Dragicevic, Arnaud Z. Pseudomonotone variational inequality in action: case of the French dairy industrial network dynamics. (English) Zbl 07759650 J. Ind. Manag. Optim. 19, No. 12, 8657-8690 (2023). MSC: 90Bxx 91Bxx 47Nxx PDF BibTeX XML Cite \textit{A. Z. Dragicevic}, J. Ind. Manag. Optim. 19, No. 12, 8657--8690 (2023; Zbl 07759650) Full Text: DOI
Tan, Bing; Li, Songxiao Adaptive inertial subgradient extragradient methods for finding minimum-norm solutions of pseudomonotone variational inequalities. (English) Zbl 07715861 J. Ind. Manag. Optim. 19, No. 10, 7640-7659 (2023). MSC: 47J20 47J25 47J30 68W10 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Li}, J. Ind. Manag. Optim. 19, No. 10, 7640--7659 (2023; Zbl 07715861) Full Text: DOI
Solonukha, O. V. On the solvability of nonlinear parabolic functional-differential equations with shifts in the spatial variables. (English. Russian original) Zbl 1518.35612 Math. Notes 113, No. 5, 708-722 (2023); translation from Mat. Zametki 113, No. 5, 747-763 (2023). MSC: 35R10 35K59 PDF BibTeX XML Cite \textit{O. V. Solonukha}, Math. Notes 113, No. 5, 708--722 (2023; Zbl 1518.35612); translation from Mat. Zametki 113, No. 5, 747--763 (2023) Full Text: DOI
Zhu, Li-Jun; Yao, Zhangsong Splitting algorithms for solving variational inclusions and pseudomonotone variational inequalities. (English) Zbl 1519.47104 J. Nonlinear Convex Anal. 24, No. 5, 1021-1032 (2023). MSC: 47J25 47J22 47H05 65K15 PDF BibTeX XML Cite \textit{L.-J. Zhu} and \textit{Z. Yao}, J. Nonlinear Convex Anal. 24, No. 5, 1021--1032 (2023; Zbl 1519.47104) Full Text: Link
Hu, Shaotao; Wang, Yuanheng; Dong, Qiao-Li Convergence analysis of a new Bregman extragradient method for solving fixed point problems and variational inequality problems in reflexive Banach spaces. (English) Zbl 07708320 J. Sci. Comput. 96, No. 1, Paper No. 19, 24 p. (2023). MSC: 47H05 47J25 47H10 65J15 65K15 PDF BibTeX XML Cite \textit{S. Hu} et al., J. Sci. Comput. 96, No. 1, Paper No. 19, 24 p. (2023; Zbl 07708320) Full Text: DOI
Xie, Zhongbing; Cai, Gang; Li, Xiaoxiao; Dong, Qiao-Li A new self adaptive Tseng’s extragradient method with double-projection for solving pseudomonotone variational inequality problems in Hilbert spaces. (English) Zbl 07702452 Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 539-554 (2023). MSC: 47H05 47H07 47H10 54H25 PDF BibTeX XML Cite \textit{Z. Xie} et al., Int. J. Nonlinear Sci. Numer. Simul. 24, No. 2, 539--554 (2023; Zbl 07702452) Full Text: DOI
Xie, Zhongbing; Cai, Gang; Dong, Qiao-Li Strong convergence of Bregman projection method for solving variational inequality problems in reflexive Banach spaces. (English) Zbl 07676518 Numer. Algorithms 93, No. 1, 269-294 (2023). MSC: 65-XX 47H05 47H07 47H10 54H25 PDF BibTeX XML Cite \textit{Z. Xie} et al., Numer. Algorithms 93, No. 1, 269--294 (2023; Zbl 07676518) Full Text: DOI
Cen, Jinxia; Migórski, Stanisław; Min, Chao; Yao, Jen-Chih Hemivariational inequality for contaminant reaction-diffusion model of recovered fracturing fluid in the wellbore of shale gas reservoir. (English) Zbl 1522.76112 Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107020, 17 p. (2023). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 76V05 76R50 76M30 35Q35 86A05 PDF BibTeX XML Cite \textit{J. Cen} et al., Commun. Nonlinear Sci. Numer. Simul. 118, Article ID 107020, 17 p. (2023; Zbl 1522.76112) Full Text: DOI
