Haslinger, Friedrich The \(\bar \partial\) Neumann problem and Schrödinger operators (to appear). 2nd edition. (English) Zbl 07720925 De Gruyter Expositions in Mathematics 59. Berlin: De Gruyter (ISBN 978-3-11-118290-2/hbk; 978-3-11-118292-6/ebook). (2024). MSC: 32-02 32A25 32A36 32W05 35J10 PDF BibTeX XML
Song Ha, Nguyen; Minh Tuyen, Truong; Thi Van Huyen, Phan Inertial proximal point algorithm for the split common solution problem of monotone operator equations. (English) Zbl 07745066 Comput. Appl. Math. 42, No. 7, Paper No. 303, 21 p. (2023). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{N. Song Ha} et al., Comput. Appl. Math. 42, No. 7, Paper No. 303, 21 p. (2023; Zbl 07745066) Full Text: DOI
Nguyen Thi Thu, Thuy; Nguyen Trung, Nghia A hybrid projection method for solving the multiple-sets split feasibility problem. (English) Zbl 07745055 Comput. Appl. Math. 42, No. 6, Paper No. 292, 15 p. (2023). MSC: 47H05 47H09 47H10 49J40 PDF BibTeX XML Cite \textit{T. Nguyen Thi Thu} and \textit{N. Nguyen Trung}, Comput. Appl. Math. 42, No. 6, Paper No. 292, 15 p. (2023; Zbl 07745055) Full Text: DOI
Peláez, José Ángel; Rättyä, Jouni Bergman projection and BMO in hyperbolic metric: improvement of classical result. (English) Zbl 07744995 Math. Z. 305, No. 2, Paper No. 19, 9 p. (2023). MSC: 30H20 30H35 47B34 PDF BibTeX XML Cite \textit{J. Á. Peláez} and \textit{J. Rättyä}, Math. Z. 305, No. 2, Paper No. 19, 9 p. (2023; Zbl 07744995) Full Text: DOI arXiv
Otto, Samuel E.; Padovan, Alberto; Rowley, Clarence W. Model reduction for nonlinear systems by balanced truncation of state and gradient covariance. (English) Zbl 07742967 SIAM J. Sci. Comput. 45, No. 5, A2325-A2355 (2023). MSC: 65Q10 15A03 47B32 65F10 90C06 93A15 93C10 PDF BibTeX XML Cite \textit{S. E. Otto} et al., SIAM J. Sci. Comput. 45, No. 5, A2325--A2355 (2023; Zbl 07742967) Full Text: DOI arXiv
Duan, Yongjiang; Rättyä, Jouni; Wang, Siyu; Wu, Fanglei Two weight inequality for Hankel form on weighted Bergman spaces induced by doubling weights. (English) Zbl 07741098 Adv. Math. 431, Article ID 109249, 47 p. (2023). MSC: 30H20 47B35 PDF BibTeX XML Cite \textit{Y. Duan} et al., Adv. Math. 431, Article ID 109249, 47 p. (2023; Zbl 07741098) Full Text: DOI arXiv
Anh, Pham Ngoc New outer proximal methods for solving variational inequality problems. (English) Zbl 07740096 J. Optim. Theory Appl. 198, No. 2, 479-501 (2023). MSC: 65K10 90C25 49J35 47J25 PDF BibTeX XML Cite \textit{P. N. Anh}, J. Optim. Theory Appl. 198, No. 2, 479--501 (2023; Zbl 07740096) Full Text: DOI
Zhao, Junjian; Qu, Guangwei; Du, Wei-Shih; Chen, Yasong Approximation of kernel projection operators in shift-invariant subspaces of function spaces with mixed norms. (English) Zbl 07738409 Banach J. Math. Anal. 17, No. 4, Paper No. 70, 24 p. (2023). MSC: 41A35 41A15 41A58 42B35 42C40 PDF BibTeX XML Cite \textit{J. Zhao} et al., Banach J. Math. Anal. 17, No. 4, Paper No. 70, 24 p. (2023; Zbl 07738409) Full Text: DOI
Avsyankin, O. G. Projection method for a class of integral operators with bihomogeneous kernels. (English. Russian original) Zbl 07736661 Russ. Math. 67, No. 3, 1-8 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 3, 3-11 (2023). MSC: 47G10 47A05 45P05 PDF BibTeX XML Cite \textit{O. G. Avsyankin}, Russ. Math. 67, No. 3, 1--8 (2023; Zbl 07736661); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 3, 3--11 (2023) Full Text: DOI
Xu, Hong-Kun Refinements of some convergence results of the gradient-projection algorithm. (English) Zbl 07735734 Ann. Math. Sci. Appl. 8, No. 2, 347-363 (2023). MSC: 47J25 90C25 47H09 49J40 PDF BibTeX XML Cite \textit{H.-K. Xu}, Ann. Math. Sci. Appl. 8, No. 2, 347--363 (2023; Zbl 07735734) Full Text: DOI
Wu, Huanqin; Xie, Zhongbing; Li, Min An improved subgradient extragradient method with two different parameters for solving variational inequalities in reflexive Banach spaces. (English) Zbl 07735370 Comput. Appl. Math. 42, No. 6, Paper No. 254, 20 p. (2023). MSC: 47H05 47H07 47H10 54H25 PDF BibTeX XML Cite \textit{H. Wu} et al., Comput. Appl. Math. 42, No. 6, Paper No. 254, 20 p. (2023; Zbl 07735370) Full Text: DOI
Kröner, Axel; Rautenberg, Carlos N.; Rodrigues, Sérgio S. Existence, uniqueness, and stabilization results for parabolic variational inequalities. (English) Zbl 07734409 ESAIM, Control Optim. Calc. Var. 29, Paper No. 37, 38 p. (2023). MSC: 35K85 35B40 93D15 PDF BibTeX XML Cite \textit{A. Kröner} et al., ESAIM, Control Optim. Calc. Var. 29, Paper No. 37, 38 p. (2023; Zbl 07734409) Full Text: DOI arXiv
