Shang, Weiying; Zhang, Weiwei; Zhang, Hai; Zhang, Hongmei; Cao, Jinde; Alsaadi, Fawaz E. Finite-time lag projective synchronization of delayed fractional-order quaternion-valued neural networks with parameter uncertainties. (English) Zbl 07670270 Nonlinear Anal., Model. Control 28, No. 2, 228-249 (2023). MSC: 34K24 34K37 46S05 92B20 PDF BibTeX XML Cite \textit{W. Shang} et al., Nonlinear Anal., Model. Control 28, No. 2, 228--249 (2023; Zbl 07670270) Full Text: DOI OpenURL
Zhao, Mingfang; Li, Hong-Li; Zhang, Long; Hu, Cheng; Jiang, Haijun Quasi-projective synchronization of discrete-time fractional-order quaternion-valued neural networks. (English) Zbl 1508.93278 J. Franklin Inst. 360, No. 4, 3263-3279 (2023). MSC: 93D99 93C55 26A33 11R52 93B70 PDF BibTeX XML Cite \textit{M. Zhao} et al., J. Franklin Inst. 360, No. 4, 3263--3279 (2023; Zbl 1508.93278) Full Text: DOI OpenURL
Sirohi, Mukul Qualitative analysis of a novel 5D chaotic system based on Bouali’s system and its application in private communication via adaptive control. (English) Zbl 07659689 Bol. Soc. Mat. Mex., III. Ser. 29, No. 1, Paper No. 26, 25 p. (2023). MSC: 34A34 34C28 34D06 34H10 93C40 37D45 34D20 PDF BibTeX XML Cite \textit{M. Sirohi}, Bol. Soc. Mat. Mex., III. Ser. 29, No. 1, Paper No. 26, 25 p. (2023; Zbl 07659689) Full Text: DOI OpenURL
Wang, Guan; Ding, Zhixia; Li, Sai; Yang, Le; Jiao, Rui Finite-time lag projective synchronization of nonidentical fractional delayed memristive neural networks. (English) Zbl 1504.93340 J. Franklin Inst. 359, No. 18, 10653-10675 (2022). MSC: 93D40 93B70 93B12 26A33 PDF BibTeX XML Cite \textit{G. Wang} et al., J. Franklin Inst. 359, No. 18, 10653--10675 (2022; Zbl 1504.93340) Full Text: DOI OpenURL
Sader, Malika; Wang, Fuyong; Liu, Zhongxin; Chen, Zengqiang General decay projective synchronization of memristive competitive neural networks via nonlinear controller. (English) Zbl 07627528 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 6, 867-878 (2022). MSC: 93-XX 34-XX PDF BibTeX XML Cite \textit{M. Sader} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 6, 867--878 (2022; Zbl 07627528) Full Text: DOI OpenURL
Blokhuis, Aart; Pellikaan, Ruud; Szőnyi, Tamás The extended coset leader weight enumerator of a twisted cubic code. (English) Zbl 1504.14050 Des. Codes Cryptography 90, No. 9, 2223-2247 (2022). Reviewer: Michel Lavrauw (İstanbul) MSC: 14G50 94B50 14G15 51A05 PDF BibTeX XML Cite \textit{A. Blokhuis} et al., Des. Codes Cryptography 90, No. 9, 2223--2247 (2022; Zbl 1504.14050) Full Text: DOI arXiv OpenURL
Zhang, Hai; Cheng, Yuhong; Zhang, Hongmei; Zhang, Weiwei; Cao, Jinde Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects. (English) Zbl 07529446 Math. Comput. Simul. 197, 341-357 (2022). MSC: 34-XX 93-XX PDF BibTeX XML Cite \textit{H. Zhang} et al., Math. Comput. Simul. 197, 341--357 (2022; Zbl 07529446) Full Text: DOI OpenURL
Zafiris, Elias The equiareal Archimedean synchronization method of the quantum symplectic phase space: I. Spinorial amplitudes, transition probability, and areal measure of time. (English) Zbl 1492.81021 Found. Phys. 52, No. 2, Paper No. 44, 31 p. (2022). MSC: 81P05 81S30 53D05 51B20 53Z05 PDF BibTeX XML Cite \textit{E. Zafiris}, Found. Phys. 52, No. 2, Paper No. 44, 31 p. (2022; Zbl 1492.81021) Full Text: DOI OpenURL
Mesdoui, Fatiha; Shawagfeh, Nabil; Ouannas, Adel Synchronization methods for chaotic systems involving fractional derivative with a non-singular kernel. (English) Zbl 1485.93553 J. Appl. Nonlinear Dyn. 11, No. 2, 375-386 (2022). MSC: 93D99 93C15 34H10 34A08 PDF BibTeX XML Cite \textit{F. Mesdoui} et al., J. Appl. Nonlinear Dyn. 11, No. 2, 375--386 (2022; Zbl 1485.93553) Full Text: DOI OpenURL
Yang, Shuai; Hu, Cheng; Yu, Juan; Jiang, Haijun Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order. (English) Zbl 1486.93019 Chaos Solitons Fractals 147, Article ID 110911, 14 p. (2021). MSC: 93D05 34A36 34A08 34C60 PDF BibTeX XML Cite \textit{S. Yang} et al., Chaos Solitons Fractals 147, Article ID 110911, 14 p. (2021; Zbl 1486.93019) Full Text: DOI OpenURL
Aadhithiyan, S.; Raja, R.; Zhu, Q.; Alzabut, J.; Niezabitowski, M.; Lim, C. P. Modified projective synchronization of distributive fractional order complex dynamic networks with model uncertainty via adaptive control. (English) Zbl 1486.93018 Chaos Solitons Fractals 147, Article ID 110853, 16 p. (2021). MSC: 93C40 93C41 93D21 34A08 93C23 37N35 37M05 PDF BibTeX XML Cite \textit{S. Aadhithiyan} et al., Chaos Solitons Fractals 147, Article ID 110853, 16 p. (2021; Zbl 1486.93018) Full Text: DOI OpenURL
Wang, Chen; Zhang, Hai; Zhang, Hongmei; Zhang, Weiwei Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays. (English) Zbl 07533525 AIMS Math. 6, No. 12, 14000-14012 (2021). MSC: 26A33 92B20 94B50 PDF BibTeX XML Cite \textit{C. Wang} et al., AIMS Math. 6, No. 12, 14000--14012 (2021; Zbl 07533525) Full Text: DOI OpenURL