Aji, Sani; Kumam, Poom; Awwal, Aliyu Muhammed; Yahaya, Mahmoud Muhammad; Bakoji, Abubakar Muhammad A new inertial-based method for solving pseudomonotone operator equations with application. (English) Zbl 1513.90229 Comput. Appl. Math. 42, No. 1, Paper No. 1, 31 p. (2023). MSC: 90C56 90C30 49J52 90C90 PDF BibTeX XML Cite \textit{S. Aji} et al., Comput. Appl. Math. 42, No. 1, Paper No. 1, 31 p. (2023; Zbl 1513.90229) Full Text: DOI
Duong Viet Thong Extragradient method with a new adaptive step size for solving non-Lipschitzian pseudo-monotone variational inequalities. (English) Zbl 07752835 Carpathian J. Math. 38, No. 2, 503-516 (2022). MSC: 47J25 47H05 47J20 PDF BibTeX XML Cite \textit{Duong Viet Thong}, Carpathian J. Math. 38, No. 2, 503--516 (2022; Zbl 07752835) Full Text: DOI
Shan, Zhuang; Zhu, Li-Jun; Wu, Danfeng On multi-step iterative algorithms with inertia terms for variational inequalities and fixed point problems. (English) Zbl 1506.47114 J. Nonlinear Convex Anal. 23, No. 12, 2883-2896 (2022). MSC: 47J25 49J40 65K15 PDF BibTeX XML Cite \textit{Z. Shan} et al., J. Nonlinear Convex Anal. 23, No. 12, 2883--2896 (2022; Zbl 1506.47114) Full Text: Link
Okeke, Chibueze Christian; Bello, Abdulmalik Usman; Jolaoso, Lateef Olakunle; Ukandu, Kingsley Chimuanya Inertial method for split null point problems with pseudomonotone variational inequality problems. (English) Zbl 1505.47088 Numer. Algebra Control Optim. 12, No. 4, 815-836 (2022). MSC: 47J25 47H05 49J40 PDF BibTeX XML Cite \textit{C. C. Okeke} et al., Numer. Algebra Control Optim. 12, No. 4, 815--836 (2022; Zbl 1505.47088) Full Text: DOI
Liu, Zhenhai; Papageorgiou, Nikolaos Dirichlet problems with unbalanced growth and convection. (English) Zbl 1513.35154 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 41, 12 p. (2022). MSC: 35J15 35B40 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{N. Papageorgiou}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 41, 12 p. (2022; Zbl 1513.35154) Full Text: DOI
Figueiredo, Giovany; Vetro, Calogero The existence of solutions for the modified \((p(x),q(x))\)-Kirchhoff equation. (English) Zbl 1513.35233 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 39, 16 p. (2022). MSC: 35J60 35J92 PDF BibTeX XML Cite \textit{G. Figueiredo} and \textit{C. Vetro}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 39, 16 p. (2022; Zbl 1513.35233) Full Text: DOI
Okeke, Chibueze C.; Ugwunnadi, Godwin C.; Jolaoso, Lateef O. An extragradient inertial algorithm for solving split fixed-point problems of demicontractive mappings, with equilibrium and variational inequality problems. (English) Zbl 1504.47103 Demonstr. Math. 55, 506-527 (2022). MSC: 47J25 47H09 49J20 49J40 PDF BibTeX XML Cite \textit{C. C. Okeke} et al., Demonstr. Math. 55, 506--527 (2022; Zbl 1504.47103) Full Text: DOI
Xie, Zhongbing; Cai, Gang; Li, Xiaoxiao; Dong, Qiao-Li An improved algorithm with Armijo line-search rule for solving pseudomonotone variational inequality problems in Banach spaces. (English) Zbl 1502.47095 Anal. Math. Phys. 12, No. 5, Paper No. 116, 22 p. (2022). MSC: 47J25 47H05 49J40 65K15 PDF BibTeX XML Cite \textit{Z. Xie} et al., Anal. Math. Phys. 12, No. 5, Paper No. 116, 22 p. (2022; Zbl 1502.47095) Full Text: DOI
Hu, Shaotao; Wang, Yuanheng; Dong, Qiao-Li Self-adaptive extragradient methods for solving variational inequalities and fixed point problems in 2-uniformly convex and uniformly smooth Banach spaces. (English) Zbl 1518.47103 Numer. Funct. Anal. Optim. 43, No. 12, 1401-1422 (2022). MSC: 47J25 47H05 49J40 65J15 65K15 PDF BibTeX XML Cite \textit{S. Hu} et al., Numer. Funct. Anal. Optim. 43, No. 12, 1401--1422 (2022; Zbl 1518.47103) Full Text: DOI
