×

High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. (English) Zbl 1284.62174

Summary: In this work we present results of a detailed Bayesian parameter estimation for an analysis of ordinary differential equation models. These depend on many unknown parameters that have to be inferred from experimental data. The statistical inference in a high-dimensional parameter space is however conceptually and computationally challenging. To ensure rigorous assessment of model and prediction uncertainties we take advantage of both a profile posterior approach and Markov chain Monte Carlo sampling.
We analyzed a dynamical model of the JAK2/STAT5 signal transduction pathway that contains more than one hundred parameters. Using the profile posterior we found that the corresponding posterior distribution is bimodal. To guarantee efficient mixing in the presence of multimodal posterior distributions we applied a multi-chain sampling approach. The Bayesian parameter estimation enables the assessment of prediction uncertainties and the design of additional experiments that enhance the explanatory power of the model.
This study represents a proof of principle that detailed statistical analysis for quantitative dynamical modeling used in systems biology is feasible also in high-dimensional parameter spaces.

MSC:

62F15 Bayesian inference
62F10 Point estimation
92C40 Biochemistry, molecular biology
92C42 Systems biology, networks
92C37 Cell biology
65C40 Numerical analysis or methods applied to Markov chains

Software:

CVODES; LIBSVM; SUNDIALS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bachmann, J.; Raue, A.; Schilling, M.; Böhm, M.; Kreutz, C.; Kaschek, D.; Busch, H.; Gretz, N.; Lehmann, W.; Timmer, J.; Klingmüller, U., Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range, Molecular Systems Biology, 7 (2011)
[2] Becker, V.; Schilling, M.; Bachmann, J.; Baumann, U.; Raue, A.; Maiwald, T.; Timmer, J.; Klingmüller, U., Covering a broad dynamic range: information processing at the erythropoietin receptor, Science, 328, 1404 (2010)
[3] Wilkinson, D., Stochastic Modelling for Systems Biology (2006), Chapman & Hall/CRC · Zbl 1099.92004
[4] Xu, T.-R.; Vyshemirsky, V.; Gormand, A.; von Kriegsheim, A.; Girolami, M.; Baillie, G. S.; Ketley, D.; Dunlop, A. J.; Milligan, G.; Houslay, M. D.; Kolch, W., Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species, Science Signaling, 3, 1 (2010)
[5] Girolami, M., Bayesian inference for differential equations, Theoretical Computer Science, 408, 4 (2008) · Zbl 1152.62016
[6] Raia, V.; Schilling, M.; Böhm, M.; Hahn, B.; Kowarsch, A.; Raue, A.; Sticht, C.; Bohl, S.; Saile, M.; Möller, P.; Gretz, N.; Timmer, J.; Theis, F.; Lehmann, W.; Lichter, P.; Klingmüller, U., Dynamic mathematical modeling of IL13-induced signaling in hodgkin and primary mediastinal B-cell lymphoma allows prediction of therapeutic targets, Cancer Research, 71, 1 (2011)
[8] Lawrence, N.; Girolami, M.; Rattray, M.; Sanguinetti, G., Leaning and Inference in Computational Systems Biology (2010), MIT Press
[9] Timmer, J.; Müller, T.; Swameye, I.; Sandra, O.; Klingmüller, U., Modeling the nonlinear dynamics of cellular signal transduction, International Journal of Bifurcation and Chaos, 14, 2069 (2004) · Zbl 1065.92018
[10] Coddington, E.; Levinson, N., Theory of Ordinary Differential Equations (1972), Tata McGraw-Hill
[11] Kreutz, C.; Rodriguez, M. M.B.; Maiwald, T.; Seidl, M.; Blum, H. E.; Mohr, L.; Timmer, J., An error model for protein quantification, Bioinformatics, 23, 2747 (2007)
[13] Brown, K.; Sethna, J., Statistical mechanical approaches to models with many poorly known parameters, Physical Review E, 68, 021904 (2003)
[14] Bernardo, J.; Smith, A.; Berliner, M., Bayesian Theory, vol. 62 (1994), Wiley
[15] Vanlier, J.; Tiemann, C.; Hilbers, P.; van Riel, N., An integrated strategy for prediction uncertainty analysis, Bioinformatics, 28, 1130 (2012)
[16] Raue, A.; Kreutz, C.; Theis, F.; Timmer, J., Joining forces of bayesian and frequentist methodology: a study for inference in the presence of non-identifiability, Philosophical Transacions of the Royal Society A, 371 (2013) · Zbl 1353.62013
