Yang, Zhen-Ping; Zhao, Yong Hybrid SGD algorithms to solve stochastic composite optimization problems with application in sparse portfolio selection problems. (English) Zbl 07738672 J. Comput. Appl. Math. 436, Article ID 115425, 20 p. (2024). MSC: 68Q25 68W20 90C26 PDF BibTeX XML Cite \textit{Z.-P. Yang} and \textit{Y. Zhao}, J. Comput. Appl. Math. 436, Article ID 115425, 20 p. (2024; Zbl 07738672) Full Text: DOI
Hoseini Monjezi, N.; Nobakhtian, S. New proximal bundle algorithm based on the gradient sampling method for nonsmooth nonconvex optimization with exact and inexact information. (English) Zbl 07736708 Numer. Algorithms 94, No. 2, 765-787 (2023). MSC: 65-XX 90C26 49J52 65K05 PDF BibTeX XML Cite \textit{N. Hoseini Monjezi} and \textit{S. Nobakhtian}, Numer. Algorithms 94, No. 2, 765--787 (2023; Zbl 07736708) Full Text: DOI
Lu, Zhaosong; Mei, Sanyou Accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient. (English) Zbl 07734882 SIAM J. Optim. 33, No. 3, 2275-2310 (2023). MSC: 90C25 90C30 90C46 49M37 PDF BibTeX XML Cite \textit{Z. Lu} and \textit{S. Mei}, SIAM J. Optim. 33, No. 3, 2275--2310 (2023; Zbl 07734882) Full Text: DOI arXiv
Wang, Yunlong; Shen, Chungen; Zhang, Lei-Hong; Yang, Wei Hong Proximal gradient/semismooth Newton methods for projection onto a polyhedron via the duality-gap-active-set strategy. (English) Zbl 07730757 J. Sci. Comput. 97, No. 1, Paper No. 3, 34 p. (2023). MSC: 90Cxx 65Kxx 90-XX PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Sci. Comput. 97, No. 1, Paper No. 3, 34 p. (2023; Zbl 07730757) Full Text: DOI
Gao, Xue; Cai, Xingju; Wang, Xiangfeng; Han, Deren An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant. (English) Zbl 07721399 J. Glob. Optim. 87, No. 1, 277-300 (2023). MSC: 90C26 65K05 47J25 PDF BibTeX XML Cite \textit{X. Gao} et al., J. Glob. Optim. 87, No. 1, 277--300 (2023; Zbl 07721399) Full Text: DOI
Teboulle, Marc; Vaisbourd, Yakov An elementary approach to tight worst case complexity analysis of gradient based methods. (English) Zbl 07720803 Math. Program. 201, No. 1-2 (A), 63-96 (2023). MSC: 90C25 90C30 90C60 68Q25 PDF BibTeX XML Cite \textit{M. Teboulle} and \textit{Y. Vaisbourd}, Math. Program. 201, No. 1--2 (A), 63--96 (2023; Zbl 07720803) Full Text: DOI
Araújo, Tacildo de S.; Gonçalves, Douglas S.; Torezzan, Cristiano A two-phase rank-based algorithm for low-rank matrix completion. (English) Zbl 07720221 Optim. Lett. 17, No. 7, 1679-1695 (2023). MSC: 90Cxx PDF BibTeX XML Cite \textit{T. de S. Araújo} et al., Optim. Lett. 17, No. 7, 1679--1695 (2023; Zbl 07720221) Full Text: DOI arXiv
László, Szilárd Csaba A forward-backward algorithm with different inertial terms for structured non-convex minimization problems. (English) Zbl 07719332 J. Optim. Theory Appl. 198, No. 1, 387-427 (2023). MSC: 90C26 90C30 65K10 PDF BibTeX XML Cite \textit{S. C. László}, J. Optim. Theory Appl. 198, No. 1, 387--427 (2023; Zbl 07719332) Full Text: DOI arXiv
Adly, Samir; Attouch, Hedy; Vo, Van Nam Convergence of inertial dynamics driven by sums of potential and nonpotential operators with implicit Newton-like damping. (English) Zbl 07719328 J. Optim. Theory Appl. 198, No. 1, 290-331 (2023). MSC: 37N40 34C35 34D05 34A60 49K24 70F40 90C25 PDF BibTeX XML Cite \textit{S. Adly} et al., J. Optim. Theory Appl. 198, No. 1, 290--331 (2023; Zbl 07719328) Full Text: DOI
Benchettou, Oumaima; Bentbib, Abdeslem Hafid; Bouhamidi, Abderrahman An accelerated tensorial double proximal gradient method for total variation regularization problem. (English) Zbl 07719321 J. Optim. Theory Appl. 198, No. 1, 111-134 (2023). MSC: 90Cxx 49-XX PDF BibTeX XML Cite \textit{O. Benchettou} et al., J. Optim. Theory Appl. 198, No. 1, 111--134 (2023; Zbl 07719321) Full Text: DOI
Ansary, Md Abu Talhamainuddin A Newton-type proximal gradient method for nonlinear multi-objective optimization problems. (English) Zbl 07716041 Optim. Methods Softw. 38, No. 3, 570-590 (2023). MSC: 90C25 90C29 49M37 65K10 PDF BibTeX XML Cite \textit{M. A. T. Ansary}, Optim. Methods Softw. 38, No. 3, 570--590 (2023; Zbl 07716041) Full Text: DOI arXiv
Fort, Gersende; Moulines, Eric Stochastic variable metric proximal gradient with variance reduction for non-convex composite optimization. (English) Zbl 1517.62017 Stat. Comput. 33, No. 3, Paper No. 65, 30 p. (2023). MSC: 62-08 90C25 PDF BibTeX XML Cite \textit{G. Fort} and \textit{E. Moulines}, Stat. Comput. 33, No. 3, Paper No. 65, 30 p. (2023; Zbl 1517.62017) Full Text: DOI arXiv