Tan, Bing; Qin, Xiaolong; Cho, Sun Young Revisiting subgradient extragradient methods for solving variational inequalities. (English) Zbl 07565427 Numer. Algorithms 90, No. 4, 1593-1615 (2022). MSC: 47J20 47J25 47J30 68W10 65K15 PDF BibTeX XML Cite \textit{B. Tan} et al., Numer. Algorithms 90, No. 4, 1593--1615 (2022; Zbl 07565427) Full Text: DOI
Liu, Zhenhai; Zeng, Shengda; Gasiński, Leszek; Kim, Yun-Ho Nonlocal double phase complementarity systems with convection term and mixed boundary conditions. (English) Zbl 1497.35142 J. Geom. Anal. 32, No. 9, Paper No. 241, 33 p. (2022). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J20 35J25 35J60 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Geom. Anal. 32, No. 9, Paper No. 241, 33 p. (2022; Zbl 1497.35142) Full Text: DOI
Hieu, Dang Van; Reich, Simeon Two Bregman projection methods for solving variational inequalities. (English) Zbl 1492.65178 Optimization 71, No. 7, 1777-1802 (2022). MSC: 65K15 47H05 47H10 65Y05 68W10 PDF BibTeX XML Cite \textit{D. Van Hieu} and \textit{S. Reich}, Optimization 71, No. 7, 1777--1802 (2022; Zbl 1492.65178) Full Text: DOI
Tan, Bing; Cho, Sun Young; Yao, Jen-Chih Accelerated inertial subgradient extragradient algorithms with non-monotonic step sizes for equilibrium problems and fixed point problems. (English) Zbl 07556336 J. Nonlinear Var. Anal. 6, No. 1, 89-122 (2022). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{B. Tan} et al., J. Nonlinear Var. Anal. 6, No. 1, 89--122 (2022; Zbl 07556336) Full Text: DOI
Oyewole, Olawale Kazeem; Jolaoso, Lateef Olakunle; Mewomo, Oluwatosin Temitope An explicit extragradient algorithm for solving variational inequality problem with application. (English) Zbl 07545969 Asian-Eur. J. Math. 15, No. 6, Article ID 2250117, 26 p. (2022). MSC: 47H09 49J35 90C47 PDF BibTeX XML Cite \textit{O. K. Oyewole} et al., Asian-Eur. J. Math. 15, No. 6, Article ID 2250117, 26 p. (2022; Zbl 07545969) Full Text: DOI
Abubakar, Jamilu; Kumam, Poom; Rehman, Habib ur Self-adaptive inertial subgradient extragradient scheme for pseudomonotone variational inequality problem. (English) Zbl 07533156 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 77-96 (2022). MSC: 65-XX 68-XX PDF BibTeX XML Cite \textit{J. Abubakar} et al., Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 77--96 (2022; Zbl 07533156) Full Text: DOI
Yao, Yonghong; She, Yaoyao; Shahzad, Naseer Strong convergence of self-adaptive Tseng’s algorithms for solving split variational inequalities. (English) Zbl 1487.49013 J. Nonlinear Convex Anal. 23, No. 1, 143-158 (2022). Reviewer: Liya Liu (Chengdu) MSC: 49J40 49M37 65K10 90C25 PDF BibTeX XML Cite \textit{Y. Yao} et al., J. Nonlinear Convex Anal. 23, No. 1, 143--158 (2022; Zbl 1487.49013) Full Text: Link
Zeng, Shengda; Bai, Yunru; Gasiński, Leszek Nonlinear nonhomogeneous obstacle problems with multivalued convection term. (English) Zbl 1485.35160 J. Geom. Anal. 32, No. 3, Paper No. 75, 14 p. (2022). Reviewer: Patrick Winkert (Berlin) MSC: 35J20 35J25 35J60 35A01 PDF BibTeX XML Cite \textit{S. Zeng} et al., J. Geom. Anal. 32, No. 3, Paper No. 75, 14 p. (2022; Zbl 1485.35160) Full Text: DOI
Tan, Bing; Cho, Sun Young Two adaptive modified subgradient extragradient methods for bilevel pseudomonotone variational inequalities with applications. (English) Zbl 07469350 Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106160, 16 p. (2022). MSC: 47J20 47J25 47J30 68W10 65K15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106160, 16 p. (2022; Zbl 07469350) Full Text: DOI