[17] Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmüller, U.; Timmer, J., Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics, 25, 1923 (2009)
[18] Kreutz, C.; Raue, A.; Timmer, J., Likelihood based observability analysis and confidence intervals for predictions of dynamic models, BMC Systems Biology, 6, 120 (2012)
[19] Schmidl, D.; Hug, S.; Li, W.; Greiter, M.; Theis, F., Bayesian model selection validates a biokinetic model for zirconium processing in humans, BMC Systems Biology, 6, 95 (2012)
[20] Calderhead, B.; Girolami, M., Estimating Bayes factors via thermodynamic integration and population MCMC, Computational Statistics & Data Analysis, 53, 4028 (2009) · Zbl 1453.62055
[21] Kass, R.; Raftery, A., Bayes factors, Journal of the American Statistical Association, 773 (1995) · Zbl 0846.62028
[22] Lartillot, N.; Philippe, H., Computing Bayes factors using thermodynamic integration, Systematic biology, 55, 195 (2006)
[23] Friel, N.; Pettitt, A., Marginal likelihood estimation via power posteriors, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 589 (2008) · Zbl 05563360
[25] Gamerman, D.; Lopes, H., Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, vol. 68 (2006), Chapman & Hall/CRC · Zbl 1137.62011
[26] Kass, R.; Carlin, B.; Gelman, A.; Neal, R., Markov chain Monte Carlo in practice: A roundtable discussion, American Statistician, 52, 93 (1998)
[27] Brooks, S., Markov chain Monte Carlo method and its application, Journal of the Royal Statistical Society: Series D (The Statistician), 47, 69 (1998)
[28] Liu, J., Monte Carlo Strategies in Scientific Computing (2008), Springer-Verlag · Zbl 1132.65003
[29] Marin, J.; Robert, C., Bayesian Core: A Practical Approach to Computational Bayesian Statistics (2007), Springer Verlag · Zbl 1137.62013
[30] Robert, C.; Casella, G.; Robert, C., Monte Carlo Statistical Methods, vol. 2 (1999), Springer: Springer New York · Zbl 0935.62005
[31] Metropolis, N.; Rosenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E., Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21, 1087 (1953) · Zbl 1431.65006
[32] Hastings, W., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97 (1970) · Zbl 0219.65008
[33] Beichl, I.; Sullivan, F., The Metropolis algorithm, Computing in Science & Engineering, 2, 65 (2000)
[34] Roberts, G.; Gelman, A.; Gilks, W., Weak convergence and optimal scaling of random walk Metropolis algorithms, The Annals of Applied Probability, 7, 110 (1997) · Zbl 0876.60015
[35] Schmidl, D.; Czado, C.; Hug, S.; Theis, F. J., A vine-copula based adaptive MCMC approach for efficient inference of dynamical systems, Bayesian Analysis, 8, 1 (2013) · Zbl 1329.62143
[36] Girolami, M.; Calderhead, B., Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 123 (2011) · Zbl 1411.62071
[39] Haario, H.; Saksman, E.; Tamminen, J., An adaptive Metropolis algorithm, Bernoulli, 7, 223 (2001) · Zbl 0989.65004
[40] Gelman, A.; Rubin, D., Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457 (1992) · Zbl 1386.65060
[41] Neal, R., Sampling from multimodal distributions using tempered transitions, Statistics and Computing, 6, 353 (1996)
[42] Hukushima, K.; Nemoto, K., Exchange monte carlo method and application to spin glass simulations, Journal of the Physical Society of Japan, 65, 1604 (1996)
[43] Jasra, A.; Stephens, D. A.; Holmes, C. C., Population-based reversible jump Markov chain Monte Carlo, Biometrika, 94, 787 (2007) · Zbl 1158.62019
[44] Rigat, F.; Mira, A., Parallel hierarchical sampling: a general-purpose interacting Markov chains Monte Carlo algorithm, Computational Statistics & Data Analysis, 56, 1450 (2012) · Zbl 1246.65026
[47] Vapnik, V., The Nature of Statistical Learning Theory (1995), Springer: Springer New York · Zbl 0833.62008
[48] Brooks, S. P.; Roberts, G. O., Assessing convergence of Markov chain Monte Carlo algorithms, Statistical Computation, 8, 319 (1998)
[50] Chang, C.-C.; Lin, C.-J., LIBSVM: a library for support vector machines, IEEE/ACM Transactions om Intelligent System Technology, 2, 1 (2011)
[51] MacDonald, N., Time delay in simple chemostat models, Biotechnology and Bioengineering, 18, 805 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.