Zhang, Jie; Yang, Xinmin Smoothing fast proximal gradient algorithm for the relaxation of matrix rank regularization problem. (English) Zbl 07710419 Appl. Numer. Math. 190, 303-320 (2023). MSC: 90Cxx 65Kxx 65Fxx PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Yang}, Appl. Numer. Math. 190, 303--320 (2023; Zbl 07710419) Full Text: DOI
Namsak, Sakrapee; Petrot, Narin; Nimana, Nimit A distributed proximal gradient method with time-varying delays for solving additive convex optimizations. (English) Zbl 07707603 Results Appl. Math. 18, Article ID 100370, 14 p. (2023). MSC: 47H05 47N10 65K05 65K10 90C25 PDF BibTeX XML Cite \textit{S. Namsak} et al., Results Appl. Math. 18, Article ID 100370, 14 p. (2023; Zbl 07707603) Full Text: DOI
Wang, Qingsong; Han, Deren A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems. (English) Zbl 07705791 Appl. Numer. Math. 189, 66-87 (2023). MSC: 90Cxx 65Kxx 49Mxx PDF BibTeX XML Cite \textit{Q. Wang} and \textit{D. Han}, Appl. Numer. Math. 189, 66--87 (2023; Zbl 07705791) Full Text: DOI
Won, Joong-Ho; Lange, Kenneth; Xu, Jason A unified analysis of convex and non-convex \(\ell_p\)-ball projection problems. (English) Zbl 07692819 Optim. Lett. 17, No. 5, 1133-1159 (2023). MSC: 90C30 90C06 PDF BibTeX XML Cite \textit{J.-H. Won} et al., Optim. Lett. 17, No. 5, 1133--1159 (2023; Zbl 07692819) Full Text: DOI arXiv
Yu, Teng-Teng; Liu, Xin-Wei; Dai, Yu-Hong; Sun, Jie A mini-batch proximal stochastic recursive gradient algorithm with diagonal Barzilai-Borwein stepsize. (English) Zbl 07692619 J. Oper. Res. Soc. China 11, No. 2, 277-307 (2023). MSC: 90C06 90C30 90C90 90C25 PDF BibTeX XML Cite \textit{T.-T. Yu} et al., J. Oper. Res. Soc. China 11, No. 2, 277--307 (2023; Zbl 07692619) Full Text: DOI
Bareilles, Gilles; Iutzeler, Franck; Malick, Jérôme Newton acceleration on manifolds identified by proximal gradient methods. (English) Zbl 07689159 Math. Program. 200, No. 1 (A), 37-70 (2023). MSC: 65K10 49Q12 49M15 PDF BibTeX XML Cite \textit{G. Bareilles} et al., Math. Program. 200, No. 1 (A), 37--70 (2023; Zbl 07689159) Full Text: DOI arXiv
Gao, Ying; Zhang, Wenxing An alternative extrapolation scheme of PDHGM for saddle point problem with nonlinear function. (English) Zbl 1517.90160 Comput. Optim. Appl. 85, No. 1, 263-291 (2023). MSC: 90C47 PDF BibTeX XML Cite \textit{Y. Gao} and \textit{W. Zhang}, Comput. Optim. Appl. 85, No. 1, 263--291 (2023; Zbl 1517.90160) Full Text: DOI
Huang, Wen; Wei, Ke An inexact Riemannian proximal gradient method. (English) Zbl 1517.90162 Comput. Optim. Appl. 85, No. 1, 1-32 (2023). MSC: 90C48 90C52 PDF BibTeX XML Cite \textit{W. Huang} and \textit{K. Wei}, Comput. Optim. Appl. 85, No. 1, 1--32 (2023; Zbl 1517.90162) Full Text: DOI arXiv
Yu, Jiajia; Lai, Rongjie; Li, Wuchen; Osher, Stanley Computational mean-field games on manifolds. (English) Zbl 07679184 J. Comput. Phys. 484, Article ID 112070, 22 p. (2023). MSC: 91Axx 65Mxx 35Qxx PDF BibTeX XML Cite \textit{J. Yu} et al., J. Comput. Phys. 484, Article ID 112070, 22 p. (2023; Zbl 07679184) Full Text: DOI arXiv
Li, Jingwang; An, Qing; Su, Housheng Proximal nested primal-dual gradient algorithms for distributed constraint-coupled composite optimization. (English) Zbl 1511.90324 Appl. Math. Comput. 444, Article ID 127801, 12 p. (2023). MSC: 90C25 65K10 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Comput. 444, Article ID 127801, 12 p. (2023; Zbl 1511.90324) Full Text: DOI
Zhang, Jie; Yang, Xinmin; Li, Gaoxi; Zhang, Ke A smoothing proximal gradient algorithm with extrapolation for the relaxation of \({\ell_0}\) regularization problem. (English) Zbl 1516.90103 Comput. Optim. Appl. 84, No. 3, 737-760 (2023). MSC: 90C30 90C52 90C59 PDF BibTeX XML Cite \textit{J. Zhang} et al., Comput. Optim. Appl. 84, No. 3, 737--760 (2023; Zbl 1516.90103) Full Text: DOI arXiv
Bello-Cruz, Yunier; Gonçalves, Max L. N.; Krislock, Nathan On FISTA with a relative error rule. (English) Zbl 1516.90046 Comput. Optim. Appl. 84, No. 2, 295-318 (2023). MSC: 90C25 47H05 47J22 49M27 PDF BibTeX XML Cite \textit{Y. Bello-Cruz} et al., Comput. Optim. Appl. 84, No. 2, 295--318 (2023; Zbl 1516.90046) Full Text: DOI
Atenas, Felipe; Sagastizábal, Claudia; Silva, Paulo J. S.; Solodov, Mikhail A unified analysis of descent sequences in weakly convex optimization, including convergence rates for bundle methods. (English) Zbl 1516.90094 SIAM J. Optim. 33, No. 1, 89-115 (2023). MSC: 90C30 90C33 90C55 65K05 PDF BibTeX XML Cite \textit{F. Atenas} et al., SIAM J. Optim. 33, No. 1, 89--115 (2023; Zbl 1516.90094) Full Text: DOI