Tan, Bing; Cho, Sun Young Two projection-based methods for bilevel pseudomonotone variational inequalities involving non-Lipschitz operators. (English) Zbl 1503.47098 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 2, Paper No. 64, 20 p. (2022). MSC: 47J25 49J40 65K15 PDF BibTeX XML Cite \textit{B. Tan} and \textit{S. Y. Cho}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 2, Paper No. 64, 20 p. (2022; Zbl 1503.47098) Full Text: DOI
Oyewole, O. K.; Abass, H. A.; Mebawondu, A. A.; Aremu, K. O. A Tseng extragradient method for solving variational inequality problems in Banach spaces. (English) Zbl 1496.47101 Numer. Algorithms 89, No. 2, 769-789 (2022). MSC: 47J25 47H09 49J40 90C47 PDF BibTeX XML Cite \textit{O. K. Oyewole} et al., Numer. Algorithms 89, No. 2, 769--789 (2022; Zbl 1496.47101) Full Text: DOI
Cen, Jinxia; Min, Chao; Sofonea, Mircea; Zeng, Shengda Generalized well-posedness results for a class of hemivariational inequalities. (English) Zbl 1479.49020 J. Math. Anal. Appl. 507, No. 2, Article ID 125839, 23 p. (2022). MSC: 49J40 49J27 PDF BibTeX XML Cite \textit{J. Cen} et al., J. Math. Anal. Appl. 507, No. 2, Article ID 125839, 23 p. (2022; Zbl 1479.49020) Full Text: DOI
Xie, Zhongbing; Cai, Gang; Li, Xiaoxiao; Dong, Qiao-Li Self-adaptive subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces. (English) Zbl 1493.47106 Banach J. Math. Anal. 16, No. 1, Paper No. 1, 18 p. (2022). MSC: 47J25 47H05 49J40 PDF BibTeX XML Cite \textit{Z. Xie} et al., Banach J. Math. Anal. 16, No. 1, Paper No. 1, 18 p. (2022; Zbl 1493.47106) Full Text: DOI
Cheng, Yi; O’Regan, Donal Characteristic of solutions for non-local fractional \(p(x)\)-Laplacian with multi-valued nonlinear perturbations. (English) Zbl 07747350 Math. Nachr. 294, No. 7, 1311-1332 (2021). MSC: 35R11 35B65 35D30 35J25 35J92 35R70 PDF BibTeX XML Cite \textit{Y. Cheng} and \textit{D. O'Regan}, Math. Nachr. 294, No. 7, 1311--1332 (2021; Zbl 07747350) Full Text: DOI
Yin, Tzu-Chien; Shahzad, Naseer Construction and analysis of iterative methods for solving fixed points and pseudomonotone variational inequalities. (English) Zbl 1505.47099 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 4, 83-94 (2021). MSC: 47J25 47H05 47H09 49J40 PDF BibTeX XML Cite \textit{T.-C. Yin} and \textit{N. Shahzad}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 83, No. 4, 83--94 (2021; Zbl 1505.47099) Full Text: Link
Chadli, Ouayl; Yao, Jen-Chih On variational-hemivariational inequalities with nonconvex constraints. (English) Zbl 07557731 J. Nonlinear Var. Anal. 5, No. 6, 893-907 (2021). MSC: 47-XX 46-XX PDF BibTeX XML Cite \textit{O. Chadli} and \textit{J.-C. Yao}, J. Nonlinear Var. Anal. 5, No. 6, 893--907 (2021; Zbl 07557731) Full Text: DOI
Cen, Jinxia; Liu, Yongjian; Nguyen, Van Thien; Zeng, Shengda Existence of solutions for fractional evolution inclusion with application to mechanical contact problems. (English) Zbl 1512.34109 Fractals 29, No. 8, Article ID 2140036, 14 p. (2021). Reviewer: Zhenbin Fan (Jiangsu) MSC: 34G25 34A08 34A12 47N20 49J52 PDF BibTeX XML Cite \textit{J. Cen} et al., Fractals 29, No. 8, Article ID 2140036, 14 p. (2021; Zbl 1512.34109) Full Text: DOI
Liu, Zhenhai; Papageorgiou, Nikolaos A double phase equation with convection. (English) Zbl 1499.35210 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 91, 11 p. (2021). MSC: 35J15 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{N. Papageorgiou}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 91, 11 p. (2021; Zbl 1499.35210) Full Text: DOI