Khan, Ayub; Nigar, Uzma Adaptive modulus hybrid projective combination synchronization of time-delay chaotic systems with uncertainty and disturbance and its application in secure communication. (English) Zbl 1485.93289 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 211, 26 p. (2021). MSC: 93C40 93C10 93C43 37D45 PDF BibTeX XML Cite \textit{A. Khan} and \textit{U. Nigar}, Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 211, 26 p. (2021; Zbl 1485.93289) Full Text: DOI OpenURL
Cao, Juan; Ren, Fengli Cluster modified projective synchronization between two coupled networks in finite time. (Chinese. English summary) Zbl 1488.93096 J. Syst. Sci. Math. Sci. 41, No. 5, 1181-1190 (2021). MSC: 93C40 93D40 PDF BibTeX XML Cite \textit{J. Cao} and \textit{F. Ren}, J. Syst. Sci. Math. Sci. 41, No. 5, 1181--1190 (2021; Zbl 1488.93096) OpenURL
Zhang, Weiwei; Sha, Chunlin; Cao, Jinde; Wang, Guanglan; Wang, Yuan Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field. (English) Zbl 1508.93183 Appl. Math. Comput. 400, Article ID 126045, 8 p. (2021). MSC: 93C40 34D06 34K37 93D05 94A12 93A14 PDF BibTeX XML Cite \textit{W. Zhang} et al., Appl. Math. Comput. 400, Article ID 126045, 8 p. (2021; Zbl 1508.93183) Full Text: DOI OpenURL
Khan, Ayub; Chaudhary, Harindri Adaptive hybrid projective synchronization of hyper-chaotic systems. (English) Zbl 1470.93083 Appl. Appl. Math. 16, No. 1, 117-138 (2021). MSC: 93C40 93D05 34H10 37N35 PDF BibTeX XML Cite \textit{A. Khan} and \textit{H. Chaudhary}, Appl. Appl. Math. 16, No. 1, 117--138 (2021; Zbl 1470.93083) Full Text: Link OpenURL
Sader, Malika; Wang, Fuyong; Liu, Zhongxin; Chen, Zhongxin Projective synchronization analysis for BAM neural networks with time-varying delay via novel control. (English) Zbl 1470.34207 Nonlinear Anal., Model. Control 26, No. 1, 41-56 (2021). MSC: 34K24 34K35 92B20 93C40 PDF BibTeX XML Cite \textit{M. Sader} et al., Nonlinear Anal., Model. Control 26, No. 1, 41--56 (2021; Zbl 1470.34207) Full Text: DOI OpenURL
Mochizuki, Shinichi Inter-universal Teichmüller theory. II: Hodge-Arakelov-theoretic evaluation. (English) Zbl 1465.14003 Publ. Res. Inst. Math. Sci. 57, No. 1-2, 209-401 (2021). Reviewer: Peter Scholze (Bonn) MSC: 14-02 14H25 14H30 14G32 14G40 PDF BibTeX XML Cite \textit{S. Mochizuki}, Publ. Res. Inst. Math. Sci. 57, No. 1--2, 209--401 (2021; Zbl 1465.14003) Full Text: DOI Backlinks: MO OpenURL
Wang, Cong; Zhang, Hong-li; Fan, Wen-hui; Ma, Ping Finite-time function projective synchronization control method for chaotic wind power systems. (English) Zbl 1489.93113 Chaos Solitons Fractals 135, Article ID 109756, 11 p. (2020). MSC: 93D40 34H10 93C40 93B12 93E12 PDF BibTeX XML Cite \textit{C. Wang} et al., Chaos Solitons Fractals 135, Article ID 109756, 11 p. (2020; Zbl 1489.93113) Full Text: DOI OpenURL
Botmart, Thongchai; Prasertsang, Patarawadee Exponential projective synchronization of neural networks via hybrid adaptive intermittent control with mixed time-varying delays. (English) Zbl 1476.34120 Thai J. Math. 18, No. 3, 1269-1284 (2020). MSC: 34D20 34K20 37C75 93C40 PDF BibTeX XML Cite \textit{T. Botmart} and \textit{P. Prasertsang}, Thai J. Math. 18, No. 3, 1269--1284 (2020; Zbl 1476.34120) Full Text: Link OpenURL
Khan, Taqseer; Chaudhary, Harindri An investigation on hybrid projective combination difference synchronization scheme between chaotic prey-predator systems via active control method. (English) Zbl 1474.34365 Poincare J. Anal. Appl. 7, No. 2, 211-225 (2020). MSC: 34D06 34C28 34H05 92D25 PDF BibTeX XML Cite \textit{T. Khan} and \textit{H. Chaudhary}, Poincare J. Anal. Appl. 7, No. 2, 211--225 (2020; Zbl 1474.34365) Full Text: Link OpenURL
Khan, Ayub; Nigar, Uzma Combination projective synchronization in fractional-order chaotic system with disturbance and uncertainty. (English) Zbl 1468.34079 Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 97, 22 p. (2020). MSC: 34D06 34A08 34C28 34H05 34D20 PDF BibTeX XML Cite \textit{A. Khan} and \textit{U. Nigar}, Int. J. Appl. Comput. Math. 6, No. 4, Paper No. 97, 22 p. (2020; Zbl 1468.34079) Full Text: DOI OpenURL
Zhang, Li; Peng, Jiankui A new four-wing chaotic system and its unified generalized projective synchronization. (English) Zbl 1463.37028 Wuhan Univ. J. Nat. Sci. 25, No. 3, 256-266 (2020). MSC: 37D45 93C10 34D06 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{J. Peng}, Wuhan Univ. J. Nat. Sci. 25, No. 3, 256--266 (2020; Zbl 1463.37028) Full Text: DOI OpenURL
Fang, Jie; Lou, Xinjie; Fang, Na; Deng, Wei Adaptive combination function projective synchronization of multi-chaotic systems. (Chinese. English summary) Zbl 1463.93135 J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 1, 98-103 (2020). MSC: 93C40 34H10 93B52 93C10 PDF BibTeX XML Cite \textit{J. Fang} et al., J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 1, 98--103 (2020; Zbl 1463.93135) Full Text: DOI OpenURL
Khan, Taqseer; Chaudhary, Harindri Controlling and synchronizing combined effect of chaos generated in generalized Lotka-Volterra three species biological model using active control design. (English) Zbl 1457.34076 Appl. Appl. Math. 15, No. 2, 1135-1148 (2020). MSC: 34C60 92D25 34D06 34H10 34H05 34D20 PDF BibTeX XML Cite \textit{T. Khan} and \textit{H. Chaudhary}, Appl. Appl. Math. 15, No. 2, 1135--1148 (2020; Zbl 1457.34076) Full Text: Link OpenURL
