×

Fourier integral operators and inhomogeneous Gevrey classes. (English) Zbl 0675.35090

Let X be some open set in \(R^ n\). Consider a Fourier distribution of type \[ K(u)=\iint \exp (i\omega (x,\eta))a(x,\eta)u(x)dx d\eta,\quad u\in C_ 0^{\infty}(X). \] The amplitude a(x,\(\eta)\) and the phase \(\omega\) (x,\(\eta)\) are assumed to be \(C^{\infty}\) on \(X\times R^ n\) for large \(\eta\) and a(x,\(\eta)\) satisfies an estimate \[ | D_ x^{\alpha}D^{\beta}_{\eta}a(x,\eta)| \leq C^{| \alpha | +| \beta | +1} \alpha !\beta !\phi (\eta)^{m-| \beta |} \] and the real-valued function \(\omega\) satisfies the same inequality with \(m=1\). \(\phi\) (\(\eta)\), a suitable weight-function, being uniformly Lipschitzian on \(R^ n\) and fulfils \(\phi (\eta)\geq c(1+(\eta))^{\delta}.\) If the phase is essentially nonhomogeneous, then it is necessary to use microlocalization with respect to some structure adapted to the inhomogenity. For this purpose fix \(\Gamma \subset R^ n\), set \[ \Gamma_{\epsilon \phi}=\{\xi \in R^ n:\quad dist(\xi,\Gamma)<\epsilon \phi (\xi)\}, \] assume that a and \(\omega\) are defined only in \(X\times \Gamma_{\epsilon \phi}\) and consider the integral \[ K_ 1(u)=\iint \exp (i\omega (x,\eta))a(x,\eta)\chi (\eta)u(x)dx d\eta, \] where \(\chi\) is some \(C^{\infty}\) function in \(R^ n\) such that \(\chi (\eta)=0\) if \(\eta \not\in \Gamma_{\epsilon '\phi}\), \(\chi (\eta)=1\) if \(\eta \in \Gamma_{\epsilon ''\phi}\) where \(0<\epsilon ''<\epsilon '<\epsilon\) and moreover \(| D^{\alpha}\chi (\eta)\leq c_{\alpha}\) for all \(\eta \in R^ n\). Part I of this paper consists mainly of a number of definitions and technical results concerning weight-functions, symbols, phases and partial integration. The microlocal analysis of \(K_ 1\) is carried out and its wave front is evaluated in part II of the paper. It is especially proved that the microlocal singularities of \(K_ 1\) are not affected (under some assumptions) by changing \(\chi\) or replacing the functions \(\alpha\) and \(\omega\) with equivalent ones. Part III develops the symbolic calculus of Fourier integral operators of the reduced form \[ Au(x)=\int \exp (i\omega (x,\eta))\chi (\eta)a(x,\eta)\hat u(\eta)d\eta \] and refers to the products \(A^*\circ B\), \(B^*\circ A\) and \(A\circ p(x,D)\) with A and B Fourier integral operators associated with the same phase function \(\omega\) and \[ p(x,D)u(x)=\int \exp (i<x,\eta >)\chi '(\eta)p(x,\eta)\hat u(\eta)d\eta,\quad p\in \tilde S^ m_{\psi}(X,\Gamma,\epsilon). \] In part IV the results of parts II, III are applied to the constructions of parametrices and the study of propagation of singularities for the model operator \[ D=D_ t-a_ 1(t,x,D_ x)-a_ 0(t,x,D_ x,D_ t), \] where \(a_ 1(t,x,\xi)\) is an analytic family of real-valued symbols of order one, \[ D_ t=-\sqrt{- 1}\partial /\partial t,\quad D_{x_ j}=-\sqrt{-1}\partial /\partial x_ j \] and \(a_ 0(t,x,\tau,\xi)\) is a symbol of order zero for a certain class in \(R^{n+1}\). The result is: the set of the inhomogeneous Gevrey singularities of the solutions of the equation \(Pu=0\) is invariant under the action of the Hamiltonian flow associated to \(p_ 1(t,x,\tau,\xi)=\tau -a_ 1(t,x,\xi).\)
Reviewer: F.Rühs

