×

Inertial proximal algorithm for difference of two maximal monotone operators. (English) Zbl 06974447

Summary: In this note, a new algorithm is presented for finding a zero of difference of two maximal monotone operators \(T\) and \(S\), i.e., \(T-S\) in finite dimensional real Hilbert space \(H\) in which operator \(S\) has local boundedness property. This condition is weaker than Moudafi’s condition on operator \(S\) in [13]. Moreover, applying some conditions on inertia term in new algorithm, one can improve speed of convergence of sequence.

MSC:

47-XX Operator theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adly, S.; Oettli, W., Solvability of generalized nonlinear symmetric variational inequalities, J. Austral. Math. Soc. Ser., 40, 289-300, (1999) · Zbl 0949.49005 · doi:10.1017/S0334270000010912
[2] Y. Alber and I. Ryazantseva, Nonlinear Ill-posed Problems of Monotone Type, Springer, New York, (2006). · Zbl 1086.47003
[3] Alimohammady, M.; Ramazannejad, M.; Roohi, M., Notes on the difference of two monotone operators, Optimization Letters, 8, 81-84, (2014) · Zbl 1401.47003 · doi:10.1007/s11590-012-0537-x
[4] An, L. T. H.; Pham, D. T., The DC programming and DCA revised with DC models of real world nonconvex optimization problems, Ann. Oper. Res., 133, 25-46, (2005) · Zbl 1116.90122 · doi:10.1007/s10479-004-5022-1
[5] J. P. Aubin and H. Frankowska, Set-valued analysis, Reprint of the 1990 Edition. · Zbl 1168.49014
[6] Chandra, S., Strong pseudo-convex programming, Indian J. Pure Appl. Math., 3, 278-282, (1972) · Zbl 0242.90048
[7] F. H. Clarke, R. J. Stern and G. Sabidussi, Nonlinear analysis, differential equations and control, ser. NATO Sciences Series, Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers, 528 (1999).
[8] Hamdi, A., A modified Bregman proximal schemes to minimize the difference of two convex functions, Appl. Math. E-Notes., 6, 132-140, (2006) · Zbl 1161.90464
[9] Hamdi, A., A Moreau-Yosida regularization of a DC functions: application to variational inequality problems, Appl. Math. E-Notes., 5, 164-170, (2005) · Zbl 1105.90062
[10] Huda, S.; Mukerjee, R., Minimax second-order designs over cuboidal regions for the difference between two estimated responses, Indian J. Pure Appl. Math., 41, 303-312, (2010) · Zbl 1191.62133 · doi:10.1007/s13226-010-0006-0
[11] Lei, D.; Shenghong, L., Ishikawa iteration process with errors for nonexpansive mappings in uniformly convex Banach spaces, Internat. J. Math. and Math. Sci., 24, 49-53, (2000) · Zbl 0958.47029 · doi:10.1155/S0161171200003380
[12] Moudafi, A., On the difference of two maximal monotone operators: regularization and algorithmic approaches, Appl. Math. Comput., 202, 446-452, (2008) · Zbl 1181.65083
[13] Moudafi, A., On critical points of the difference of two maximal monotone operators, (2013) · Zbl 1320.49009
[14] Qian, N., On the momentum term in gradient descent learning algorithms, Neural networks, 12, 145-151, (1999) · doi:10.1016/S0893-6080(98)00116-6
[15] Rockafellar, R. T., On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33, 209-216, (1970) · Zbl 0199.47101 · doi:10.2140/pjm.1970.33.209
[16] Rockafellar, R. T., Local boundedness of nonlinear monotone operators, Michigan Math. J., 16, 397-407, (1969) · Zbl 0175.45002 · doi:10.1307/mmj/1029000324
[17] Teuber, T.; Steidl, G.; Gwosdek, P.; Schmaltz, Ch.; Weickert, J., Dithering by differences of convex functions, SIAM Journal on Imaging Sciences, 4, 79-108, (2011) · Zbl 1214.49017 · doi:10.1137/100790197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.