Azamov, Nurulla; Daniels, Tom Coupling resonances and spectral properties of the product of resolvent and perturbation. (English) Zbl 07732462 J. Math. Anal. Appl. 528, No. 2, Article ID 127620, 33 p. (2023). MSC: 47Axx 47Bxx 58Jxx PDF BibTeX XML Cite \textit{N. Azamov} and \textit{T. Daniels}, J. Math. Anal. Appl. 528, No. 2, Article ID 127620, 33 p. (2023; Zbl 07732462) Full Text: DOI arXiv
Chen, Yi; Ye, Minglu An inertial Popov extragradient projection algorithm for solving multi-valued variational inequality problems. (English) Zbl 07726270 Optimization 72, No. 8, 2069-2089 (2023). MSC: 47J20 49J40 90C33 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{M. Ye}, Optimization 72, No. 8, 2069--2089 (2023; Zbl 07726270) Full Text: DOI
Hernández-Linares, Carlos Alberto; Martínez-Anteo, Eduardo; Muñiz-Pérez, Omar Characterizations of the existence of solutions for variational inequality problems in Hilbert spaces. (English) Zbl 07725408 J. Fixed Point Theory Appl. 25, No. 3, Paper No. 66, 16 p. (2023). MSC: 47N10 47H05 47H09 47H10 49J40 PDF BibTeX XML Cite \textit{C. A. Hernández-Linares} et al., J. Fixed Point Theory Appl. 25, No. 3, Paper No. 66, 16 p. (2023; Zbl 07725408) Full Text: DOI
Deng, Chun Yuan; Zhang, Wan Yu Splitting of operators and operator equations. (English) Zbl 07724359 Acta Math. Sin., Engl. Ser. 39, No. 6, 1085-1100 (2023). MSC: 47A05 47A62 47B65 PDF BibTeX XML Cite \textit{C. Y. Deng} and \textit{W. Y. Zhang}, Acta Math. Sin., Engl. Ser. 39, No. 6, 1085--1100 (2023; Zbl 07724359) Full Text: DOI
Reich, Simeon; Truong Minh Tuyen; Phan Thi Van Huyen New algorithms for solving the split common zero point problem in Hilbert space. (English) Zbl 07723931 Numer. Funct. Anal. Optim. 44, No. 10, 1012-1030 (2023). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{S. Reich} et al., Numer. Funct. Anal. Optim. 44, No. 10, 1012--1030 (2023; Zbl 07723931) Full Text: DOI
Tian, Xiaoyi; Xu, Qingxiang; Zhang, Xiaofeng Norm inequalities associated with two projections. (English) Zbl 07712326 Bull. Malays. Math. Sci. Soc. (2) 46, No. 4, Paper No. 137, 17 p. (2023). MSC: 46L05 47A05 47A30 15A09 PDF BibTeX XML Cite \textit{X. Tian} et al., Bull. Malays. Math. Sci. Soc. (2) 46, No. 4, Paper No. 137, 17 p. (2023; Zbl 07712326) Full Text: DOI
Köpfer, Benedikt; Rüschendorf, Ludger Markov projection of semimartingales – application to comparison results. (English) Zbl 07711490 Stochastic Processes Appl. 162, 361-386 (2023). MSC: 60G44 60E15 60J25 PDF BibTeX XML Cite \textit{B. Köpfer} and \textit{L. Rüschendorf}, Stochastic Processes Appl. 162, 361--386 (2023; Zbl 07711490) Full Text: DOI
Kokurin, M. Yu. Quasi-solution method and global minimization of the residual functional in conditionally well-posed inverse problems. (English. Russian original) Zbl 1514.65118 Comput. Math. Math. Phys. 63, No. 5, 881-896 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 5, 840-855 (2023). MSC: 65M32 49N45 47A52 PDF BibTeX XML Cite \textit{M. Yu. Kokurin}, Comput. Math. Math. Phys. 63, No. 5, 881--896 (2023; Zbl 1514.65118); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 5, 840--855 (2023) Full Text: DOI
Khan, Akhtar A.; Li, Jinlu; Reich, Simeon Generalized projections on general Banach spaces. (English) Zbl 1515.41014 J. Nonlinear Convex Anal. 24, No. 5, 1079-1112 (2023). MSC: 41A50 46B20 47H05 47J20 58C06 PDF BibTeX XML Cite \textit{A. A. Khan} et al., J. Nonlinear Convex Anal. 24, No. 5, 1079--1112 (2023; Zbl 1515.41014) Full Text: arXiv Link
Liu, Xindong; Liu, Min An accelerated shrinking projection algorithm for solving the split variational inclusion problem in reflexive Banach spaces. (English) Zbl 07708796 J. Nonlinear Convex Anal. 24, No. 4, 889-903 (2023). MSC: 47J25 47J22 47H05 47H09 PDF BibTeX XML Cite \textit{X. Liu} and \textit{M. Liu}, J. Nonlinear Convex Anal. 24, No. 4, 889--903 (2023; Zbl 07708796) Full Text: Link
Yin, Tzu-Chien; Hussain, Nawab; Alamri, Hind Self-adaptive projective methods for solving pseudomonotone variational inequalities and quasi-variational inclusions. (English) Zbl 07708786 J. Nonlinear Convex Anal. 24, No. 4, 729-742 (2023). MSC: 47J25 49J40 65K10 90C25 90C48 PDF BibTeX XML Cite \textit{T.-C. Yin} et al., J. Nonlinear Convex Anal. 24, No. 4, 729--742 (2023; Zbl 07708786) Full Text: Link
Fang, Niufa; Zhou, Jiazu Projection body and isoperimetric inequalities for \(s\)-concave functions. (English) Zbl 07708674 Chin. Ann. Math., Ser. B 44, No. 3, 465-480 (2023). MSC: 26B25 52A20 26D10 PDF BibTeX XML Cite \textit{N. Fang} and \textit{J. Zhou}, Chin. Ann. Math., Ser. B 44, No. 3, 465--480 (2023; Zbl 07708674) Full Text: DOI
Chang, Der-Chen; Li, Ji; Tie, Jingzhi; Wu, Qingyan The Kohn-Laplacian and Cauchy-Szegö projection on model domains. (English) Zbl 1517.32108 Ann. Math. Sci. Appl. 8, No. 1, 111-155 (2023). MSC: 32V05 32V20 PDF BibTeX XML Cite \textit{D.-C. Chang} et al., Ann. Math. Sci. Appl. 8, No. 1, 111--155 (2023; Zbl 1517.32108) Full Text: DOI arXiv