Balashov, Maxim V. The Lezanski-Polyak-Lojasiewicz inequality and the convergence of the gradient projection algorithm. (English) Zbl 07666956 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 23, No. 1, 4-10 (2023). MSC: 26-XX 49-XX PDF BibTeX XML Cite \textit{M. V. Balashov}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 23, No. 1, 4--10 (2023; Zbl 07666956) Full Text: DOI MNR
Hu, Jia; Han, Congying; Guo, Tiande; Zhao, Tong On inexact stochastic splitting methods for a class of nonconvex composite optimization problems with relative error. (English) Zbl 07663249 Optim. Methods Softw. 38, No. 1, 1-33 (2023). MSC: 47N10 65K10 PDF BibTeX XML Cite \textit{J. Hu} et al., Optim. Methods Softw. 38, No. 1, 1--33 (2023; Zbl 07663249) Full Text: DOI
Tanabe, Hiroki; Fukuda, Ellen H.; Yamashita, Nobuo Convergence rates analysis of a multiobjective proximal gradient method. (English) Zbl 1514.90212 Optim. Lett. 17, No. 2, 333-350 (2023). MSC: 90C29 90C52 PDF BibTeX XML Cite \textit{H. Tanabe} et al., Optim. Lett. 17, No. 2, 333--350 (2023; Zbl 1514.90212) Full Text: DOI arXiv
Zhang, Liwei; Liu, Haoyang; Xiao, Xiantao Regrets of proximal method of multipliers for online non-convex optimization with long term constraints. (English) Zbl 1511.90338 J. Glob. Optim. 85, No. 1, 61-80 (2023). MSC: 90C26 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Glob. Optim. 85, No. 1, 61--80 (2023; Zbl 1511.90338) Full Text: DOI arXiv
Tang, Wen-Gen; Jiang, Hong; Zhang, Qi One-bit gridless DOA estimation with multiple measurements exploiting accelerated proximal gradient algorithm. (English) Zbl 1509.94030 Circuits Syst. Signal Process. 41, No. 2, 1100-1114 (2022). MSC: 94A12 PDF BibTeX XML Cite \textit{W.-G. Tang} et al., Circuits Syst. Signal Process. 41, No. 2, 1100--1114 (2022; Zbl 1509.94030) Full Text: DOI
Zhang, Xian; Peng, Dingtao Solving constrained nonsmooth group sparse optimization via group Capped-\(\ell_1\) relaxation and group smoothing proximal gradient algorithm. (English) Zbl 07682191 Comput. Optim. Appl. 83, No. 3, 801-844 (2022). MSC: 90C26 90C30 90C46 65K05 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{D. Peng}, Comput. Optim. Appl. 83, No. 3, 801--844 (2022; Zbl 07682191) Full Text: DOI
Zhong, Yijun; Li, Chongjun; Li, Zhong; Duan, Xiaojuan A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting. (English) Zbl 07659891 Int. J. Appl. Math. Comput. Sci. 32, No. 4, 671-682 (2022). MSC: 65Dxx 90Cxx 94Axx PDF BibTeX XML Cite \textit{Y. Zhong} et al., Int. J. Appl. Math. Comput. Sci. 32, No. 4, 671--682 (2022; Zbl 07659891) Full Text: DOI
Shen, Chungen; Mi, Ling; Zhang, Lei-Hong An active-set proximal quasi-Newton algorithm for \(\ell_1\)-regularized minimization over a sphere constraint. (English) Zbl 1510.90265 Optimization 71, No. 16, 4623-4664 (2022). MSC: 90C30 90C53 PDF BibTeX XML Cite \textit{C. Shen} et al., Optimization 71, No. 16, 4623--4664 (2022; Zbl 1510.90265) Full Text: DOI
Liu, Xiao; Shen, Chungen; Wang, Li A dual active-set proximal Newton algorithm for sparse approximation of correlation matrices. (English) Zbl 1509.90198 Optim. Methods Softw. 37, No. 5, 1820-1844 (2022). MSC: 90C30 PDF BibTeX XML Cite \textit{X. Liu} et al., Optim. Methods Softw. 37, No. 5, 1820--1844 (2022; Zbl 1509.90198) Full Text: DOI
Xiao, Guiyun; Bai, Zheng-Jian; Ching, Wai-Ki A columnwise update algorithm for sparse stochastic matrix factorization. (English) Zbl 1508.65048 SIAM J. Matrix Anal. Appl. 43, No. 4, 1712-1735 (2022). MSC: 65F99 65K05 15A23 PDF BibTeX XML Cite \textit{G. Xiao} et al., SIAM J. Matrix Anal. Appl. 43, No. 4, 1712--1735 (2022; Zbl 1508.65048) Full Text: DOI arXiv
Chen, Yunmei; Liu, Hongcheng; Wang, Weina Extrapolated smoothing descent algorithm for constrained nonconvex and nonsmooth composite problems. (English) Zbl 1511.65047 Chin. Ann. Math., Ser. B 43, No. 6, 1049-1070 (2022). MSC: 65K05 94A08 90C26 PDF BibTeX XML Cite \textit{Y. Chen} et al., Chin. Ann. Math., Ser. B 43, No. 6, 1049--1070 (2022; Zbl 1511.65047) Full Text: DOI
Li, Qingging; Tan, Li; Guo, Ke A note on the (accelerated) proximal gradient method for composite convex optimization. (English) Zbl 1499.65221 J. Nonlinear Convex Anal. 23, No. 12, 2847-2857 (2022). MSC: 65K05 90C25 90C30 PDF BibTeX XML Cite \textit{Q. Li} et al., J. Nonlinear Convex Anal. 23, No. 12, 2847--2857 (2022; Zbl 1499.65221) Full Text: Link