Ouannas, Adel; Azar, Ahmad Taher; Ziar, Toufik On inverse full state hybrid function projective synchronization for continuous-time chaotic dynamical systems with arbitrary dimensions. (English) Zbl 1454.37093 Differ. Equ. Dyn. Syst. 28, No. 4, 1045-1058 (2020). MSC: 37N35 93C10 37D45 34D06 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Differ. Equ. Dyn. Syst. 28, No. 4, 1045--1058 (2020; Zbl 1454.37093) Full Text: DOI OpenURL
Fu, Qianhua; Zhong, Shouming; Jiang, Wenbo; Xie, Wenqian Projective synchronization of fuzzy memristive neural networks with pinning impulsive control. (English) Zbl 1450.93030 J. Franklin Inst. 357, No. 15, 10387-10409 (2020). MSC: 93C42 93C27 93B70 93C05 PDF BibTeX XML Cite \textit{Q. Fu} et al., J. Franklin Inst. 357, No. 15, 10387--10409 (2020; Zbl 1450.93030) Full Text: DOI OpenURL
Kaouache, Smail; Abdelouahab, Mohammed-Salah Inverse matrix projective synchronization of novel hyperchaotic system with hyperbolic sine function non-linearity. (English) Zbl 1452.34060 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 145-154 (2020). MSC: 34D06 34A34 34C28 37D45 34D20 34H05 93C55 37C25 34C14 34C05 PDF BibTeX XML Cite \textit{S. Kaouache} and \textit{M.-S. Abdelouahab}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 145--154 (2020; Zbl 1452.34060) Full Text: Link OpenURL
Zhang, Xi; Wu, Ran-chao Modified projective synchronization of fractional-order chaotic systems with different dimensions. (English) Zbl 1436.34056 Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 527-538 (2020). MSC: 34D06 34A08 34C28 34H05 44A10 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{R.-c. Wu}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 527--538 (2020; Zbl 1436.34056) Full Text: DOI OpenURL
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian; Mi, Ling; Qiu, Baolin Fixed-time projective synchronization of memristive neural networks with discrete delay. (English) Zbl 07570695 Physica A 534, Article ID 122248, 13 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{C. Chen} et al., Physica A 534, Article ID 122248, 13 p. (2019; Zbl 07570695) Full Text: DOI OpenURL
Wang, Fei; Zheng, Zhaowen Quasi-projective synchronization of fractional order chaotic systems under input saturation. (English) Zbl 07570661 Physica A 534, Article ID 122132, 14 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{F. Wang} and \textit{Z. Zheng}, Physica A 534, Article ID 122132, 14 p. (2019; Zbl 07570661) Full Text: DOI OpenURL
Qin, Xiaoli; Wang, Cong; Li, Lixiang; Peng, Haipeng; Yang, Yixian; Ye, Lu Finite-time projective synchronization of memristor-based neural networks with leakage and time-varying delays. (English) Zbl 07569475 Physica A 531, Article ID 121788, 18 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{X. Qin} et al., Physica A 531, Article ID 121788, 18 p. (2019; Zbl 07569475) Full Text: DOI OpenURL
Du, Hongyue Modified function projective synchronization between two fractional-order complex dynamical networks with unknown parameters and unknown bounded external disturbances. (English) Zbl 07566441 Physica A 526, Article ID 120997, 17 p. (2019). MSC: 82-XX PDF BibTeX XML Cite \textit{H. Du}, Physica A 526, Article ID 120997, 17 p. (2019; Zbl 07566441) Full Text: DOI OpenURL
Rashidnejad Heydari, Zahra; Karimaghaee, Paknosh Projective synchronization of different uncertain fractional-order multiple chaotic systems with input nonlinearity via adaptive sliding mode control. (English) Zbl 1487.34121 Adv. Difference Equ. 2019, Paper No. 498, 23 p. (2019). MSC: 34H05 34H10 34A08 93C40 PDF BibTeX XML Cite \textit{Z. Rashidnejad Heydari} and \textit{P. Karimaghaee}, Adv. Difference Equ. 2019, Paper No. 498, 23 p. (2019; Zbl 1487.34121) Full Text: DOI OpenURL
El-Dessoky, M. M.; Alzahrani, E. O.; Almohammadi, N. A. Control and adaptive modified function projective synchronization of Liu chaotic dynamical system. (English) Zbl 1465.37107 J. Appl. Anal. Comput. 9, No. 2, 601-614 (2019). MSC: 37N35 93B52 PDF BibTeX XML Cite \textit{M. M. El-Dessoky} et al., J. Appl. Anal. Comput. 9, No. 2, 601--614 (2019; Zbl 1465.37107) Full Text: DOI OpenURL
Botmart, Thongchai; Yotha, Narongsak; Niamsup, Piyapong; Weera, Wajaree; Junsawang, Prem Mixed \(H_{\infty }\)/passive exponential function projective synchronization of delayed neural networks with hybrid coupling based on pinning sampled-data control. (English) Zbl 1459.93039 Adv. Difference Equ. 2019, Paper No. 383, 26 p. (2019). MSC: 93B36 34D06 93D05 93C57 34K20 PDF BibTeX XML Cite \textit{T. Botmart} et al., Adv. Difference Equ. 2019, Paper No. 383, 26 p. (2019; Zbl 1459.93039) Full Text: DOI OpenURL
Li, Hong-Li; Hu, Cheng; Cao, Jinde; Jiang, Haijun; Alsaedi, Ahmed Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. (English) Zbl 1443.93049 Neural Netw. 118, 102-109 (2019). MSC: 93B52 93C40 93B70 93C43 26A33 PDF BibTeX XML Cite \textit{H.-L. Li} et al., Neural Netw. 118, 102--109 (2019; Zbl 1443.93049) Full Text: DOI OpenURL