Kondo, Atsumasa Strong convergence to common fixed points using Ishikawa and hybrid methods for mean-demiclosed mappings in Hilbert spaces. (English) Zbl 07706394 Math. Model. Anal. 28, No. 2, 285-307 (2023). MSC: 47H09 47J20 47J26 PDF BibTeX XML Cite \textit{A. Kondo}, Math. Model. Anal. 28, No. 2, 285--307 (2023; Zbl 07706394) Full Text: DOI
Patel, Subhashree; Laxmi Panigrahi, Bijaya; Nelakanti, Gnaneshwar Multi-projection methods for Fredholm integral equations of the first kind. (English) Zbl 07705593 Int. J. Comput. Math. 100, No. 4, 722-744 (2023). MSC: 65J10 65J20 65J22 PDF BibTeX XML Cite \textit{S. Patel} et al., Int. J. Comput. Math. 100, No. 4, 722--744 (2023; Zbl 07705593) Full Text: DOI
Anh, Pham Ky; Vinh, Nguyen The A novel projection method for split feasibility problems with applications to compressive sensing. (English) Zbl 07700504 Comput. Appl. Math. 42, No. 4, Paper No. 197, 20 p. (2023). MSC: 49J40 47H04 47H10 PDF BibTeX XML Cite \textit{P. K. Anh} and \textit{N. T. Vinh}, Comput. Appl. Math. 42, No. 4, Paper No. 197, 20 p. (2023; Zbl 07700504) Full Text: DOI
Tan, Bing; Li, Songxiao; Cho, Sun Young Inertial projection and contraction methods for pseudomonotone variational inequalities with non-Lipschitz operators and applications. (English) Zbl 07699777 Appl. Anal. 102, No. 4, 1199-1221 (2023). MSC: 47J25 47H05 47H09 49J40 65K15 PDF BibTeX XML Cite \textit{B. Tan} et al., Appl. Anal. 102, No. 4, 1199--1221 (2023; Zbl 07699777) Full Text: DOI
Zhao, Zhi; Zeng, Qin; Xu, Yu-Nong; Qian, Ya-Guan; Yao, Teng-Teng A projection algorithm for pseudomonotone vector fields with convex constraints on Hadamard manifolds. (English) Zbl 07694965 Numer. Algorithms 93, No. 3, 1209-1223 (2023). MSC: 65-XX 47H05 47J25 58C30 PDF BibTeX XML Cite \textit{Z. Zhao} et al., Numer. Algorithms 93, No. 3, 1209--1223 (2023; Zbl 07694965) Full Text: DOI
Thong, Duong Viet; Reich, Simeon; Shehu, Yekini; Iyiola, Olaniyi S. Novel projection methods for solving variational inequality problems and applications. (English) Zbl 07694961 Numer. Algorithms 93, No. 3, 1105-1135 (2023). MSC: 65-XX 47H09 47J20 47J05 47J25 PDF BibTeX XML Cite \textit{D. V. Thong} et al., Numer. Algorithms 93, No. 3, 1105--1135 (2023; Zbl 07694961) Full Text: DOI
Kobos, Tomasz A uniform lower bound on the norms of hyperplane projections of spherical polytopes. (English) Zbl 07694933 Discrete Comput. Geom. 70, No. 1, 279-296 (2023). MSC: 47A58 47A30 52A21 52B11 PDF BibTeX XML Cite \textit{T. Kobos}, Discrete Comput. Geom. 70, No. 1, 279--296 (2023; Zbl 07694933) Full Text: DOI arXiv
Dang, Ya-zheng; Wang, Long; Yang, Yao-heng New hybrid inertial CQ projection algorithms with line-search process for the split feasibility problem. (English) Zbl 1517.47100 Appl. Math., Ser. B (Engl. Ed.) 38, No. 1, 144-158 (2023). MSC: 47J25 65K05 PDF BibTeX XML Cite \textit{Y.-z. Dang} et al., Appl. Math., Ser. B (Engl. Ed.) 38, No. 1, 144--158 (2023; Zbl 1517.47100) Full Text: DOI
Gao, Ming Chu; An, Gui Mei Maps on positive cones of \(C^*\)-algebras. (English) Zbl 07682198 Acta Math. Sin., Engl. Ser. 39, No. 3, 387-398 (2023). MSC: 47B49 46L05 46L10 PDF BibTeX XML Cite \textit{M. C. Gao} and \textit{G. M. An}, Acta Math. Sin., Engl. Ser. 39, No. 3, 387--398 (2023; Zbl 07682198) Full Text: DOI
Hu, Shaotao; Wang, Yuanheng; Jing, Ping; Dong, Qiao-Li A new Bregman projection method with a self-adaptive process for solving variational inequality problem in reflexive Banach spaces. (English) Zbl 07682178 Optim. Lett. 17, No. 4, 935-954 (2023). MSC: 90C33 PDF BibTeX XML Cite \textit{S. Hu} et al., Optim. Lett. 17, No. 4, 935--954 (2023; Zbl 07682178) Full Text: DOI
Xie, Zhongbing; Cai, Gang; Dong, Qiao-Li Strong convergence of Bregman projection method for solving variational inequality problems in reflexive Banach spaces. (English) Zbl 07676518 Numer. Algorithms 93, No. 1, 269-294 (2023). MSC: 65-XX 47H05 47H07 47H10 54H25 PDF BibTeX XML Cite \textit{Z. Xie} et al., Numer. Algorithms 93, No. 1, 269--294 (2023; Zbl 07676518) Full Text: DOI
Asare-Tuah, Anton; Gonessa, Jocelyn; Sehba, Benoit F. Multilinear Schur-type tests and boundedness of multilinear Bergman-type operators. (English) Zbl 07676378 Monatsh. Math. 201, No. 1, 11-51 (2023). MSC: 28A25 47B34 26D15 PDF BibTeX XML Cite \textit{A. Asare-Tuah} et al., Monatsh. Math. 201, No. 1, 11--51 (2023; Zbl 07676378) Full Text: DOI