Kanzow, Christian; Mehlitz, Patrick Convergence properties of monotone and nonmonotone proximal gradient methods revisited. (English) Zbl 1506.90246 J. Optim. Theory Appl. 195, No. 2, 624-646 (2022). MSC: 90C30 PDF BibTeX XML Cite \textit{C. Kanzow} and \textit{P. Mehlitz}, J. Optim. Theory Appl. 195, No. 2, 624--646 (2022; Zbl 1506.90246) Full Text: DOI arXiv
Yu, Tengteng; Liu, Xin-Wei; Dai, Yu-Hong; Sun, Jie Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. (English) Zbl 1513.90153 J. Ind. Manag. Optim. 18, No. 4, 2611-2631 (2022). MSC: 90C26 90C30 PDF BibTeX XML Cite \textit{T. Yu} et al., J. Ind. Manag. Optim. 18, No. 4, 2611--2631 (2022; Zbl 1513.90153) Full Text: DOI
Feng, Shuailing; Huang, Wen; Song, Lele; Ying, Shihui; Zeng, Tieyong Proximal gradient method for nonconvex and nonsmooth optimization on Hadamard manifolds. (English) Zbl 1503.90098 Optim. Lett. 16, No. 8, 2277-2297 (2022). MSC: 90C26 90C52 PDF BibTeX XML Cite \textit{S. Feng} et al., Optim. Lett. 16, No. 8, 2277--2297 (2022; Zbl 1503.90098) Full Text: DOI
Van Ngai, Huynh; Son, Ta Anh Generalized Nesterov’s accelerated proximal gradient algorithms with convergence rate of order \(o(1/k^2)\). (English) Zbl 1502.90134 Comput. Optim. Appl. 83, No. 2, 615-649 (2022). MSC: 90C25 49J52 49M37 65K05 PDF BibTeX XML Cite \textit{H. Van Ngai} and \textit{T. A. Son}, Comput. Optim. Appl. 83, No. 2, 615--649 (2022; Zbl 1502.90134) Full Text: DOI
Bassett, Robert; Deride, Julio One-step estimation with scaled proximal methods. (English) Zbl 07592382 Math. Oper. Res. 47, No. 3, 2366-2386 (2022). MSC: 62F12 65K10 90C30 PDF BibTeX XML Cite \textit{R. Bassett} and \textit{J. Deride}, Math. Oper. Res. 47, No. 3, 2366--2386 (2022; Zbl 07592382) Full Text: DOI arXiv
Sun, Baochen; Chang, Huibin Proximal gradient methods for general smooth graph total variation model in unsupervised learning. (English) Zbl 07590389 J. Sci. Comput. 93, No. 1, Paper No. 2, 23 p. (2022). MSC: 68Pxx PDF BibTeX XML Cite \textit{B. Sun} and \textit{H. Chang}, J. Sci. Comput. 93, No. 1, Paper No. 2, 23 p. (2022; Zbl 07590389) Full Text: DOI
Adly, Samir; Attouch, Hedy; Vo, Van Nam Newton-type inertial algorithms for solving monotone equations Governed by sums of potential and nonpotential operators. (English) Zbl 1498.65072 Appl. Math. Optim. 85, No. 3, Paper No. 44, 33 p. (2022). MSC: 65J15 90C48 PDF BibTeX XML Cite \textit{S. Adly} et al., Appl. Math. Optim. 85, No. 3, Paper No. 44, 33 p. (2022; Zbl 1498.65072) Full Text: DOI
Dam, Hai Huyen; Low, Siow Yong; Nordholm, Sven Two-level optimization approach with accelerated proximal gradient for objective measures in sparse speech reconstruction. (English) Zbl 1513.90175 J. Ind. Manag. Optim. 18, No. 5, 3701-3717 (2022). MSC: 90C30 65K05 90C90 94A12 PDF BibTeX XML Cite \textit{H. H. Dam} et al., J. Ind. Manag. Optim. 18, No. 5, 3701--3717 (2022; Zbl 1513.90175) Full Text: DOI
Attouch, Hedy; Fadili, Jalal From the ravine method to the Nesterov method and vice versa: a dynamical system perspective. (English) Zbl 1503.37098 SIAM J. Optim. 32, No. 3, 2074-2101 (2022). MSC: 37N40 46N10 65K05 65K10 90B50 90C25 PDF BibTeX XML Cite \textit{H. Attouch} and \textit{J. Fadili}, SIAM J. Optim. 32, No. 3, 2074--2101 (2022; Zbl 1503.37098) Full Text: DOI arXiv
Li, Xinge; Wei, Suhua; Xu, Haibo; Chen, Chong Hybrid regularized cone-beam reconstruction for axially symmetric object tomography. (English) Zbl 1513.65543 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 403-419 (2022). MSC: 65R32 65K05 PDF BibTeX XML Cite \textit{X. Li} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 403--419 (2022; Zbl 1513.65543) Full Text: DOI
Fisher, Zachary F.; Kim, Younghoon; Fredrickson, Barbara L.; Pipiras, Vladas Penalized estimation and forecasting of multiple subject intensive longitudinal data. (English) Zbl 1490.62404 Psychometrika 87, No. 2, 403-431 (2022). MSC: 62P15 62M10 62J07 PDF BibTeX XML Cite \textit{Z. F. Fisher} et al., Psychometrika 87, No. 2, 403--431 (2022; Zbl 1490.62404) Full Text: DOI arXiv
Huang, Wen; Wei, Ke Riemannian proximal gradient methods. (English) Zbl 1492.90012 Math. Program. 194, No. 1-2 (A), 371-413 (2022). MSC: 90-08 62-08 90C26 PDF BibTeX XML Cite \textit{W. Huang} and \textit{K. Wei}, Math. Program. 194, No. 1--2 (A), 371--413 (2022; Zbl 1492.90012) Full Text: DOI arXiv
Xiao, Guiyun; Bai, Zheng-Jian A geometric proximal gradient method for sparse least squares regression with probabilistic simplex constraint. (English) Zbl 1492.65165 J. Sci. Comput. 92, No. 1, Paper No. 22, 28 p. (2022). MSC: 65K05 90C25 90C26 PDF BibTeX XML Cite \textit{G. Xiao} and \textit{Z.-J. Bai}, J. Sci. Comput. 92, No. 1, Paper No. 22, 28 p. (2022; Zbl 1492.65165) Full Text: DOI arXiv
