 4, 474-478 (1989). Reviewer: M.D.Hendy MSC: 11R29 11N32 11R11 11R09 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{H. C. Williams}, Can. Math. Bull. 32, No. 4, 474--478 (1989; Zbl 0714.11066) Full Text: DOI OpenURL
Mollin, R. A.; Williams, H. C. Period four and real quadratic fields of class number one. (English) Zbl 0705.11058 Proc. Japan Acad., Ser. A 65, No. 4, 89-93 (1989). Reviewer: K.Lakkis MSC: 11R11 11R29 11A55 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{H. C. Williams}, Proc. Japan Acad., Ser. A 65, No. 4, 89--93 (1989; Zbl 0705.11058) Full Text: DOI OpenURL
Mollin, R. A.; Williams, H. C. Prime producing quadratic polynomials and real quadratic fields of class number one. (English) Zbl 0695.12002 Théorie des nombres, C. R. Conf. Int., Québec/Can. 1987, 654-663 (1989). Reviewer: H.Yokoi MSC: 11R11 11C08 11R23 PDF BibTeX XML OpenURL
Mollin, R. A.; Williams, H. C. On prime valued polynomials and class numbers of real quadratic fields. (English) Zbl 0629.12004 Nagoya Math. J. 112, 143-151 (1988). MSC: 11R29 11R11 11R09 11N32 PDF BibTeX XML Cite \textit{R. A. Mollin} and \textit{H. C. Williams}, Nagoya Math. J. 112, 143--151 (1988; Zbl 0629.12004) Full Text: DOI OpenURL
Fendel, Daniel Prime-producing polynomials and principal ideal domains. (English) Zbl 0573.12001 Math. Mag. 58, 204-210 (1985). Reviewer: B.Richter MSC: 11R11 11A41 11R23 11M99 11R09 PDF BibTeX XML Cite \textit{D. Fendel}, Math. Mag. 58, 204--210 (1985; Zbl 0573.12001) Full Text: DOI OpenURL