Almohammadi, N. A.; Alzahrani, E. O.; El-Dessoky, M. M. Combined modified function projective synchronization of different systems through adaptive control. (English) Zbl 1440.93123 Arch. Control Sci. 29, No. 1, 133-146 (2019). MSC: 93C40 93D20 34D06 34H10 PDF BibTeX XML Cite \textit{N. A. Almohammadi} et al., Arch. Control Sci. 29, No. 1, 133--146 (2019; Zbl 1440.93123) Full Text: Link OpenURL
Ouannas, Adel; Jouini, Lotfi; Zehrour, Okba On new generalized hybrid synchronization in chaotic and hyperchaotic discrete-time dynamical systems. (English) Zbl 1431.34071 J. Appl. Nonlinear Dyn. 8, No. 3, 435-445 (2019). MSC: 34D06 37D45 34C28 PDF BibTeX XML Cite \textit{A. Ouannas} et al., J. Appl. Nonlinear Dyn. 8, No. 3, 435--445 (2019; Zbl 1431.34071) Full Text: DOI OpenURL
Abdurahman, Abdujelil; Sader, Malika; Jiang, Haijun Improved results on adaptive control approach for projective synchronization of neural networks with time-varying delay. (English) Zbl 1461.93243 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 623-631 (2019). MSC: 93C40 93B70 93C43 34D06 93C15 PDF BibTeX XML Cite \textit{A. Abdurahman} et al., Int. J. Nonlinear Sci. Numer. Simul. 20, No. 6, 623--631 (2019; Zbl 1461.93243) Full Text: DOI OpenURL
Ren, Ling; Zhang, Guoshan Adaptive projective synchronization for a class of switched chaotic systems. (English) Zbl 1439.34059 Math. Methods Appl. Sci. 42, No. 18, 6192-6204 (2019). MSC: 34D06 34C28 93C40 34A36 34H10 PDF BibTeX XML Cite \textit{L. Ren} and \textit{G. Zhang}, Math. Methods Appl. Sci. 42, No. 18, 6192--6204 (2019; Zbl 1439.34059) Full Text: DOI OpenURL
Li, Dekui Modified functional projective synchronization of the unidirectional and bidirectional hybrid connective star network with coupling time-delay. (English) Zbl 1449.93136 Wuhan Univ. J. Nat. Sci. 24, No. 4, 321-328 (2019). MSC: 93C40 93B70 93D05 93C05 PDF BibTeX XML Cite \textit{D. Li}, Wuhan Univ. J. Nat. Sci. 24, No. 4, 321--328 (2019; Zbl 1449.93136) Full Text: DOI OpenURL
Geng, Yanfeng; Wang, Lizhi; Liu, Fang Modified function projective synchronization by sliding mode control for a class of fractional-order hyper chaotic systems. (Chinese. English summary) Zbl 1449.34183 Math. Pract. Theory 49, No. 13, 252-258 (2019). MSC: 34D06 93C40 34A34 34C28 34A08 34H10 PDF BibTeX XML Cite \textit{Y. Geng} et al., Math. Pract. Theory 49, No. 13, 252--258 (2019; Zbl 1449.34183) OpenURL
Fang, Jie; Zhu, Fei; Lou, Xinjie; Liu, Hua; Deng, Wei Dual combination function projective synchronization of chaotic systems with disturbances. (Chinese. English summary) Zbl 1449.37064 J. Cent. China Norm. Univ., Nat. Sci. 53, No. 4, 509-515 (2019). MSC: 37N35 34D06 93C10 93C40 PDF BibTeX XML Cite \textit{J. Fang} et al., J. Cent. China Norm. Univ., Nat. Sci. 53, No. 4, 509--515 (2019; Zbl 1449.37064) Full Text: DOI OpenURL
Zhang, Lili; Wang, Yinhe; Wang, Qingyun; Lei, Youfa; Wang, Fang Matrix projective cluster synchronization for arbitrarily coupled networks with different dimensional nodes via nonlinear control. (English) Zbl 1426.93246 Int. J. Robust Nonlinear Control 29, No. 11, 3650-3665 (2019). MSC: 93D05 93A15 93C10 PDF BibTeX XML Cite \textit{L. Zhang} et al., Int. J. Robust Nonlinear Control 29, No. 11, 3650--3665 (2019; Zbl 1426.93246) Full Text: DOI OpenURL
Hong, Yunfei Adaptive function projective synchronization of time-varying delay complex networks with definite integration scaling function. (English) Zbl 1438.34265 Math. Appl. 32, No. 1, 242-252 (2019). MSC: 34K24 92B20 93C40 PDF BibTeX XML Cite \textit{Y. Hong}, Math. Appl. 32, No. 1, 242--252 (2019; Zbl 1438.34265) OpenURL
Li, Qiaoping; Liu, Sanyang; Chen, Yonggang Finite-time adaptive modified function projective multi-lag generalized compound synchronization for multiple uncertain chaotic systems. (English) Zbl 1416.93105 Int. J. Appl. Math. Comput. Sci. 28, No. 4, 613-624 (2019). MSC: 93C40 93D05 34H10 PDF BibTeX XML Cite \textit{Q. Li} et al., Int. J. Appl. Math. Comput. Sci. 28, No. 4, 613--624 (2019; Zbl 1416.93105) Full Text: DOI OpenURL
Lin, Dongyuan; Chen, Xiaofeng; Li, Bing; Yang, Xujun LMI conditions for some dynamical behaviors of fractional-order quaternion-valued neural networks. (English) Zbl 1459.34029 Adv. Difference Equ. 2019, Paper No. 266, 29 p. (2019). MSC: 34A08 92B20 34K20 26A33 PDF BibTeX XML Cite \textit{D. Lin} et al., Adv. Difference Equ. 2019, Paper No. 266, 29 p. (2019; Zbl 1459.34029) Full Text: DOI OpenURL
Shi, Yanchao; Wang, Xin; Zeng, Xiangyan; Cao, Yang Function matrix projective synchronization of non-dissipatively coupled heterogeneous systems with different-dimensional nodes. (English) Zbl 1459.93052 Adv. Difference Equ. 2019, Paper No. 198, 12 p. (2019). MSC: 93B52 34D06 93A15 93D05 PDF BibTeX XML Cite \textit{Y. Shi} et al., Adv. Difference Equ. 2019, Paper No. 198, 12 p. (2019; Zbl 1459.93052) Full Text: DOI OpenURL
