×

Numerical analysis of time accuracy of a primitive variable-based formulation of the conservative form of the governing equations for compressible flows. (English) Zbl 07474476

Summary: A class of Computational Fluid Dynamics codes uses primitive variable-based formulation to solve the conservative form of the governing equations. Under certain specific conditions, the approach yields inaccurate results for unsteady problems. Here, Euler equations are used to numerically analyse time accuracy when using such an approach. It is demonstrated, using a simple shock tube problem, that the primitive variable-based approach does not strictly preserve time accuracy. A dual-time stepping technique, which uses an inner iteration of pseudo-time within the physical time, is used to correct the issue. The method is applied to the shock tube problem, which eliminates the time-dependent discrepancies. The problem, and the correction, is also applied to a supersonic flow over a wedge. In both cases, the results are shown to be identical to the solution obtained using a conservative variable-based approach.

MSC:

76-XX Fluid mechanics
35-XX Partial differential equations

Software:

AUSMPW+; HE-E1GODF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R.; Karni, S., A Comment on the Computation of Non-Conservative Products, Journal of Computational Physics, 229, 8, 2759-2763 (2010) · Zbl 1188.65134 · doi:10.1016/j.jcp.2009.12.015
[2] Castro, M. J.; LeFloch, P. G.; Muñoz-Ruiz, M. L.; Parés, C., Why Many Theories of Shock Waves Are Necessary: Convergence Error in Formally Path-Consistent Schemes, Journal of Computational Physics, 227, 17, 8107-8129 (2008) · Zbl 1176.76084 · doi:10.1016/j.jcp.2008.05.012
[3] Davuluri, R. S. C.; Zhang, H.; Martin, A., Numerical Study of Spallation Phenomenon in an Arc-Jet Environment, Journal of Thermophysics and Heat Transfer, 30, 1, 32-41 (2016) · doi:10.2514/1.T4586
[4] Guillard, H.; Viozat, C., On the Behaviour of Upwind Schemes in the Low Mach Number Limit, Computers & Fluids, 28, 1, 63-86 (1999) · Zbl 0963.76062 · doi:10.1016/S0045-7930(98)00017-6
[5] Hou, T. Y.; LeFloch, P. G., Why Nonconservative Schemes Converge to Wrong Solutions: Error Analysis, Mathematics of Computation, 62, 206, 497-530 (1994) · Zbl 0809.65102 · doi:10.1090/S0025-5718-1994-1201068-0
[6] Jameson, A.1991. “Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings.” In 10th Computational Fluid Dynamics Conference, AIAA Paper, 1991-1596. Honolulu, HI.
[7] Kim, K. H.; Kim, C.; Rho, O.-H., Methods for the Accurate Computations of Hypersonic Flows: I. AUSMPW+Scheme, Journal of Computational Physics, 174, 1, 38-80 (2001) · Zbl 1106.76421 · doi:10.1006/jcph.2001.6873
[8] Lax, P. D., Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation, Communications on Pure and Applied Mathematics, 7, 1, 159-193 (1954) · Zbl 0055.19404 · doi:10.1002/cpa.3160070112
[9] Martin, A.; Scalabrin, L. C.; Boyd, I. D., High Performance Modeling of An Atmospheric Re-Entry Vehicles, Journal of Physics: Conference Series, 341, 1, Article 012002 (2012)
[10] Nompelis, I., Drayna, T. W., and Candler, G. V.. 2006. “A Parallel Unstructured Implicit Solver for Hypersonic Reacting Flow Simulation.” In Parallel Computational Fluid Dynamics 2005 - Theory and Applications, 389-395.
[11] Palmer, G. E.; Wright, M. J., Comparison of Methods to Compute High-Temperature Gas Viscosity, Journal of Thermophysics and Heat Transfer, 17, 2, 232-239 (2003) · doi:10.2514/2.6756
[12] Parés, C., Numerical Methods for Nonconservative Hyperbolic Systems: A Theoretical Framework, SIAM Journal on Numerical Analysis, 44, 1, 300-321 (2006) · Zbl 1130.65089 · doi:10.1137/050628052
[13] Roe, P. L., Approximate Riemann Solvers, Parameter Vectors and Difference Schemes, Journal of Computational Physics, 43, 2, 357-372 (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[14] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009), Berlin, Germany: Springer, Berlin, Germany · Zbl 1227.76006
[15] Turkel, E., Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations, Journal of Computational Physics, 72, 2, 277-298 (1987) · Zbl 0633.76069 · doi:10.1016/0021-9991(87)90084-2
[16] Weiss, J. M.; Smith, W. A., Preconditioning Applied to Variable and Constant Density Flows, AIAA Journal, 33, 11, 2050-2057 (1995) · Zbl 0849.76072 · doi:10.2514/3.12946
[17] Withington, J. P., Yang, V., and Shuen, J. S.. 1991. “A Time-Accurate Implicit Method for Chemically Reacting Flows at All Mach Numbers.” In 29th Aerospace Sciences Meeting, AIAA Paper, 91-581. Reno, NV.
[18] Woodward, P.; Colella, P., The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks, Journal of Computational Physics, 54, 1, 115-173 (1984) · Zbl 0573.76057 · doi:10.1016/0021-9991(84)90142-6
[19] Wright, M. J.; Candler, G. V.; Bose, D., Data-Parallel Line Relaxation Method for the Navier-Stokes Equations, AIAA Journal, 36, 9, 1603-1609 (1998) · doi:10.2514/2.586
[20] Zhang, H.2015. “High Temperature Flow Solver for Aerothermodynamics Problems.” PhD thesis, Lexington, KY: The University of Kentucky. http://uknowledge.uky.edu/me_etds/64/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.