×

Approximating fuzzy relation equations through concept lattices. (English) Zbl 07786578

Dürrschnabel, Dominik (ed.) et al., Formal concept analysis. 17th international conference, ICFCA 2023, Kassel, Germany, July 17–21, 2023. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13934, 3-16 (2023).
Summary: Fuzzy relation equations (FRE) is a formal theory broadly studied in the literature and applied to decision making, optimization problems, image processing, etc. It is usual that the initial data contains uncertain, imperfect or incomplete information, which can imply, for instance, the existence of inconsistencies. As a consequence, the FRE that arises from the data may be unsolvable. Taking advantage of the relationship between FRE and concept lattices, this paper is focused on three mechanisms for approximating unsolvable FRE. Several properties have been introduced and different distances for determining the best approximation are considered and applied to an example.
For the entire collection see [Zbl 1528.68024].

MSC:

68T30 Knowledge representation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alcalde, C., Burusco, A., Díaz-Moreno, J.C., Medina, J.: Fuzzy concept lattices and fuzzy relation equations in the retrieval processing of images and signals. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 25(Suppl. 1), 99-120 (2017) · Zbl 1469.68105
[2] Aliannezhadi, S., Abbasi Molai, A.: A new algorithm for geometric optimization with a single-term exponent constrained by bipolar fuzzy relation equations. Iran. J. Fuzzy Syst. 18(1), 137-150 (2021) · Zbl 1458.90657
[3] Chen, J.; Mi, J.; Lin, Y., A graph approach for knowledge reduction in formal contexts, Knowl.-Based Syst., 148, 177-188 (2018) · doi:10.1016/j.knosys.2018.02.039
[4] Cornejo, ME; Díaz-Moreno, JC; Medina, J., Multi-adjoint relation equations: a decision support system for fuzzy logic, Int. J. Intell. Syst., 32, 8, 778-800 (2017) · doi:10.1002/int.21889
[5] Cornejo, ME; Lobo, D.; Medina, J., On the solvability of bipolar max-product fuzzy relation equations with the standard negation, Fuzzy Sets Syst., 410, 1-18 (2021) · Zbl 1464.03053 · doi:10.1016/j.fss.2020.02.010
[6] Cornejo, ME; Lobo, D.; Medina, J.; De Baets, B., Bipolar equations on complete distributive symmetric residuated lattices: the case of a join-irreducible right-hand side, Fuzzy Sets Syst., 442, 92-108 (2022) · Zbl 1522.06015 · doi:10.1016/j.fss.2022.02.003
[7] Cornejo, ME; Medina, J.; Ramírez-Poussa, E., A comparative study of adjoint triples, Fuzzy Sets Syst., 211, 1-14 (2013) · Zbl 1272.03111 · doi:10.1016/j.fss.2012.05.004
[8] Cornejo, ME; Medina, J.; Ramírez-Poussa, E., Characterizing reducts in multi-adjoint concept lattices, Inf. Sci., 422, 364-376 (2018) · Zbl 1436.68330 · doi:10.1016/j.ins.2017.08.099
[9] Cornejo, ME; Medina, J.; Ramírez-Poussa, E., Algebraic structure and characterization of adjoint triples, Fuzzy Sets Syst., 425, 117-139 (2021) · Zbl 1522.06010 · doi:10.1016/j.fss.2021.02.002
[10] Cornelis, C.; Medina, J.; Verbiest, N., Multi-adjoint fuzzy rough sets: definition, properties and attribute selection, Int. J. Approx. Reason., 55, 412-426 (2014) · Zbl 1316.03028 · doi:10.1016/j.ijar.2013.09.007
[11] De Baets, B.: Analytical solution methods for fuzzy relation equations. In: Dubois, D., Prade, H. (eds.) The Handbooks of Fuzzy Sets Series, vol. 1, pp. 291-340. Kluwer, Dordrecht (1999) · Zbl 0970.03044