Zhang, Weiwei; Cao, Jinde; Wu, Ranchao; Alsaadi, Fuad E.; Alsaedi, Ahmed Lag projective synchronization of fractional-order delayed chaotic systems. (English) Zbl 1451.93376 J. Franklin Inst. 356, No. 3, 1522-1534 (2019). MSC: 93D99 93C43 26A33 PDF BibTeX XML Cite \textit{W. Zhang} et al., J. Franklin Inst. 356, No. 3, 1522--1534 (2019; Zbl 1451.93376) Full Text: DOI OpenURL
Cheng, Lin; Yang, Yongqing; Li, Li; Sui, Xin Finite-time hybrid projective synchronization of the drive-response complex networks with distributed-delay via adaptive intermittent control. (English) Zbl 07548971 Physica A 500, 273-286 (2018). MSC: 82-XX PDF BibTeX XML Cite \textit{L. Cheng} et al., Physica A 500, 273--286 (2018; Zbl 07548971) Full Text: DOI OpenURL
Zhang, Weiwei; Cao, Jinde; Wu, Ranchao; Chen, Dingyuan; Alsaadi, Fuad E. Novel results on projective synchronization of fractional-order neural networks with multiple time delays. (English) Zbl 1442.93019 Chaos Solitons Fractals 117, 76-83 (2018). MSC: 93C23 34D06 93D15 PDF BibTeX XML Cite \textit{W. Zhang} et al., Chaos Solitons Fractals 117, 76--83 (2018; Zbl 1442.93019) Full Text: DOI OpenURL
Qin, Xiaoli; Wang, Cong; Li, Lixiang; Peng, Haipeng; Yang, Yixian; Ye, Lu Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay. (English) Zbl 1442.93034 Chaos Solitons Fractals 116, 302-315 (2018). MSC: 93D40 34D06 93C40 93C43 PDF BibTeX XML Cite \textit{X. Qin} et al., Chaos Solitons Fractals 116, 302--315 (2018; Zbl 1442.93034) Full Text: DOI OpenURL
Yang, Shuai; Yu, Juan; Hu, Cheng; Jiang, Haijun Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks. (English) Zbl 1441.93287 Neural Netw. 104, 104-113 (2018). MSC: 93D99 93C15 26A33 93B70 PDF BibTeX XML Cite \textit{S. Yang} et al., Neural Netw. 104, 104--113 (2018; Zbl 1441.93287) Full Text: DOI OpenURL
Ahadpour, S.; Nemati, A.; Mirmasoudi, F.; Hematpour, N. Projective synchronization of piecewise nonlinear chaotic maps. (English. Russian original) Zbl 1429.37055 Theor. Math. Phys. 197, No. 3, 1856-1864 (2018); translation from Teor. Mat. Fiz. 197, No. 3, 530-540 (2018). MSC: 37N35 68P25 34D06 PDF BibTeX XML Cite \textit{S. Ahadpour} et al., Theor. Math. Phys. 197, No. 3, 1856--1864 (2018; Zbl 1429.37055); translation from Teor. Mat. Fiz. 197, No. 3, 530--540 (2018) Full Text: DOI OpenURL
Xu, Quan; Xu, Xiaohui; Zhuang, Shengxian; Xiao, Jixue; Song, Chunhua; Che, Chang New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics. (English) Zbl 1427.93114 Appl. Math. Comput. 338, 552-566 (2018). MSC: 93C40 34A08 34D06 65L99 93B52 PDF BibTeX XML Cite \textit{Q. Xu} et al., Appl. Math. Comput. 338, 552--566 (2018; Zbl 1427.93114) Full Text: DOI OpenURL
Xu, Yuhua; Zhou, Wuneng; Xie, Chengrong Bounded scaling function projective synchronization of chaotic systems with adaptive finite-time control. (English) Zbl 1426.93154 Circuits Syst. Signal Process. 37, No. 8, 3353-3363 (2018). MSC: 93C40 93C41 93D05 34D06 34H10 PDF BibTeX XML Cite \textit{Y. Xu} et al., Circuits Syst. Signal Process. 37, No. 8, 3353--3363 (2018; Zbl 1426.93154) Full Text: DOI OpenURL
Weera, Wajaree; Botmart, Thongchai; Niamsup, Piyapong; Yotha, Narongsak Guaranteed cost control of exponential function projective synchronization of delayed complex dynamical networks with hybrid uncertainties asymmetric coupling delays. (English) Zbl 1438.37068 J. Nonlinear Sci. Appl. 11, No. 4, 550-574 (2018). MSC: 37N35 93B52 PDF BibTeX XML Cite \textit{W. Weera} et al., J. Nonlinear Sci. Appl. 11, No. 4, 550--574 (2018; Zbl 1438.37068) Full Text: DOI OpenURL
Ouannas, Adel; Grassi, Giuseppe; Wang, Xiong; Ziar, Toufik; Pham, Viet-Thanh Function-based hybrid synchronization types and their coexistence in non-identical fractional-order chaotic systems. (English) Zbl 1448.34127 Adv. Difference Equ. 2018, Paper No. 309, 12 p. (2018). MSC: 34H10 26A33 34A08 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Adv. Difference Equ. 2018, Paper No. 309, 12 p. (2018; Zbl 1448.34127) Full Text: DOI OpenURL
Zhang, Weiwei; Cao, Jinde; Wu, Ranchao; Alsaedi, Ahmed; Alsaadi, Fuad E. Projective synchronization of fractional-order delayed neural networks based on the comparison principle. (English) Zbl 1445.34033 Adv. Difference Equ. 2018, Paper No. 73, 16 p. (2018). MSC: 34A08 34D06 93C40 26A33 PDF BibTeX XML Cite \textit{W. Zhang} et al., Adv. Difference Equ. 2018, Paper No. 73, 16 p. (2018; Zbl 1445.34033) Full Text: DOI OpenURL
Sun, Junwei; Li, Nan; Fang, Jie Combination-combination projective synchronization of multiple chaotic systems using sliding mode control. (English) Zbl 1405.93066 Adv. Math. Phys. 2018, Article ID 2031942, 10 p. (2018). MSC: 93B12 93C15 34C28 34H10 93C40 PDF BibTeX XML Cite \textit{J. Sun} et al., Adv. Math. Phys. 2018, Article ID 2031942, 10 p. (2018; Zbl 1405.93066) Full Text: DOI OpenURL
Tirandaz, Hamed Chaos synchronization of TSUCS unified chaotic system, a modified function projective control method. (English) Zbl 1449.93121 Kybernetika 54, No. 4, 829-843 (2018). MSC: 93C15 34C28 34D06 93B52 93D05 93C10 PDF BibTeX XML Cite \textit{H. Tirandaz}, Kybernetika 54, No. 4, 829--843 (2018; Zbl 1449.93121) Full Text: DOI Link OpenURL