Bentbib, A. H.; El Hachimi, A.; Jbilou, K.; Ratnani, A. Fast multidimensional completion and principal component analysis methods via the cosine product. (English) Zbl 1492.65122 Calcolo 59, No. 3, Paper No. 26, 33 p. (2022). MSC: 65F99 15A23 15A69 15A83 62H25 90C25 94A08 PDF BibTeX XML Cite \textit{A. H. Bentbib} et al., Calcolo 59, No. 3, Paper No. 26, 33 p. (2022; Zbl 1492.65122) Full Text: DOI
Liu, Y. C.; Xia, F. Q. Linear convergence of proximal incremental aggregated gradient method for nonconvex nonsmooth minimization problems. (English) Zbl 1489.90138 Appl. Anal. 101, No. 9, 3445-3464 (2022). MSC: 90C26 65K05 90C06 90C15 90C30 PDF BibTeX XML Cite \textit{Y. C. Liu} and \textit{F. Q. Xia}, Appl. Anal. 101, No. 9, 3445--3464 (2022; Zbl 1489.90138) Full Text: DOI
Attouch, Hedy; Chbani, Zaki; Riahi, Hassan Fast convex optimization via a third-order in time evolution equation. (English) Zbl 1489.90110 Optimization 71, No. 5, 1275-1304 (2022). MSC: 90C25 65K05 PDF BibTeX XML Cite \textit{H. Attouch} et al., Optimization 71, No. 5, 1275--1304 (2022; Zbl 1489.90110) Full Text: DOI HAL
Aravkin, Aleksandr Y.; Baraldi, Robert; Orban, Dominique A proximal quasi-Newton trust-region method for nonsmooth regularized optimization. (English) Zbl 1493.90139 SIAM J. Optim. 32, No. 2, 900-929 (2022). MSC: 90C26 90C53 90C56 65K10 PDF BibTeX XML Cite \textit{A. Y. Aravkin} et al., SIAM J. Optim. 32, No. 2, 900--929 (2022; Zbl 1493.90139) Full Text: DOI arXiv
Davis, Damek; Drusvyatskiy, Dmitriy Proximal methods avoid active strict saddles of weakly convex functions. (English) Zbl 1494.65041 Found. Comput. Math. 22, No. 2, 561-606 (2022). MSC: 65K05 90C25 90C30 PDF BibTeX XML Cite \textit{D. Davis} and \textit{D. Drusvyatskiy}, Found. Comput. Math. 22, No. 2, 561--606 (2022; Zbl 1494.65041) Full Text: DOI arXiv
Cohen, Eyal; Hallak, Nadav; Teboulle, Marc A dynamic alternating direction of multipliers for nonconvex minimization with nonlinear functional equality constraints. (English) Zbl 1492.90133 J. Optim. Theory Appl. 193, No. 1-3, 324-353 (2022). MSC: 90C26 90C30 65K05 90C46 PDF BibTeX XML Cite \textit{E. Cohen} et al., J. Optim. Theory Appl. 193, No. 1--3, 324--353 (2022; Zbl 1492.90133) Full Text: DOI
Kanno, Yoshihiro Accelerated proximal gradient method for bi-modulus static elasticity. (English) Zbl 1492.90117 Optim. Eng. 23, No. 1, 453-477 (2022). MSC: 90C22 90C90 PDF BibTeX XML Cite \textit{Y. Kanno}, Optim. Eng. 23, No. 1, 453--477 (2022; Zbl 1492.90117) Full Text: DOI
Liang, Jane W.; Sen, Śaunak Sparse matrix linear models for structured high-throughput data. (English) Zbl 1498.62232 Ann. Appl. Stat. 16, No. 1, 169-192 (2022). MSC: 62P10 62J05 62J07 90C25 62-08 PDF BibTeX XML Cite \textit{J. W. Liang} and \textit{Ś. Sen}, Ann. Appl. Stat. 16, No. 1, 169--192 (2022; Zbl 1498.62232) Full Text: DOI arXiv
Adly, Samir; Attouch, Hedy First-order inertial algorithms involving dry friction damping. (English) Zbl 1497.37120 Math. Program. 193, No. 1 (A), 405-445 (2022). MSC: 37N40 37M05 34A60 65K05 65K10 PDF BibTeX XML Cite \textit{S. Adly} and \textit{H. Attouch}, Math. Program. 193, No. 1 (A), 405--445 (2022; Zbl 1497.37120) Full Text: DOI
Huang, Wen; Wei, Ke An extension of fast iterative shrinkage-thresholding algorithm to Riemannian optimization for sparse principal component analysis. (English) Zbl 07511590 Numer. Linear Algebra Appl. 29, No. 1, e2409, 20 p. (2022). MSC: 62H25 65K05 PDF BibTeX XML Cite \textit{W. Huang} and \textit{K. Wei}, Numer. Linear Algebra Appl. 29, No. 1, e2409, 20 p. (2022; Zbl 07511590) Full Text: DOI arXiv
Balashov, M. V.; Tremba, A. A. Error bound conditions and convergence of optimization methods on smooth and proximally smooth manifolds. (English) Zbl 1490.90224 Optimization 71, No. 3, 711-735 (2022). MSC: 90C26 65K05 46N10 65K10 PDF BibTeX XML Cite \textit{M. V. Balashov} and \textit{A. A. Tremba}, Optimization 71, No. 3, 711--735 (2022; Zbl 1490.90224) Full Text: DOI arXiv
Wang, Tanxing; Cai, Xingju; Song, Yongzhong; Gao, Xue Double-inertial proximal gradient algorithm for difference-of-convex programming. (English) Zbl 1483.90124 Pac. J. Optim. 18, No. 2, 415-437 (2022). MSC: 90C26 49M29 65K05 PDF BibTeX XML Cite \textit{T. Wang} et al., Pac. J. Optim. 18, No. 2, 415--437 (2022; Zbl 1483.90124) Full Text: Link