Nockowska-Rosiak, Magdalena; Pötzsche, Christian Positivity and discretization of Fredholm integral operators. (English) Zbl 1512.65309 J. Math. Anal. Appl. 524, No. 1, Article ID 127137, 29 p. (2023). MSC: 65R20 45B05 45P05 PDF BibTeX XML Cite \textit{M. Nockowska-Rosiak} and \textit{C. Pötzsche}, J. Math. Anal. Appl. 524, No. 1, Article ID 127137, 29 p. (2023; Zbl 1512.65309) Full Text: DOI arXiv
Shine Lal, E.; Prasad, T.; Ramya, P. On the class of totally polynomially posinormal operators. (English) Zbl 1516.47044 Aust. J. Math. Anal. Appl. 20, No. 1, Paper No. 9, 7 p. (2023). MSC: 47B20 47A10 PDF BibTeX XML Cite \textit{E. Shine Lal} et al., Aust. J. Math. Anal. Appl. 20, No. 1, Paper No. 9, 7 p. (2023; Zbl 1516.47044) Full Text: Link
Duong Viet Thong; Li, Xiaoxiao; Dong, Qiao-Li; Vu Tien Dung; Nguyen Phuong Lan Strong and linear convergence of projection-type method with an inertial term for finding minimum-norm solutions of pseudomonotone variational inequalities in Hilbert spaces. (English) Zbl 07669768 Numer. Algorithms 92, No. 4, 2243-2274 (2023). MSC: 65-XX 47H09 47J20 65K15 90C25 PDF BibTeX XML Cite \textit{Duong Viet Thong} et al., Numer. Algorithms 92, No. 4, 2243--2274 (2023; Zbl 07669768) Full Text: DOI
Deng, Lanmei; Hu, Rong; Fang, Yaping A linesearch projection algorithm for solving equilibrium problems without monotonicity in Hilbert spaces. (English) Zbl 07668938 J. Ind. Manag. Optim. 19, No. 6, 4641-4662 (2023). MSC: 65K15 90C33 65J15 PDF BibTeX XML Cite \textit{L. Deng} et al., J. Ind. Manag. Optim. 19, No. 6, 4641--4662 (2023; Zbl 07668938) Full Text: DOI arXiv
Karmakar, Shibashis \(J\)-fusion frame operator for Krein spaces. (English) Zbl 07667028 J. Anal. 31, No. 1, 633-644 (2023). MSC: 46C20 46C05 47B50 PDF BibTeX XML Cite \textit{S. Karmakar}, J. Anal. 31, No. 1, 633--644 (2023; Zbl 07667028) Full Text: DOI arXiv
Hamza, Bouda; Chafik, Allouch; Mohamed, Tahrichi Legendre superconvergent degenerate kernel and Nyström methods for Fredholm integral equations. (English) Zbl 07665233 Sahand Commun. Math. Anal. 20, No. 1, 45-60 (2023). MSC: 45Axx 65J10 65R20 45L05 41A10 PDF BibTeX XML Cite \textit{B. Hamza} et al., Sahand Commun. Math. Anal. 20, No. 1, 45--60 (2023; Zbl 07665233) Full Text: DOI
Alakoya, T. O.; Uzor, V. A.; Mewomo, O. T. A new projection and contraction method for solving split monotone variational inclusion, pseudomonotone variational inequality, and common fixed point problems. (English) Zbl 07655412 Comput. Appl. Math. 42, No. 1, Paper No. 3, 33 p. (2023). MSC: 65K15 47J25 65J15 90C33 PDF BibTeX XML Cite \textit{T. O. Alakoya} et al., Comput. Appl. Math. 42, No. 1, Paper No. 3, 33 p. (2023; Zbl 07655412) Full Text: DOI
Lv, Songtao Research on a four-step iteration in Hilbert spaces. (English) Zbl 1510.47090 J. Nonlinear Convex Anal. 24, No. 2, 425-433 (2023). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{S. Lv}, J. Nonlinear Convex Anal. 24, No. 2, 425--433 (2023; Zbl 1510.47090) Full Text: Link
Reich, Simeon; Tuyen, Truong Minh The generalized Fermat-Torricelli problem in Hilbert spaces. (English) Zbl 07644265 J. Optim. Theory Appl. 196, No. 1, 78-97 (2023). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{S. Reich} and \textit{T. M. Tuyen}, J. Optim. Theory Appl. 196, No. 1, 78--97 (2023; Zbl 07644265) Full Text: DOI
Qin, Chuan; Wang, Maofa; Guo, Xin Weighted estimates for Forelli-Rudin type operators on the Hartogs triangle. (English) Zbl 07634457 Banach J. Math. Anal. 17, No. 1, Paper No. 11, 33 p. (2023). Reviewer: Carme Cascante (Barcelona) MSC: 47B33 32A36 42B35 PDF BibTeX XML Cite \textit{C. Qin} et al., Banach J. Math. Anal. 17, No. 1, Paper No. 11, 33 p. (2023; Zbl 07634457) Full Text: DOI
Tuyen, Truong Minh Regularization methods for the split equality problems in Hilbert spaces. (English) Zbl 07629835 Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 44, 20 p. (2023). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{T. M. Tuyen}, Bull. Malays. Math. Sci. Soc. (2) 46, No. 1, Paper No. 44, 20 p. (2023; Zbl 07629835) Full Text: DOI
Dang, Yazheng; Ang, Marcus; Sun, Jie An inertial triple-projection algorithm for solving the split feasibility problem. (English) Zbl 1515.65178 J. Ind. Manag. Optim. 19, No. 3, 1813-1826 (2023). MSC: 65K15 90C25 47H09 47J25 65K10 PDF BibTeX XML Cite \textit{Y. Dang} et al., J. Ind. Manag. Optim. 19, No. 3, 1813--1826 (2023; Zbl 1515.65178) Full Text: DOI
Arora, Sahiba Locally eventually positive operator semigroups. (English) Zbl 07734181 J. Oper. Theory 88, No. 1, 205-244 (2022). MSC: 47D06 47B65 47A10 34B09 34G10 PDF BibTeX XML Cite \textit{S. Arora}, J. Oper. Theory 88, No. 1, 205--244 (2022; Zbl 07734181) Full Text: DOI arXiv
Békollè, David; Keumo, Adriel R.; Tchoundja, Edgar L.; Wick, Brett D. Weighted estimates for operators associated to the Bergman-Besov kernels. (English) Zbl 07732651 Adv. Pure Appl. Math. 13, No. 3, 9-52 (2022). MSC: 32A10 32A36 47B32 PDF BibTeX XML Cite \textit{D. Békollè} et al., Adv. Pure Appl. Math. 13, No. 3, 9--52 (2022; Zbl 07732651) Full Text: DOI arXiv