He, Jinman; Chen, Fangqi; Lei, Tengfei Fractional matrix and inverse matrix projective synchronization methods for synchronizing the disturbed fractional-order hyperchaotic system. (English) Zbl 1405.34043 Math. Methods Appl. Sci. 41, No. 16, 6907-6920 (2018). MSC: 34D06 34H10 37D45 34A08 34C28 34D10 PDF BibTeX XML Cite \textit{J. He} et al., Math. Methods Appl. Sci. 41, No. 16, 6907--6920 (2018; Zbl 1405.34043) Full Text: DOI OpenURL
Yang, Shuai; Yu, Juan; Hu, Cheng Adaptively projective synchronization of fractional-order complex-valued neural networks. (English) Zbl 1413.93066 J. Xinjiang Univ., Nat. Sci. 35, No. 2, 158-164 (2018). MSC: 93C40 93C30 93C15 68T05 26A33 PDF BibTeX XML Cite \textit{S. Yang} et al., J. Xinjiang Univ., Nat. Sci. 35, No. 2, 158--164 (2018; Zbl 1413.93066) Full Text: DOI OpenURL
Meng, Xiaoling; Cheng, Chunrui Modified function projective synchronization of a class of fractional-order chaotic system. (Chinese. English summary) Zbl 1413.34038 J. Hubei Univ., Nat. Sci. 40, No. 3, 232-236 (2018). MSC: 34A08 34D06 34H10 34C28 PDF BibTeX XML Cite \textit{X. Meng} and \textit{C. Cheng}, J. Hubei Univ., Nat. Sci. 40, No. 3, 232--236 (2018; Zbl 1413.34038) Full Text: DOI OpenURL
Wang, Zhibo; Wu, Huaiqin Projective synchronization in fixed time for complex dynamical networks with nonidentical nodes via second-order sliding mode control strategy. (English) Zbl 1398.93037 J. Franklin Inst. 355, No. 15, 7306-7334 (2018). MSC: 93A15 90B10 93B12 93D05 93C15 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{H. Wu}, J. Franklin Inst. 355, No. 15, 7306--7334 (2018; Zbl 1398.93037) Full Text: DOI OpenURL
Yang, Li-xin; Jiang, Jun Synchronization analysis of fractional order drive-response networks with in-commensurate orders. (English) Zbl 1390.93410 Chaos Solitons Fractals 109, 47-52 (2018). MSC: 93C23 93C15 37N35 37M05 34D06 PDF BibTeX XML Cite \textit{L.-x. Yang} and \textit{J. Jiang}, Chaos Solitons Fractals 109, 47--52 (2018; Zbl 1390.93410) Full Text: DOI OpenURL
Zheng, Mingwen; Wang, Zeming; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Feng, Cuicui Finite-time generalized projective lag synchronization criteria for neutral-type neural networks with delay. (English) Zbl 1380.92008 Chaos Solitons Fractals 107, 195-203 (2018). MSC: 92B20 34K40 34D06 34C60 34H05 93B52 PDF BibTeX XML Cite \textit{M. Zheng} et al., Chaos Solitons Fractals 107, 195--203 (2018; Zbl 1380.92008) Full Text: DOI OpenURL
Liu, Jian; Liu, Shutang Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters. (English) Zbl 1480.34068 Appl. Math. Modelling 48, 440-450 (2017). MSC: 34D06 34H10 37D45 93A14 93C40 PDF BibTeX XML Cite \textit{J. Liu} and \textit{S. Liu}, Appl. Math. Modelling 48, 440--450 (2017; Zbl 1480.34068) Full Text: DOI OpenURL
Gao, Yanbo; Ren, Jie; Zhao, Min Projective lag synchronization of second-order chaotic systems via modified terminal sliding mode control. (English) Zbl 1417.93286 IMA J. Math. Control Inf. 34, No. 3, 1045-1059 (2017). MSC: 93D99 93B12 93C15 34C28 PDF BibTeX XML Cite \textit{Y. Gao} et al., IMA J. Math. Control Inf. 34, No. 3, 1045--1059 (2017; Zbl 1417.93286) Full Text: DOI OpenURL
Al-mahbashi, Ghada; Noorani, M. S. Md; Abu Bakar, Sakhinah Hybrid function projective synchronization in discrete dynamical networks via adaptive control. (English) Zbl 1412.93045 J. Nonlinear Sci. Appl. 10, No. 11, 5593-5607 (2017). MSC: 93C40 34D06 PDF BibTeX XML Cite \textit{G. Al-mahbashi} et al., J. Nonlinear Sci. Appl. 10, No. 11, 5593--5607 (2017; Zbl 1412.93045) Full Text: DOI OpenURL
Al-sawalha, M. Mossa Projective reduce order synchronization of fractional order chaotic systems with unknown parameters. (English) Zbl 1412.37024 J. Nonlinear Sci. Appl. 10, No. 4, 2103-2114 (2017). MSC: 37C10 93C95 PDF BibTeX XML Cite \textit{M. M. Al-sawalha}, J. Nonlinear Sci. Appl. 10, No. 4, 2103--2114 (2017; Zbl 1412.37024) Full Text: DOI OpenURL
Chen, Xiangyong; Park, Ju H.; Cao, Jinde; Qiu, Jianlong Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. (English) Zbl 1411.34087 Appl. Math. Comput. 308, 161-173 (2017). MSC: 34H10 34D06 37D45 93B12 PDF BibTeX XML Cite \textit{X. Chen} et al., Appl. Math. Comput. 308, 161--173 (2017; Zbl 1411.34087) Full Text: DOI OpenURL
Ouannas, Adel; Azar, Ahmad Taher; Ziar, Toufik; Radwan, Ahmed G. A study on coexistence of different types of synchronization between different dimensional fractional chaotic systems. (English) Zbl 1410.34151 Azar, Ahmad Taher (ed.) et al., Fractional order control and synchronization of chaotic systems. Cham: Springer. Stud. Comput. Intell. 688, 637-669 (2017). MSC: 34D06 34A08 93C10 34A34 34C28 34D20 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Stud. Comput. Intell. 688, 637--669 (2017; Zbl 1410.34151) Full Text: DOI OpenURL