Böhm, Axel; Daniilidis, Aris Ubiquitous algorithms in convex optimization generate self-contracted sequences. (English) Zbl 1489.90111 J. Convex Anal. 29, No. 1, 119-128 (2022). MSC: 90C25 65K05 52A05 PDF BibTeX XML Cite \textit{A. Böhm} and \textit{A. Daniilidis}, J. Convex Anal. 29, No. 1, 119--128 (2022; Zbl 1489.90111) Full Text: arXiv Link
Anikin, A. S.; Matyukhin, V. V.; Pasechnyuk, D. A. Accelerated proximal envelopes: application to componentwise methods. (English. Russian original) Zbl 1487.90602 Comput. Math. Math. Phys. 62, No. 2, 336-345 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 342-352 (2022). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{A. S. Anikin} et al., Comput. Math. Math. Phys. 62, No. 2, 336--345 (2022; Zbl 1487.90602); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 2, 342--352 (2022) Full Text: DOI
Wang, Xiangfeng; Ye, Jane J.; Yuan, Xiaoming; Zeng, Shangzhi; Zhang, Jin Perturbation techniques for convergence analysis of proximal gradient method and other first-order algorithms via variational analysis. (English) Zbl 1487.90643 Set-Valued Var. Anal. 30, No. 1, 39-79 (2022). MSC: 90C52 49J52 49J53 PDF BibTeX XML Cite \textit{X. Wang} et al., Set-Valued Var. Anal. 30, No. 1, 39--79 (2022; Zbl 1487.90643) Full Text: DOI arXiv
Zhang, Jin; Zhu, Xide Linear convergence of prox-SVRG method for separable non-smooth convex optimization problems under bounded metric subregularity. (English) Zbl 1487.90530 J. Optim. Theory Appl. 192, No. 2, 564-597 (2022). MSC: 90C25 90C52 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Zhu}, J. Optim. Theory Appl. 192, No. 2, 564--597 (2022; Zbl 1487.90530) Full Text: DOI
Yu, Quan; Zhang, Xinzhen A smoothing proximal gradient algorithm for matrix rank minimization problem. (English) Zbl 1490.65083 Comput. Optim. Appl. 81, No. 2, 519-538 (2022). MSC: 65F55 15A03 90C30 65K05 PDF BibTeX XML Cite \textit{Q. Yu} and \textit{X. Zhang}, Comput. Optim. Appl. 81, No. 2, 519--538 (2022; Zbl 1490.65083) Full Text: DOI arXiv
Bello-Cruz, Yunier; Melo, Jefferson G.; Serra, Ray V. G. A proximal gradient splitting method for solving convex vector optimization problems. (English) Zbl 1486.90143 Optimization 71, No. 1, 33-53 (2022). Reviewer: Sorin-Mihai Grad (Paris) MSC: 90C25 90C52 65K05 PDF BibTeX XML Cite \textit{Y. Bello-Cruz} et al., Optimization 71, No. 1, 33--53 (2022; Zbl 1486.90143) Full Text: DOI
Ollier, Edouard Fast selection of nonlinear mixed effect models using penalized likelihood. (English) Zbl 07464468 Comput. Stat. Data Anal. 167, Article ID 107373, 15 p. (2022). MSC: 62-XX PDF BibTeX XML Cite \textit{E. Ollier}, Comput. Stat. Data Anal. 167, Article ID 107373, 15 p. (2022; Zbl 07464468) Full Text: DOI arXiv
Moudafi, Abdellatif; Mainge, Paul-Emile Copositivity meets D. C. optimization. (English) Zbl 1486.90146 J. Dyn. Games 9, No. 1, 27-32 (2022). MSC: 90C25 90C20 65K10 PDF BibTeX XML Cite \textit{A. Moudafi} and \textit{P.-E. Mainge}, J. Dyn. Games 9, No. 1, 27--32 (2022; Zbl 1486.90146) Full Text: DOI
Falsone, Alessandro; Prandini, Maria Distributed decision-coupled constrained optimization via proximal-tracking. (English) Zbl 1479.49076 Automatica 135, Article ID 109938, 12 p. (2022). MSC: 49M41 PDF BibTeX XML Cite \textit{A. Falsone} and \textit{M. Prandini}, Automatica 135, Article ID 109938, 12 p. (2022; Zbl 1479.49076) Full Text: DOI
Kim, Kyungsup Understanding non-negative matrix factorization in the framework of Bregman divergence. (English) Zbl 1497.15016 J. Korean Soc. Ind. Appl. Math. 25, No. 3, 107-116 (2021). MSC: 15A23 15A60 65F05 65K10 PDF BibTeX XML Cite \textit{K. Kim}, J. Korean Soc. Ind. Appl. Math. 25, No. 3, 107--116 (2021; Zbl 1497.15016) Full Text: DOI
Toulis, Panos; Horel, Thibaut; Airoldi, Edoardo M. The proximal Robbins-Monro method. (English) Zbl 07555261 J. R. Stat. Soc., Ser. B, Stat. Methodol. 83, No. 1, 188-212 (2021). MSC: 62-XX PDF BibTeX XML Cite \textit{P. Toulis} et al., J. R. Stat. Soc., Ser. B, Stat. Methodol. 83, No. 1, 188--212 (2021; Zbl 07555261) Full Text: DOI arXiv
Adly, Samir; Attouch, Hedy; Vo, Van Nam Asymptotic behavior of Newton-like inertial dynamics involving the sum of potential and nonpotential terms. (English) Zbl 07525621 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 17, 30 p. (2021). MSC: 47-XX 54-XX PDF BibTeX XML Cite \textit{S. Adly} et al., Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 17, 30 p. (2021; Zbl 07525621) Full Text: DOI
Xu, Hong-Kun; Sahu, D. R. Parallel normal \(S\)-iteration methods with applications to optimization problems. (English) Zbl 07505478 Numer. Funct. Anal. Optim. 42, No. 16, Part 4, 1925-1953 (2021). MSC: 47J05 47H09 65K05 65K10 PDF BibTeX XML Cite \textit{H.-K. Xu} and \textit{D. R. Sahu}, Numer. Funct. Anal. Optim. 42, No. 16, Part 4, 1925--1953 (2021; Zbl 07505478) Full Text: DOI