Lindstrom, Scott B. Computable centering methods for spiraling algorithms and their duals, with motivations from the theory of Lyapunov functions. (English) Zbl 07682196 Comput. Optim. Appl. 83, No. 3, 999-1026 (2022). MSC: 90C26 65Q30 47H99 PDF BibTeX XML Cite \textit{S. B. Lindstrom}, Comput. Optim. Appl. 83, No. 3, 999--1026 (2022; Zbl 07682196) Full Text: DOI arXiv
Hosseini, Maliheh Reflexivity of sets of isometries on bounded variation function spaces. (English) Zbl 07674099 Linear Multilinear Algebra 70, No. 19, 4405-4415 (2022). Reviewer: T.S.S.R.K. Rao (Bangalore) MSC: 47D03 46E15 46B04 PDF BibTeX XML Cite \textit{M. Hosseini}, Linear Multilinear Algebra 70, No. 19, 4405--4415 (2022; Zbl 07674099) Full Text: DOI
Wang, Shuaijie; Tian, Xiaoyi; Deng, Chunyuan On the parallel addition and subtraction of operators on a Hilbert space. (English) Zbl 07674057 Linear Multilinear Algebra 70, No. 19, 3660-3688 (2022). Reviewer: Florian-Horia Vasilescu (Villeneuve d’Ascq) MSC: 47A05 47B02 PDF BibTeX XML Cite \textit{S. Wang} et al., Linear Multilinear Algebra 70, No. 19, 3660--3688 (2022; Zbl 07674057) Full Text: DOI
Reich, Simeon; Truong Minh Tuyen Regularization methods for solving the split feasibility problem with multiple output sets in Hilbert spaces. (English) Zbl 07658842 Topol. Methods Nonlinear Anal. 60, No. 2, 547-563 (2022). MSC: 47J25 47J06 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{S. Reich} and \textit{Truong Minh Tuyen}, Topol. Methods Nonlinear Anal. 60, No. 2, 547--563 (2022; Zbl 07658842) Full Text: DOI Link
Minjibir, Ma’aruf; Salisu, Muhammad An inertial spectral gradient projection method for zeros of monotone maps. (English) Zbl 07651363 Appl. Anal. Optim. 6, No. 3, 431-443 (2022). MSC: 47H06 47J25 65K15 90C25 PDF BibTeX XML Cite \textit{M. Minjibir} and \textit{M. Salisu}, Appl. Anal. Optim. 6, No. 3, 431--443 (2022; Zbl 07651363) Full Text: Link
Ezea, Chinedu; Agbo, Ejike New recursion formulas for approximating variational inequality and fixed point problems. (English) Zbl 07651361 Appl. Anal. Optim. 6, No. 3, 393-410 (2022). MSC: 47H06 47H09 47J05 47J25 PDF BibTeX XML Cite \textit{C. Ezea} and \textit{E. Agbo}, Appl. Anal. Optim. 6, No. 3, 393--410 (2022; Zbl 07651361) Full Text: Link
Thanh Quoc Trinh; Le Van Vinh; Phan Tu Vuong Finite convergence of extragradient-type methods for solving variational inequalities under weak sharp condition. (English) Zbl 1513.47134 Comput. Appl. Math. 41, No. 8, Paper No. 400, 19 p. (2022). MSC: 47J25 49J40 PDF BibTeX XML Cite \textit{Thanh Quoc Trinh} et al., Comput. Appl. Math. 41, No. 8, Paper No. 400, 19 p. (2022; Zbl 1513.47134) Full Text: DOI
El Asri, Azzedine; Babahmed, Mohammed Non-Archimedean quasitriangular operators and the invariant subspace problem. (English) Zbl 07642552 \(p\)-Adic Numbers Ultrametric Anal. Appl. 14, No. 4, 325-334 (2022). MSC: 47Sxx 47A15 PDF BibTeX XML Cite \textit{A. El Asri} and \textit{M. Babahmed}, \(p\)-Adic Numbers Ultrametric Anal. Appl. 14, No. 4, 325--334 (2022; Zbl 07642552) Full Text: DOI
Bianucci, Marco The correlated dichotomous noise as an exact \(M\)-Gaussian stochastic process. (English) Zbl 1505.60044 Chaos Solitons Fractals 159, Article ID 112124, 9 p. (2022). MSC: 60G15 60F05 35Q84 PDF BibTeX XML Cite \textit{M. Bianucci}, Chaos Solitons Fractals 159, Article ID 112124, 9 p. (2022; Zbl 1505.60044) Full Text: DOI
Hochman, Michael A short proof of Host’s equidistribution theorem. (English) Zbl 1514.37014 Isr. J. Math. 251, No. 2, 527-539 (2022). MSC: 37A30 37A20 PDF BibTeX XML Cite \textit{M. Hochman}, Isr. J. Math. 251, No. 2, 527--539 (2022; Zbl 1514.37014) Full Text: DOI arXiv
Kong, Dezhou; Liu, Lishan; Li, Jinlu; Wu, Yonghong Isotonicity of the metric projection with respect to the mutually dual orders and complementarity problems. (English) Zbl 07638936 Optimization 71, No. 16, 4855-4877 (2022). MSC: 41A65 47H07 06B30 47J20 47H10 PDF BibTeX XML Cite \textit{D. Kong} et al., Optimization 71, No. 16, 4855--4877 (2022; Zbl 07638936) Full Text: DOI
Shehu, Yekini; Iyiola, Olaniyi S.; Yao, Jeh-Chih New projection methods with inertial steps for variational inequalities. (English) Zbl 07638931 Optimization 71, No. 16, 4731-4762 (2022). MSC: 47H05 47J20 47J25 65K15 90C25 PDF BibTeX XML Cite \textit{Y. Shehu} et al., Optimization 71, No. 16, 4731--4762 (2022; Zbl 07638931) Full Text: DOI