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
58J40 Pseudodifferential and Fourier integral operators on manifolds
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
35A20 Analyticity in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asada, K., On the L^2boundedness of Fourier integral operators inR^n, Proc. Japan Acad., Ser. A, 57, 249-253 (1981) · Zbl 0512.58034
[2] Asada, K., On the L^2boundedness theorem of non-homogeneous Fourier integral operators inR^n, Kodai Math. J., 7, 248-272 (1984) · Zbl 0566.35097
[3] Beals, B., A general calculus of pseudodifferential operators, Duke Math. J., 42, 1-42 (1975) · Zbl 0343.35078
[4] Bony, J. M., Propagation des singularités différentiables pour une classe d’opérateurs différentiels à coefficients analytiques, Astérisque, 34-35, 43-91 (1976) · Zbl 0344.35075
[5] De Monvel, L. Boutet, Propagation des singularités d’équations analogue l’équation de Schraodinger, Springer Lecture Notes in Math., 459, 1-14 (1974) · Zbl 0305.35088
[6] L.Cattabriga - L.ZanghiratiFourier integral operators of infinite order and Gevrey spaces. Applications to the Cauchy problem for hyperbolic operators, Proc. NATO ASI «Advances in microlocal analysis», North-Holland Publ. Comp., Vol. 2, ed. by H.Garnir, 1985.
[7] Coddington, E. A.; Levinson, N., Theory of ordinary differential equations (1955), New York: McGraw-Hill, New York · Zbl 0064.33002
[8] Delbosco, D.; Rodino, L.; Rossati, F., Propagation of singularities for inhomogeneous pseudodifferential operators, Rend. Sem. Mat. Univ. Polit. Torino, 44, 155-172 (1986) · Zbl 0619.35119
[9] Duistermaat, J. J.; Hörmander, L., Fourier integral operators II, Acta Math., 128, 183-269 (1972) · Zbl 0232.47055
[10] Grushin, V. V.; Sananin, N. A., Some theorems on the singularities of solutions of differential equations with weighted principal symbol, Mat. Sb., 103, 37-51 (1977) · Zbl 0355.35015
[11] L.HörmanderLinear partial differential operators, Springer Verlag, Grundlehren der math. Wissenschaften Bd.,116 (1963). · Zbl 0108.09301
[12] Hörmander, L., L_2-estimates and existence theorems for the \(\bar \partial \) -operator, Acta Math., 113, 89-152 (1965) · Zbl 0158.11002
[13] Hörmander, L., Fourier integral operators I, Acta Math., 127, 79-183 (1971) · Zbl 0212.46601
[14] Hörmander, L., Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, C.P.A.M., 24, 671-704 (1971) · Zbl 0226.35019
[15] Hörmander, L., The Weyl calculus of pseudodifferential operators, C.P.A.M., 32, 359-443 (1979) · Zbl 0388.47032
[16] L.HörmanderThe analysis of linear partial differential operators I, Springer Verlag, Grundlehren der math. Wissenschaften, Bd.256 (1983). · Zbl 0521.35001
[17] S.LangAnalysis I, Addison-Wesley, 1968. · Zbl 0159.34303
[18] Lascar, R., Propagation des singularités des solutions d’equations pseudodifferentielles quasi-homogènes, Ann. Inst. Fourier, (Grenoble), 27, 79-123 (1977) · Zbl 0349.35079
[19] Liess, O., Intersection properties of weak analytically uniform classes of functions, Ark. Mat., 14, 1, 93-111 (1976) · Zbl 0328.26009
[20] Liess, O., Necessary and sufficient conditions for propagation of singularities for systems of linear partial differential operators with constant coefficients, C.P.D.E., 8, 2, 89-198 (1983) · Zbl 0524.35021
[21] O.Liess - L.RodinoA general class of Gevrey type pseudodifferential operators. Journées équations aux derivées partielles, Saint-Jean-de-Monts, 1983; conf. n. 6. · Zbl 0516.35086
[22] Liess, O.; Rodino, L., Inhomogeneous Gevrey classes and related pseudodifferential operators, Boll. Un. Mat. Ital., 3, 233-323 (1984) · Zbl 0557.35131
[23] M.LorenzAnisotropic operators with characteristics of constant multiplity, Preprint 16/84, Institut für Math. der Akad. der Wissenschaften Berlin, D.D.R.
[24] A.MohamedComportement asymptotique des valeurs propres d’une classe d’opérateurs pseudo différentiels surRn, Thése, Univ. de Nantes, 1983.
[25] Parenti, C.; Segala, F., Propagation and reflection of singularities for a class of evolution equations, C.P.D.E., 6, 741-782 (1981) · Zbl 0496.35082
[26] V. M.PetkovPropagation of singularities for pseudo differential operators, Preprint, /77, Institut für Math. Mech. der Akad. der Wissenschaften Berlin, D.D.R.
[27] Rodino, L., Microlocal analysis for spatially inhomogeneous pseudodifferential operators, Ann. Scuola Norm. Sup. Pisa, ser. IV, 9, 211-253 (1982) · Zbl 0501.35082
[28] L.RodinoOn the Gevrey wave front set of the solutions of a quasielliptic equation, Rend. Sem. Mat. Univ. Polit. Torino, Conference on «Linear partial and pseudodifferential equations», Torino,1982 (1983), pp. 221-234. · Zbl 0557.35014
[29] Sananin, N. A., On local solvability of equations of quasi-principal type, Mat. Sb., 97, 139, 503-516 (1975) · Zbl 0314.35019
[30] M.Sato - T.Kawai - M.KashiwaraHyperfunctions and pseudodifferential equations, Springer Lecture notes in Math.,287 (1973), ed. by H.Komatsu, pp. 265-529.
[31] Schulze, B. W., Degenerate boundary value problems for parabolic pseudo-differential operators, Math. Nachrichten, 121, 71-106 (1985) · Zbl 0569.35081
[32] Sjöstrand, J., Propagation of analytic singularities for second order Dirichlet problems I, C.P.D.E., 5, 1, 41-94 (1980) · Zbl 0458.35026
[33] Taniguchi, K., Fourier integral operators in Gevrey classes onR^nand the fundamental solution for a hyperbolic operator, Publ. R.I.M.S., 20, 491-542 (1984) · Zbl 0574.35082
[34] Treves, F., Introduction to pseudodifferential and Fourier integral operators, Volume 1: Pseudodifferential operators. Volume 2: Fourier integral operators (1980), New York and London: Plenum Press, New York and London · Zbl 0453.47027
[35] V. N.TulovskiiPropagation of singularities of operators with characteristics of constant multiplicity, Trudy Mosc. Math. Obsc.,39 (1979); Trans. Moscow Math. Soc., (1981), pp. 121-144. · Zbl 0474.47025
[36] Zanghirati, L., Iterati di operatori e regolarità Gevrey microlocale anisotropa, Rend. Sem. Mat. Padova, 17, 85-104 (1982) · Zbl 0516.35020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.