Chen, Jingxiang; Tran-Dinh, Quoc; Kosorok, Michael R.; Liu, Yufeng Identifying heterogeneous effect using latent supervised clustering with adaptive fusion. (English) Zbl 07499880 J. Comput. Graph. Stat. 30, No. 1, 43-54 (2021). MSC: 62-XX PDF BibTeX XML Cite \textit{J. Chen} et al., J. Comput. Graph. Stat. 30, No. 1, 43--54 (2021; Zbl 07499880) Full Text: DOI
Grishchenko, Dmitry; Iutzeler, Franck; Malick, Jérôme Proximal gradient methods with adaptive subspace sampling. (English) Zbl 1482.65089 Math. Oper. Res. 46, No. 4, 1303-1323 (2021). MSC: 65K05 90C25 90C30 PDF BibTeX XML Cite \textit{D. Grishchenko} et al., Math. Oper. Res. 46, No. 4, 1303--1323 (2021; Zbl 1482.65089) Full Text: DOI arXiv
Attouch, Hedy; Chbani, Zaki; Riahi, Hassan Fast convex optimization via time scaling of damped inertial gradient dynamics. (English) Zbl 1489.37095 Pure Appl. Funct. Anal. 6, No. 6, 1081-1117 (2021). MSC: 37M99 37N40 46N10 65K05 65K10 90B50 90C25 PDF BibTeX XML Cite \textit{H. Attouch} et al., Pure Appl. Funct. Anal. 6, No. 6, 1081--1117 (2021; Zbl 1489.37095) Full Text: Link
Ye, Jane J.; Yuan, Xiaoming; Zeng, Shangzhi; Zhang, Jin Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems. (English) Zbl 1484.90082 Set-Valued Var. Anal. 29, No. 4, 803-837 (2021). MSC: 90C25 90C52 49J52 49J53 PDF BibTeX XML Cite \textit{J. J. Ye} et al., Set-Valued Var. Anal. 29, No. 4, 803--837 (2021; Zbl 1484.90082) Full Text: DOI
Hess, Sibylle; Pio, Gianvito; Hochstenbach, Michiel; Ceci, Michelangelo BROCCOLI: overlapping and outlier-robust biclustering through proximal stochastic gradient descent. (English) Zbl 1491.62047 Data Min. Knowl. Discov. 35, No. 6, 2542-2576 (2021). MSC: 62H30 PDF BibTeX XML Cite \textit{S. Hess} et al., Data Min. Knowl. Discov. 35, No. 6, 2542--2576 (2021; Zbl 1491.62047) Full Text: DOI
Balashov, M. V.; Kamalov, R. A. The gradient projection method with Armijo’s step size on manifolds. (English. Russian original) Zbl 1481.65087 Comput. Math. Math. Phys. 61, No. 11, 1776-1786 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1814-1824 (2021). MSC: 65K05 90C26 PDF BibTeX XML Cite \textit{M. V. Balashov} and \textit{R. A. Kamalov}, Comput. Math. Math. Phys. 61, No. 11, 1776--1786 (2021; Zbl 1481.65087); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 11, 1814--1824 (2021) Full Text: DOI
Tirer, Tom; Giryes, Raja On the convergence rate of projected gradient descent for a back-projection based objective. (English) Zbl 1474.65183 SIAM J. Imaging Sci. 14, No. 4, 1504-1531 (2021). MSC: 65K10 62H35 68U10 94A08 PDF BibTeX XML Cite \textit{T. Tirer} and \textit{R. Giryes}, SIAM J. Imaging Sci. 14, No. 4, 1504--1531 (2021; Zbl 1474.65183) Full Text: DOI arXiv
Kong, Weiwei; Monteiro, Renato D. C. An accelerated inexact proximal point method for solving nonconvex-concave min-max problems. (English) Zbl 07421056 SIAM J. Optim. 31, No. 4, 2558-2585 (2021). MSC: 47J22 90C26 90C30 90C47 90C60 65K10 PDF BibTeX XML Cite \textit{W. Kong} and \textit{R. D. C. Monteiro}, SIAM J. Optim. 31, No. 4, 2558--2585 (2021; Zbl 07421056) Full Text: DOI arXiv
van Leeuwen, Tristan; Aravkin, Aleksandr Y. Variable projection for nonsmooth problems. (English) Zbl 1490.65124 SIAM J. Sci. Comput. 43, No. 5, S249-S268 (2021). MSC: 65K10 49M37 49M41 68Q25 68R10 68U05 90C52 PDF BibTeX XML Cite \textit{T. van Leeuwen} and \textit{A. Y. Aravkin}, SIAM J. Sci. Comput. 43, No. 5, S249--S268 (2021; Zbl 1490.65124) Full Text: DOI
Chang, Le; Shi, Yanlin Mortality forecasting with a spatially penalized smoothed VAR model. (English) Zbl 1471.91452 ASTIN Bull. 51, No. 1, 161-189 (2021). MSC: 91G05 62P05 PDF BibTeX XML Cite \textit{L. Chang} and \textit{Y. Shi}, ASTIN Bull. 51, No. 1, 161--189 (2021; Zbl 1471.91452) Full Text: DOI
Li, Hongwu; Xie, Min; Zhang, Rong A proximal gradient method for nonsmooth convex optimization problems. (Chinese. English summary) Zbl 1488.65139 Oper. Res. Trans. 25, No. 1, 61-72 (2021). MSC: 65K05 90C25 PDF BibTeX XML Cite \textit{H. Li} et al., Oper. Res. Trans. 25, No. 1, 61--72 (2021; Zbl 1488.65139) Full Text: DOI
Natemeyer, Carolin; Wachsmuth, Daniel A proximal gradient method for control problems with non-smooth and non-convex control cost. (English) Zbl 1482.49005 Comput. Optim. Appl. 80, No. 2, 639-677 (2021). Reviewer: Alberto Maione (Freiburg im Breisgau) MSC: 49J27 49J52 49K27 49M37 PDF BibTeX XML Cite \textit{C. Natemeyer} and \textit{D. Wachsmuth}, Comput. Optim. Appl. 80, No. 2, 639--677 (2021; Zbl 1482.49005) Full Text: DOI arXiv