Reich, Simeon; Tuyen, Truong Minh A new approach to solving split equality problems in Hilbert spaces. (English) Zbl 07632504 Optimization 71, No. 15, 4423-4445 (2022). MSC: 47H05 47H09 49J53 90C25 PDF BibTeX XML Cite \textit{S. Reich} and \textit{T. M. Tuyen}, Optimization 71, No. 15, 4423--4445 (2022; Zbl 07632504) Full Text: DOI
Semenov, V. V.; Denisov, S. V.; Sandrakov, G. V.; Kharkov, O. S. Convergence of the operator extrapolation method for variational inequalities in Banach spaces. (English. Ukrainian original) Zbl 07630538 Cybern. Syst. Anal. 58, No. 5, 740-753 (2022); translation from Kibern. Sist. Anal. 58, No. 5, 79-83 (2022). MSC: 47Jxx 90Cxx 47Hxx PDF BibTeX XML Cite \textit{V. V. Semenov} et al., Cybern. Syst. Anal. 58, No. 5, 740--753 (2022; Zbl 07630538); translation from Kibern. Sist. Anal. 58, No. 5, 79--83 (2022) Full Text: DOI
Semenov, V. V.; Denisov, S. V. Convergence of the method of extrapolation from the past for variational inequalities in uniformly convex Banach spaces. (English. Ukrainian original) Zbl 07630522 Cybern. Syst. Anal. 58, No. 4, 564-575 (2022); translation from Kibern. Sist. Anal. 58, No. 4, 82-93 (2022). MSC: 47Jxx 90Cxx 49Jxx PDF BibTeX XML Cite \textit{V. V. Semenov} and \textit{S. V. Denisov}, Cybern. Syst. Anal. 58, No. 4, 564--575 (2022; Zbl 07630522); translation from Kibern. Sist. Anal. 58, No. 4, 82--93 (2022) Full Text: DOI
Shan, Zhuang; Zhu, Li-Jun; Wu, Danfeng On multi-step iterative algorithms with inertia terms for variational inequalities and fixed point problems. (English) Zbl 1506.47114 J. Nonlinear Convex Anal. 23, No. 12, 2883-2896 (2022). MSC: 47J25 49J40 65K15 PDF BibTeX XML Cite \textit{Z. Shan} et al., J. Nonlinear Convex Anal. 23, No. 12, 2883--2896 (2022; Zbl 1506.47114) Full Text: Link
Shehu, Yekini; Qin, Xiaolong Inertial projection-type methods for variational inequalities without monotonicity. (English) Zbl 1506.47116 J. Nonlinear Convex Anal. 23, No. 12, 2695-2706 (2022). MSC: 47J25 65K15 PDF BibTeX XML Cite \textit{Y. Shehu} and \textit{X. Qin}, J. Nonlinear Convex Anal. 23, No. 12, 2695--2706 (2022; Zbl 1506.47116) Full Text: Link
Yao, Zhangsong; Zhu, Zhichuan Solving variational inclusions and pseudomonotone variational inequalities using self-adaptive techniques. (English) Zbl 1499.65209 J. Nonlinear Convex Anal. 23, No. 11, 2535-2545 (2022). MSC: 65J15 47H05 47J25 PDF BibTeX XML Cite \textit{Z. Yao} and \textit{Z. Zhu}, J. Nonlinear Convex Anal. 23, No. 11, 2535--2545 (2022; Zbl 1499.65209) Full Text: Link
Tan, Bing; Cho, Sun Young Two new projection algorithms for variational inequalities in Hilbert spaces. (English) Zbl 1506.47121 J. Nonlinear Convex Anal. 23, No. 11, 2523-2534 (2022). MSC: 47J25 47H05 47J20 65K15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, J. Nonlinear Convex Anal. 23, No. 11, 2523--2534 (2022; Zbl 1506.47121) Full Text: Link
Tian, Ming; Xu, Gang Inertial modified projection algorithm with self-adaptive technique for solving pseudo-monotone variational inequality problems in Hilbert spaces. (English) Zbl 07625310 Optimization 71, No. 13, 3965-3980 (2022). MSC: 47J25 47H05 49J40 PDF BibTeX XML Cite \textit{M. Tian} and \textit{G. Xu}, Optimization 71, No. 13, 3965--3980 (2022; Zbl 07625310) Full Text: DOI
Zhao, Xiaopeng; She, Yaoyao; Yao, Yonghong Strong convergence of modified Tseng’s algorithms for pseudomonotone variational inequality and fixed points. (English) Zbl 07622173 J. Nonlinear Convex Anal. 23, No. 4, 821-832 (2022). MSC: 47J25 65K10 90C99 PDF BibTeX XML Cite \textit{X. Zhao} et al., J. Nonlinear Convex Anal. 23, No. 4, 821--832 (2022; Zbl 07622173) Full Text: Link
Dong, Qiao-Li; Liu, Lulu; Yao, Yonghong Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem. (English) Zbl 07621504 J. Nonlinear Convex Anal. 23, No. 3, 591-605 (2022). MSC: 47H05 47H07 47H10 54H25 PDF BibTeX XML Cite \textit{Q.-L. Dong} et al., J. Nonlinear Convex Anal. 23, No. 3, 591--605 (2022; Zbl 07621504) Full Text: Link
Yu, Youli; Liou, Yeong-Cheng Subgradient algorithms for solving nonmonotone equilibrium problems and variational inclusion problems. (English) Zbl 1498.47141 J. Nonlinear Convex Anal. 23, No. 3, 553-564 (2022). MSC: 47J25 47J22 49J40 90C48 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{Y.-C. Liou}, J. Nonlinear Convex Anal. 23, No. 3, 553--564 (2022; Zbl 1498.47141) Full Text: Link
Thong, Duong Viet; Liu, Liya; Van, Nguyen Thi Cam; Thang, Hoang Van; Nghia, Pham Van Two shrinking projection methods for variational inequalities involving pseudomonotone mappings. (English) Zbl 1498.47138 J. Nonlinear Convex Anal. 23, No. 2, 279-295 (2022). MSC: 47J25 47J20 65J15 PDF BibTeX XML Cite \textit{D. V. Thong} et al., J. Nonlinear Convex Anal. 23, No. 2, 279--295 (2022; Zbl 1498.47138) Full Text: Link