Ouannas, Adel; Azar, Ahmad Taher; Ziar, Toufik; Vaidyanathan, Sundarapandian On new fractional inverse matrix projective synchronization schemes. (English) Zbl 1410.34152 Azar, Ahmad Taher (ed.) et al., Fractional order control and synchronization of chaotic systems. Cham: Springer. Stud. Comput. Intell. 688, 497-524 (2017). MSC: 34D06 34A34 34C28 34H05 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Stud. Comput. Intell. 688, 497--524 (2017; Zbl 1410.34152) Full Text: DOI OpenURL
Niamsup, Piyapong; Botmart, Thongchai; Weera, Wajaree Modified function projective synchronization of complex dynamical networks with mixed time-varying and asymmetric coupling delays via new hybrid pinning adaptive control. (English) Zbl 1422.93156 Adv. Difference Equ. 2017, Paper No. 124, 31 p. (2017). MSC: 93D15 93A15 05C82 93B52 34D06 PDF BibTeX XML Cite \textit{P. Niamsup} et al., Adv. Difference Equ. 2017, Paper No. 124, 31 p. (2017; Zbl 1422.93156) Full Text: DOI OpenURL
Li, Chengren; Lü, Ling; Zhao, Guannan; Li, Gang; Tian, Jing; Gu, Jiajia; Wang, Zhouyang Projective synchronization of uncertain scale-free network based on modified sliding mode control technique. (English) Zbl 1400.93048 Physica A 473, 511-521 (2017). MSC: 93B12 34D06 93C15 93D05 PDF BibTeX XML Cite \textit{C. Li} et al., Physica A 473, 511--521 (2017; Zbl 1400.93048) Full Text: DOI OpenURL
Zhang, Lingzhong; Yang, Yongqing; Wang, Fei Projective synchronization of fractional-order memristive neural networks with switching jumps mismatch. (English) Zbl 1400.34129 Physica A 471, 402-415 (2017). MSC: 34K37 34A08 34D06 34K20 94C10 PDF BibTeX XML Cite \textit{L. Zhang} et al., Physica A 471, 402--415 (2017; Zbl 1400.34129) Full Text: DOI OpenURL
Geng, Yanfeng; Wang, Lizhi Modified function projective synchronization of a class of fractional-order hyperchaotic systems. (Chinese. English summary) Zbl 1399.34156 J. Ningxia Univ., Nat. Sci. Ed. 38, No. 3, 234-237 (2017). MSC: 34D06 37D45 93C40 34A08 34C28 PDF BibTeX XML Cite \textit{Y. Geng} and \textit{L. Wang}, J. Ningxia Univ., Nat. Sci. Ed. 38, No. 3, 234--237 (2017; Zbl 1399.34156) OpenURL
Zhang, Weiwei; Chen, Dingyuan Hybrid projective synchronization of different dimensional fractional order chaotic systems with time delay and different orders. (English) Zbl 1399.34221 Chin. J. Eng. Math. 34, No. 3, 321-330 (2017). MSC: 34K25 34D06 37D45 34K37 34K20 34K35 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{D. Chen}, Chin. J. Eng. Math. 34, No. 3, 321--330 (2017; Zbl 1399.34221) Full Text: DOI OpenURL
Guo, Rongwei Projective synchronization of a class of chaotic systems by dynamic feedback control method. (English) Zbl 1390.34168 Nonlinear Dyn. 90, No. 1, 53-64 (2017). MSC: 34D06 37D45 93C40 93B52 PDF BibTeX XML Cite \textit{R. Guo}, Nonlinear Dyn. 90, No. 1, 53--64 (2017; Zbl 1390.34168) Full Text: DOI OpenURL
Aljohani, Mohammed; Bamberg, John; Cameron, Peter J. Synchronization and separation in the Johnson schemes. (English) Zbl 1423.05196 Port. Math. (N.S.) 74, No. 3, 213-232 (2017). MSC: 05E30 05E15 20B15 20M35 PDF BibTeX XML Cite \textit{M. Aljohani} et al., Port. Math. (N.S.) 74, No. 3, 213--232 (2017; Zbl 1423.05196) Full Text: DOI arXiv OpenURL
Ouannas, Adel; Odibat, Zaid; Hayat, Tasawar Fractional analysis of co-existence of some types of chaos synchronization. (English) Zbl 1380.93134 Chaos Solitons Fractals 105, 215-223 (2017). MSC: 93C23 34H10 34D06 34K37 34K35 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Chaos Solitons Fractals 105, 215--223 (2017; Zbl 1380.93134) Full Text: DOI OpenURL
Han, Min; Zhang, Yamei Complex function projective synchronization in drive-response complex networks with \(1 + N\) nodes and multi-links. (Chinese. English summary) Zbl 1389.93005 Control Decis. 32, No. 5, 935-938 (2017). MSC: 93A14 93C10 93B52 93D05 05C82 PDF BibTeX XML Cite \textit{M. Han} and \textit{Y. Zhang}, Control Decis. 32, No. 5, 935--938 (2017; Zbl 1389.93005) Full Text: DOI OpenURL
Zhu, Shaoping; Liu, Jin Full state hybrid projective synchronization of chaotic systems with uncertain parameters. (Chinese. English summary) Zbl 1389.93011 Basic Sci. J. Text. Univ. 30, No. 2, 230-235 (2017). MSC: 93A14 93C10 93C40 93C41 37D45 93D05 PDF BibTeX XML Cite \textit{S. Zhu} and \textit{J. Liu}, Basic Sci. J. Text. Univ. 30, No. 2, 230--235 (2017; Zbl 1389.93011) Full Text: DOI OpenURL
Song, Xiao-Na; Song, Shuai; Tejado Balsera, Inés; Liu, Lei-Po Mixed \(H_\infty\) and passive projective synchronization for fractional order memristor-based neural networks with time-delay and parameter uncertainty. (English) Zbl 1377.34072 Commun. Theor. Phys. 68, No. 4, 483-494 (2017). MSC: 34D06 92B25 93B36 PDF BibTeX XML Cite \textit{X.-N. Song} et al., Commun. Theor. Phys. 68, No. 4, 483--494 (2017; Zbl 1377.34072) Full Text: DOI OpenURL
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhao, Hui Finite-time projective synchronization of memristor-based delay fractional-order neural networks. (English) Zbl 1377.93074 Nonlinear Dyn. 89, No. 4, 2641-2655 (2017). MSC: 93B52 34D06 34A08 92B20 PDF BibTeX XML Cite \textit{M. Zheng} et al., Nonlinear Dyn. 89, No. 4, 2641--2655 (2017; Zbl 1377.93074) Full Text: DOI OpenURL