[12] Di Nola, A.; Sanchez, E.; Pedrycz, W.; Sessa, S., Fuzzy Relation Equations and Their Applications to Knowledge Engineering (1989), Norwell: Kluwer Academic Publishers, Norwell · Zbl 0694.94025 · doi:10.1007/978-94-017-1650-5
[13] Díaz-Moreno, JC; Medina, J., Multi-adjoint relation equations: definition, properties and solutions using concept lattices, Inf. Sci., 253, 100-109 (2013) · Zbl 1320.68173 · doi:10.1016/j.ins.2013.07.024
[14] Díaz-Moreno, JC; Medina, J., Solving systems of fuzzy relation equations by fuzzy property-oriented concepts, Inf. Sci., 222, 405-412 (2013) · Zbl 1293.68258 · doi:10.1016/j.ins.2012.08.017
[15] Díaz-Moreno, JC; Medina, J., Using concept lattice theory to obtain the set of solutions of multi-adjoint relation equations, Inf. Sci., 266, 218-225 (2014) · Zbl 1339.03043 · doi:10.1016/j.ins.2014.01.006
[16] Díaz-Moreno, JC; Medina, J.; Ojeda-Aciego, M., On basic conditions to generate multi-adjoint concept lattices via Galois connections, Int. J. Gen. Syst., 43, 2, 149-161 (2014) · Zbl 1320.06005 · doi:10.1080/03081079.2013.879302
[17] Gaume, B.; Navarro, E.; Prade, H.; Hüllermeier, E.; Kruse, R.; Hoffmann, F., A parallel between extended formal concept analysis and bipartite graphs analysis, Computational Intelligence for Knowledge-Based Systems Design, 270-280 (2010), Heidelberg: Springer, Heidelberg · Zbl 05768364 · doi:10.1007/978-3-642-14049-5_28
[18] Kuznetsov, SO; Eklund, P., Machine learning and formal concept analysis, Concept Lattices, 287-312 (2004), Heidelberg: Springer, Heidelberg · Zbl 1198.68194 · doi:10.1007/978-3-540-24651-0_25
[19] Lobo, D., López-Marchante, V., Medina, J.: On the measure of unsolvability of fuzzy relation equations. Stud. Comput. Intell. (2023, in press)
[20] Lobo, D., López-Marchante, V., Medina, J.: Reducing fuzzy relation equations via concept lattices. Fuzzy Sets Syst. (2023)
[21] Maio, CD; Fenza, G.; Gallo, M.; Loia, V.; Stanzione, C., Toward reliable machine learning with congruity: a quality measure based on formal concept analysis, Neural Comput. Appl., 35, 1899-1913 (2023) · doi:10.1007/s00521-022-07853-7
[22] Medina, J., Multi-adjoint property-oriented and object-oriented concept lattices, Inf. Sci., 190, 95-106 (2012) · Zbl 1248.68479 · doi:10.1016/j.ins.2011.11.016
[23] Medina, J.; Ojeda-Aciego, M.; Valverde, A.; Vojtáš, P.; Conejo, R.; Urretavizcaya, M.; Pérez-de-la-Cruz, J-L, Towards biresiduated multi-adjoint logic programming, Current Topics in Artificial Intelligence, 608-617 (2004), Heidelberg: Springer, Heidelberg · doi:10.1007/978-3-540-25945-9_60
[24] Pedrycz, W., Fuzzy relational equations with generalized connectives and their applications, Fuzzy Sets Syst., 10, 1-3, 185-201 (1983) · Zbl 0525.04004 · doi:10.1016/S0165-0114(83)80114-6
[25] Sanchez, E., Resolution of composite fuzzy relation equations, Inf. Control, 30, 1, 38-48 (1976) · Zbl 0326.02048 · doi:10.1016/S0019-9958(76)90446-0
[26] Shao, M.; Hu, Z.; Wu, W.; Liu, H., Graph neural networks induced by concept lattices for classification, Int. J. Approx. Reason., 154, 262-276 (2023) · Zbl 07698080 · doi:10.1016/j.ijar.2023.01.001
[27] Turunen, E., On generalized fuzzy relation equations: necessary and sufficient conditions for the existence of solutions, Acta Universitatis Carolinae. Mathematica et Physica, 028, 1, 33-37 (1987) · Zbl 0661.04004
[28] Valverde-Albacete, F., Peláez-Moreno, C.: Leveraging formal concept analysis to improve n-fold validation in multilabel classification. CEUR Workshop Proceedings, vol. 3151. CEUR-WS.org (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.