Liu, Bingyuan The Diederich-Fornaess index and the regularities on the \(\bar{\partial}\)-Neumann problem. (English) Zbl 1505.32058 Indiana Univ. Math. J. 71, No. 4, 1371-1395 (2022). MSC: 32W05 32T99 PDF BibTeX XML Cite \textit{B. Liu}, Indiana Univ. Math. J. 71, No. 4, 1371--1395 (2022; Zbl 1505.32058) Full Text: DOI arXiv
Jolaoso, Lateef Olakunle An inertial projection and contraction method with a line search technique for variational inequality and fixed point problems. (English) Zbl 1509.65041 Optimization 71, No. 12, 3485-3514 (2022). MSC: 65J15 65K15 47J25 90C33 PDF BibTeX XML Cite \textit{L. O. Jolaoso}, Optimization 71, No. 12, 3485--3514 (2022; Zbl 1509.65041) Full Text: DOI
Tan, Bing; Petruşel, Adrian; Qin, Xiaolong; Yao, Jen-Chih Global and linear convergence of alternated inertial single projection algorithms for pseudo-monotone variational inequalities. (English) Zbl 07606935 Fixed Point Theory 23, No. 1, 391-426 (2022). MSC: 47J20 47J25 47J30 47H10 68W10 65K15 PDF BibTeX XML Cite \textit{B. Tan} et al., Fixed Point Theory 23, No. 1, 391--426 (2022; Zbl 07606935) Full Text: Link
Choi, Byoung Jin \(\Delta\)-convergence of convex combinations of two maps on \(p\)-uniformly convex metric spaces. (English) Zbl 07606922 Fixed Point Theory 23, No. 1, 199-210 (2022). MSC: 41A65 47H09 47J25 47N10 47H10 PDF BibTeX XML Cite \textit{B. J. Choi}, Fixed Point Theory 23, No. 1, 199--210 (2022; Zbl 07606922) Full Text: Link
Demni, Nizar; Hamdi, Tarek On star moments of the compression of the free unitary Brownian motion by a free projection. (English) Zbl 07606513 J. Oper. Theory 87, No. 2, 413-433 (2022). MSC: 47B28 46L54 PDF BibTeX XML Cite \textit{N. Demni} and \textit{T. Hamdi}, J. Oper. Theory 87, No. 2, 413--433 (2022; Zbl 07606513) Full Text: DOI arXiv
Arunchai, Areerat; Plubtieng, Somyot; Seangwattana, Thidaporn Convergence theorems by using a projection method without the monotonicity in Hilbert spaces. (English) Zbl 1503.47091 Thai J. Math. 20, No. 3, 1077-1087 (2022). MSC: 47J25 49J40 PDF BibTeX XML Cite \textit{A. Arunchai} et al., Thai J. Math. 20, No. 3, 1077--1087 (2022; Zbl 1503.47091) Full Text: Link
Zaslavski, Alexander J. The method of cyclic projections for closed convex sets in a Hilbert space under the presence of computational errors. (English) Zbl 1504.47108 Numer. Algorithms 91, No. 3, 1427-1439 (2022). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{A. J. Zaslavski}, Numer. Algorithms 91, No. 3, 1427--1439 (2022; Zbl 1504.47108) Full Text: DOI
Baloudi, Hatem; Belgacem, Sayda; Jeribi, Aref Riesz projection and essential \(S\)-spectrum in quaternionic setting. (English) Zbl 1517.47122 Complex Anal. Oper. Theory 16, No. 7, Paper No. 95, 26 p. (2022). Reviewer: Dmitrii Legatiuk (Erfurt) MSC: 47S05 47A60 47A10 47A53 47B07 PDF BibTeX XML Cite \textit{H. Baloudi} et al., Complex Anal. Oper. Theory 16, No. 7, Paper No. 95, 26 p. (2022; Zbl 1517.47122) Full Text: DOI arXiv
Arfat, Yasir; Kumam, Poom; Khan, Muhammad Aqeel Ahmad; Iyiola, Olaniyi S. Multi-inertial parallel hybrid projection algorithm for generalized split null point problems. (English) Zbl 07597395 J. Appl. Math. Comput. 68, No. 5, 3179-3198 (2022). MSC: 47H05 47H10 47J25 49M30 54H25 PDF BibTeX XML Cite \textit{Y. Arfat} et al., J. Appl. Math. Comput. 68, No. 5, 3179--3198 (2022; Zbl 07597395) Full Text: DOI
Monika; Botelho, Fernanda; Fleming, Richard The existence of linear selection and the quotient lifting property. (English) Zbl 07597001 Indian J. Pure Appl. Math. 53, No. 3, 774-781 (2022). MSC: 47L05 46B28 46B25 PDF BibTeX XML Cite \textit{Monika} et al., Indian J. Pure Appl. Math. 53, No. 3, 774--781 (2022; Zbl 07597001) Full Text: DOI arXiv
Harbau, Murtala Haruna; Ali, Barshir; Ugwunnadi, Godwin Chidi; Umar, Lawal An inertial approximation method for generalized mixed equilibrium and fixed point problems of Bregman total quasi-asymptotically nonexpansive multivalued mappings. (English) Zbl 07596402 Appl. Anal. Optim. 6, No. 2, 169-194 (2022). MSC: 47H09 47J25 PDF BibTeX XML Cite \textit{M. H. Harbau} et al., Appl. Anal. Optim. 6, No. 2, 169--194 (2022; Zbl 07596402) Full Text: Link
Izuchukwu, Chinedu; Shehu, Yekini; Yao, Jen-Chih New inertial forward-backward type for variational inequalities with quasi-monotonicity. (English) Zbl 1511.47074 J. Glob. Optim. 84, No. 2, 441-464 (2022). MSC: 47J25 47H05 47J20 65K15 90C25 PDF BibTeX XML Cite \textit{C. Izuchukwu} et al., J. Glob. Optim. 84, No. 2, 441--464 (2022; Zbl 1511.47074) Full Text: DOI
Djordjević, Slaviša V.; Kim, Jaewoong; Yoon, Jasang Spectra of the spherical Aluthge transform, the linear pencil, and a commuting pair of operators. (English) Zbl 07594809 Linear Multilinear Algebra 70, No. 13, 2533-2550 (2022). MSC: 47A10 47A60 15A22 47A13 47A56 PDF BibTeX XML Cite \textit{S. V. Djordjević} et al., Linear Multilinear Algebra 70, No. 13, 2533--2550 (2022; Zbl 07594809) Full Text: DOI