Khan, A.; Aneja, N.; Tripathi, P.; Biswas, J. A new hyper chaotic system and study of hybrid projective synchronization behavior. (English) Zbl 1377.34071 Nonlinear Dyn. Syst. Theory 17, No. 3, 266-278 (2017). MSC: 34D06 34A34 34C28 34H05 PDF BibTeX XML Cite \textit{A. Khan} et al., Nonlinear Dyn. Syst. Theory 17, No. 3, 266--278 (2017; Zbl 1377.34071) OpenURL
Botmart, T.; Yotha, N.; Niamsup, P.; Weera, W. Hybrid adaptive pinning control for function projective synchronization of delayed neural networks with mixed uncertain couplings. (English) Zbl 1373.93168 Complexity 2017, Article ID 4654020, 18 p. (2017). MSC: 93C40 93B52 93D05 93C10 93A14 93C41 PDF BibTeX XML Cite \textit{T. Botmart} et al., Complexity 2017, Article ID 4654020, 18 p. (2017; Zbl 1373.93168) Full Text: DOI OpenURL
Tran, Xuan-Toa; Kang, Hee-Jun Fixed-time complex modified function projective lag synchronization of chaotic (hyperchaotic) complex systems. (English) Zbl 1373.93047 Complexity 2017, Article ID 4020548, 9 p. (2017). MSC: 93A15 93A14 34H10 PDF BibTeX XML Cite \textit{X.-T. Tran} and \textit{H.-J. Kang}, Complexity 2017, Article ID 4020548, 9 p. (2017; Zbl 1373.93047) Full Text: DOI OpenURL
Duan, Hanyu; Jia, Nuo; Wang, Tao The generalized projective synchronization for a chaotic finance system with uncertain parameters. (Chinese. English summary) Zbl 1389.34134 Math. Pract. Theory 47, No. 1, 161-167 (2017). MSC: 34C60 34D06 93C40 91G80 34C28 34D20 PDF BibTeX XML Cite \textit{H. Duan} et al., Math. Pract. Theory 47, No. 1, 161--167 (2017; Zbl 1389.34134) OpenURL
Wang, Cong; Zhang, Hong-li; Fan, Wen-hui Generalized dislocated lag function projective synchronization of fractional order chaotic systems with fully uncertain parameters. (English) Zbl 1372.93114 Chaos Solitons Fractals 98, 14-21 (2017). MSC: 93C23 34D06 34K37 34K23 94A14 PDF BibTeX XML Cite \textit{C. Wang} et al., Chaos Solitons Fractals 98, 14--21 (2017; Zbl 1372.93114) Full Text: DOI OpenURL
Liu, Lixia; Guo, Rongwei Control problems of Chen-Lee system by adaptive control method. (English) Zbl 1371.93163 Nonlinear Dyn. 87, No. 1, 503-510 (2017). MSC: 93D15 93D21 93B52 93C40 93C10 37D45 34D06 PDF BibTeX XML Cite \textit{L. Liu} and \textit{R. Guo}, Nonlinear Dyn. 87, No. 1, 503--510 (2017; Zbl 1371.93163) Full Text: DOI OpenURL
Li, Qiaoping; Liu, Sanyang Dual-stage adaptive finite-time modified function projective multi-lag combined synchronization for multiple uncertain chaotic systems. (English) Zbl 1377.93054 Open Math. 15, 1035-1047 (2017). MSC: 93B12 93C40 93C10 34H10 PDF BibTeX XML Cite \textit{Q. Li} and \textit{S. Liu}, Open Math. 15, 1035--1047 (2017; Zbl 1377.93054) Full Text: DOI OpenURL
Hamri, Nasr-eddine; Ouahabi, Rabiaa Modified projective synchronization of different chaotic systems using adaptive control. (English) Zbl 1372.37139 Comput. Appl. Math. 36, No. 3, 1315-1332 (2017). MSC: 37N35 93C10 93C15 93C95 37D45 34D06 PDF BibTeX XML Cite \textit{N.-e. Hamri} and \textit{R. Ouahabi}, Comput. Appl. Math. 36, No. 3, 1315--1332 (2017; Zbl 1372.37139) Full Text: DOI OpenURL
Wei, Deng; Wang, Xingyuan; Hou, Jialin; Liu, Ping Hybrid projective synchronization of complex Duffing-Holmes oscillators with application to image encryption. (English) Zbl 1371.34074 Math. Methods Appl. Sci. 40, No. 12, 4259-4271 (2017). MSC: 34D06 34C15 34C28 37C60 94A60 34H10 PDF BibTeX XML Cite \textit{D. Wei} et al., Math. Methods Appl. Sci. 40, No. 12, 4259--4271 (2017; Zbl 1371.34074) Full Text: DOI OpenURL
Othman, A. Almatroud; Noorani, M. S. M.; Al-Sawalha, M. Mossa Function projective dual synchronization of chaotic systems with uncertain parameters. (English) Zbl 1373.34084 Nonlinear Dyn. Syst. Theory 17, No. 2, 193-204 (2017). MSC: 34D06 34H10 34C28 93C40 93C41 PDF BibTeX XML Cite \textit{A. A. Othman} et al., Nonlinear Dyn. Syst. Theory 17, No. 2, 193--204 (2017; Zbl 1373.34084) OpenURL
Zhang, Hao; Wang, Xing-yuan Complex projective synchronization of complex-valued neural network with structure identification. (English) Zbl 1367.93155 J. Franklin Inst. 354, No. 12, 5011-5025 (2017). MSC: 93B30 92B20 93D05 93C40 93B52 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{X.-y. Wang}, J. Franklin Inst. 354, No. 12, 5011--5025 (2017; Zbl 1367.93155) Full Text: DOI OpenURL
Lü, Ling; Li, Chengren; Li, Gang; Zhao, Guannan Projective synchronization for uncertain network based on modified sliding mode control technique. (English) Zbl 1362.93031 Int. J. Adapt. Control Signal Process. 31, No. 3, 429-440 (2017). MSC: 93B12 93C41 93C10 93C15 PDF BibTeX XML Cite \textit{L. Lü} et al., Int. J. Adapt. Control Signal Process. 31, No. 3, 429--440 (2017; Zbl 1362.93031) Full Text: DOI OpenURL
Mahmoud, Gamal M.; Mahmoud, Emad E.; Arafa, Ayman A. Projective synchronization for coupled partially linear complex-variable systems with known parameters. (English) Zbl 1366.34072 Math. Methods Appl. Sci. 40, No. 4, 1214-1222 (2017). MSC: 34D06 94A14 34H10 34C28 PDF BibTeX XML Cite \textit{G. M. Mahmoud} et al., Math. Methods Appl. Sci. 40, No. 4, 1214--1222 (2017; Zbl 1366.34072) Full Text: DOI OpenURL