Nakayama, Shummin; Gotoh, Jun-ya On the superiority of PGMs to PDCAs in nonsmooth nonconvex sparse regression. (English) Zbl 1477.90073 Optim. Lett. 15, No. 8, 2831-2860 (2021). MSC: 90C26 PDF BibTeX XML Cite \textit{S. Nakayama} and \textit{J.-y. Gotoh}, Optim. Lett. 15, No. 8, 2831--2860 (2021; Zbl 1477.90073) Full Text: DOI arXiv
Patrascu, Andrei; Irofti, Paul Stochastic proximal splitting algorithm for composite minimization. (English) Zbl 1475.90106 Optim. Lett. 15, No. 6, 2255-2273 (2021). MSC: 90C30 90C15 PDF BibTeX XML Cite \textit{A. Patrascu} and \textit{P. Irofti}, Optim. Lett. 15, No. 6, 2255--2273 (2021; Zbl 1475.90106) Full Text: DOI arXiv
Zhu, Daoli; Deng, Sien; Li, Minghua; Zhao, Lei Level-set subdifferential error bounds and linear convergence of Bregman proximal gradient method. (English) Zbl 1475.90076 J. Optim. Theory Appl. 189, No. 3, 889-918 (2021). MSC: 90C26 PDF BibTeX XML Cite \textit{D. Zhu} et al., J. Optim. Theory Appl. 189, No. 3, 889--918 (2021; Zbl 1475.90076) Full Text: DOI arXiv
Jia, Zehui; Huang, Jieru; Cai, Xingju Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems. (English) Zbl 1475.90067 J. Glob. Optim. 80, No. 4, 841-864 (2021). MSC: 90C26 PDF BibTeX XML Cite \textit{Z. Jia} et al., J. Glob. Optim. 80, No. 4, 841--864 (2021; Zbl 1475.90067) Full Text: DOI
Balashov, Maxim V. The gradient projection algorithm for smooth sets and functions in nonconvex case. (English) Zbl 1473.90124 Set-Valued Var. Anal. 29, No. 2, 341-360 (2021). MSC: 90C26 65K05 46N10 65K10 PDF BibTeX XML Cite \textit{M. V. Balashov}, Set-Valued Var. Anal. 29, No. 2, 341--360 (2021; Zbl 1473.90124) Full Text: DOI
Hanzely, Filip; Richtárik, Peter; Xiao, Lin Accelerated Bregman proximal gradient methods for relatively smooth convex optimization. (English) Zbl 1473.90114 Comput. Optim. Appl. 79, No. 2, 405-440 (2021). MSC: 90C25 90C52 PDF BibTeX XML Cite \textit{F. Hanzely} et al., Comput. Optim. Appl. 79, No. 2, 405--440 (2021; Zbl 1473.90114) Full Text: DOI arXiv
Lemhadri, Ismael; Ruan, Feng; Abraham, Louis; Tibshirani, Robert LassoNet: a neural network with feature sparsity. (English) Zbl 07370644 J. Mach. Learn. Res. 22, Paper No. 127, 29 p. (2021). MSC: 68T05 PDF BibTeX XML Cite \textit{I. Lemhadri} et al., J. Mach. Learn. Res. 22, Paper No. 127, 29 p. (2021; Zbl 07370644) Full Text: arXiv Link
Lei, Yunwen; Ying, Yiming Stochastic proximal AUC maximization. (English) Zbl 07370578 J. Mach. Learn. Res. 22, Paper No. 61, 45 p. (2021). MSC: 68T05 PDF BibTeX XML Cite \textit{Y. Lei} and \textit{Y. Ying}, J. Mach. Learn. Res. 22, Paper No. 61, 45 p. (2021; Zbl 07370578) Full Text: arXiv Link
Petrot, Narin; Nimana, Nimit Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems. (English) Zbl 1481.65090 Optimization 70, No. 5-6, 1307-1336 (2021). MSC: 65K05 65K10 90C25 PDF BibTeX XML Cite \textit{N. Petrot} and \textit{N. Nimana}, Optimization 70, No. 5--6, 1307--1336 (2021; Zbl 1481.65090) Full Text: DOI arXiv
van Leeuwen, Tristan; Aravkin, Aleksandr Y. Variable projection for nonsmooth problems. (English) Zbl 1512.65109 SIAM J. Sci. Comput. 43, No. 3, S249-S268 (2021). MSC: 65K10 49M37 49M41 68Q25 68R10 68U05 90C52 PDF BibTeX XML Cite \textit{T. van Leeuwen} and \textit{A. Y. Aravkin}, SIAM J. Sci. Comput. 43, No. 3, S249--S268 (2021; Zbl 1512.65109) Full Text: DOI
Chen, Xiaolin; Liu, Catherine Chunling; Xu, Sheng An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model. (English) Zbl 1505.62099 Comput. Stat. 36, No. 2, 885-910 (2021). MSC: 62-08 62G08 62J07 62N01 62P10 PDF BibTeX XML Cite \textit{X. Chen} et al., Comput. Stat. 36, No. 2, 885--910 (2021; Zbl 1505.62099) Full Text: DOI
Clempner, Julio B. A proximal/gradient approach for computing the Nash equilibrium in controllable Markov games. (English) Zbl 1466.91011 J. Optim. Theory Appl. 188, No. 3, 847-862 (2021). MSC: 91A11 91A10 91A15 91A68 PDF BibTeX XML Cite \textit{J. B. Clempner}, J. Optim. Theory Appl. 188, No. 3, 847--862 (2021; Zbl 1466.91011) Full Text: DOI
Ito, Masaru; Fukuda, Mituhiro Nearly optimal first-order methods for convex optimization under gradient norm measure: an adaptive regularization approach. (English) Zbl 1469.90106 J. Optim. Theory Appl. 188, No. 3, 770-804 (2021). MSC: 90C25 68Q25 49M37 PDF BibTeX XML Cite \textit{M. Ito} and \textit{M. Fukuda}, J. Optim. Theory Appl. 188, No. 3, 770--804 (2021; Zbl 1469.90106) Full Text: DOI arXiv