Simons, Stephen \(m\)th roots of the identity operator and the geometry conjecture. (English) Zbl 1502.46016 Proc. Am. Math. Soc. 150, No. 10, 4315-4323 (2022). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46C05 46C07 49J35 46A22 47H05 47H10 PDF BibTeX XML Cite \textit{S. Simons}, Proc. Am. Math. Soc. 150, No. 10, 4315--4323 (2022; Zbl 1502.46016) Full Text: DOI arXiv
Gérard, Patrick; Grellier, Sandrine; He, Zihui Turbulent cascades for a family of damped Szegő equations. (English) Zbl 1498.35023 Nonlinearity 35, No. 9, 4820-4849 (2022). MSC: 35B15 47B35 37K10 37K15 PDF BibTeX XML Cite \textit{P. Gérard} et al., Nonlinearity 35, No. 9, 4820--4849 (2022; Zbl 1498.35023) Full Text: DOI arXiv
Goldstein, Stanisław; Paszkiewicz, Adam Linear combinations of projections in type III factors. (English) Zbl 07589195 Integral Equations Oper. Theory 94, No. 4, Paper No. 34, 32 p. (2022). Reviewer: Luoyi Shi (Tianjin) MSC: 47C15 46L10 PDF BibTeX XML Cite \textit{S. Goldstein} and \textit{A. Paszkiewicz}, Integral Equations Oper. Theory 94, No. 4, Paper No. 34, 32 p. (2022; Zbl 07589195) Full Text: DOI
Okeke, Chibueze C.; Bello, Abdulmalik U.; Oyewole, Olawale K. A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection. (English) Zbl 1495.65095 J. Anal. 30, No. 3, 965-987 (2022). MSC: 65K15 47J25 65J15 90C33 PDF BibTeX XML Cite \textit{C. C. Okeke} et al., J. Anal. 30, No. 3, 965--987 (2022; Zbl 1495.65095) Full Text: DOI
Khoa, Nguyen Minh; Thang, Tran Van Approximate projection algorithms for solving equilibrium and multivalued variational inequality problems in Hilbert space. (English) Zbl 07584460 Bull. Korean Math. Soc. 59, No. 4, 1019-1044 (2022). MSC: 65J99 90C25 47J25 47J20 91B50 PDF BibTeX XML Cite \textit{N. M. Khoa} and \textit{T. Van Thang}, Bull. Korean Math. Soc. 59, No. 4, 1019--1044 (2022; Zbl 07584460) Full Text: DOI
Tan, Bing; Cho, Sun Young Strong convergence of inertial forward-backward methods for solving monotone inclusions. (English) Zbl 07584317 Appl. Anal. 101, No. 15, 5386-5414 (2022). MSC: 47H05 47J22 47J25 68W10 65K15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, Appl. Anal. 101, No. 15, 5386--5414 (2022; Zbl 07584317) Full Text: DOI
Jolaoso, Lateef O.; Shehu, Yekini Single Bregman projection method for solving variational inequalities in reflexive Banach spaces. (English) Zbl 07584244 Appl. Anal. 101, No. 14, 4807-4828 (2022). MSC: 65J99 47J25 90C33 PDF BibTeX XML Cite \textit{L. O. Jolaoso} and \textit{Y. Shehu}, Appl. Anal. 101, No. 14, 4807--4828 (2022; Zbl 07584244) Full Text: DOI
Rajan, M. P.; Jose, Jaise An efficient discrete Landweber iteration for nonlinear problems. (English) Zbl 1504.47104 Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 189, 19 p. (2022). MSC: 47J25 47J06 65J10 65J22 65J20 PDF BibTeX XML Cite \textit{M. P. Rajan} and \textit{J. Jose}, Int. J. Appl. Comput. Math. 8, No. 4, Paper No. 189, 19 p. (2022; Zbl 1504.47104) Full Text: DOI
Sunthrayuth, Pongsakorn; Truong Minh Tuyen A generalized self-adaptive algorithm for the split feasibility problem in Banach spaces. (English) Zbl 1510.47097 Bull. Iran. Math. Soc. 48, No. 4, 1869-1893 (2022). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{P. Sunthrayuth} and \textit{Truong Minh Tuyen}, Bull. Iran. Math. Soc. 48, No. 4, 1869--1893 (2022; Zbl 1510.47097) Full Text: DOI
Ding, Lijia; Wang, Kai The \(L^p\)-\(L^q\) boundedness and compactness of Bergman type operators. (English) Zbl 1500.47068 Taiwanese J. Math. 26, No. 4, 713-740 (2022). MSC: 47G10 47A30 47B07 32A55 PDF BibTeX XML Cite \textit{L. Ding} and \textit{K. Wang}, Taiwanese J. Math. 26, No. 4, 713--740 (2022; Zbl 1500.47068) Full Text: DOI Link
Oyewole, O. K.; Jolaoso, L. O.; Aremu, K. O.; Olayiwola, M. O. Inertial self-adaptive Bregman projection method for finite family of variational inequality problems in reflexive Banach spaces. (English) Zbl 1502.47090 Comput. Appl. Math. 41, No. 6, Paper No. 273, 22 p. (2022). MSC: 47J25 47H09 49J40 65K10 90C25 PDF BibTeX XML Cite \textit{O. K. Oyewole} et al., Comput. Appl. Math. 41, No. 6, Paper No. 273, 22 p. (2022; Zbl 1502.47090) Full Text: DOI
Talebi, Ali; Moslehian, Mohammad Sal; Pliev, Marat; Sadeghi, Ghadir Band projections and decomposition of normal traces on von Neumann algebras. (English) Zbl 1497.46072 Positivity 26, No. 4, Paper No. 71, 24 p. (2022). Reviewer: Vladimir M. Manuilov (Moskva) MSC: 46L52 46L10 46L40 47A30 PDF BibTeX XML Cite \textit{A. Talebi} et al., Positivity 26, No. 4, Paper No. 71, 24 p. (2022; Zbl 1497.46072) Full Text: DOI