Muangchoo, Kanikar A viscosity type projection method for solving pseudomonotone variational inequalities. (English) Zbl 1493.47095 Nonlinear Funct. Anal. Appl. 26, No. 2, 347-371 (2021). MSC: 47J25 47J20 PDF BibTeX XML Cite \textit{K. Muangchoo}, Nonlinear Funct. Anal. Appl. 26, No. 2, 347--371 (2021; Zbl 1493.47095) Full Text: Link
Tan, Bing; Li, Songxiao; Qin, Xiaolong On modified subgradient extragradient methods for pseudomonotone variational inequality problems with applications. (English) Zbl 1482.47131 Comput. Appl. Math. 40, No. 7, Paper No. 253, 22 p. (2021). MSC: 47J25 47H05 49J40 PDF BibTeX XML Cite \textit{B. Tan} et al., Comput. Appl. Math. 40, No. 7, Paper No. 253, 22 p. (2021; Zbl 1482.47131) Full Text: DOI
Ahn, Jeongho Dynamic frictional thermoviscoelastic Gao beams. (English) Zbl 1484.74061 Z. Angew. Math. Phys. 72, No. 6, Paper No. 194, 25 p. (2021). Reviewer: Ramón Quintanilla De Latorre (Barcelona) MSC: 74M15 74M10 74K10 74F05 74H20 74S05 35Q74 PDF BibTeX XML Cite \textit{J. Ahn}, Z. Angew. Math. Phys. 72, No. 6, Paper No. 194, 25 p. (2021; Zbl 1484.74061) Full Text: DOI
Van Hieu, Dang; Cho, Yeol Je; Xiao, Yi-Bin; Kumam, Poom Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces. (English) Zbl 07425500 Vietnam J. Math. 49, No. 4, 1165-1183 (2021). MSC: 65K15 47H05 47J20 49J40 49M30 PDF BibTeX XML Cite \textit{D. Van Hieu} et al., Vietnam J. Math. 49, No. 4, 1165--1183 (2021; Zbl 07425500) Full Text: DOI
Papageorgiou, Nikolaos S.; Vetro, Calogero; Vetro, Francesca A singular \(( p , q )\)-equation with convection and a locally defined perturbation. (English) Zbl 1479.35491 Appl. Math. Lett. 118, Article ID 107175, 7 p. (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J92 35B09 35A01 PDF BibTeX XML Cite \textit{N. S. Papageorgiou} et al., Appl. Math. Lett. 118, Article ID 107175, 7 p. (2021; Zbl 1479.35491) Full Text: DOI
Su, Guangwang; Liu, Zhenhai Regularization methods for quasi-mixed equilibrium problems in Banach spaces. (English) Zbl 1519.47064 J. Nonlinear Var. Anal. 5, No. 5, 761-776 (2021). MSC: 47J06 47H05 PDF BibTeX XML Cite \textit{G. Su} and \textit{Z. Liu}, J. Nonlinear Var. Anal. 5, No. 5, 761--776 (2021; Zbl 1519.47064)
Liu, Liya; Cho, Sun Young; Yao, Jen-Chih Convergence analysis of an inertial Tseng’s extragradient algorithm for solving pseudomonotone variational inequalities and applications. (English) Zbl 1519.47086 J. Nonlinear Var. Anal. 5, No. 4, 627-644 (2021). MSC: 47J25 47H05 49J40 PDF BibTeX XML Cite \textit{L. Liu} et al., J. Nonlinear Var. Anal. 5, No. 4, 627--644 (2021; Zbl 1519.47086)
Jeßberger, Julius; Růžička, Michael Existence of weak solutions for inhomogeneous generalized Navier-Stokes equations. (English) Zbl 1479.35667 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 212, Article ID 112538, 16 p. (2021). MSC: 35Q35 35B45 35J92 35D30 35B65 35A01 76D03 76D05 76A05 PDF BibTeX XML Cite \textit{J. Jeßberger} and \textit{M. Růžička}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 212, Article ID 112538, 16 p. (2021; Zbl 1479.35667) Full Text: DOI arXiv
Xie, Zhongbing; Cai, Gang; Li, Xiaoxiao; Dong, Qiao-Li Strong convergence of the modified inertial extragradient method with line-search process for solving variational inequality problems in Hilbert spaces. (English) Zbl 07389347 J. Sci. Comput. 88, No. 3, Paper No. 50, 19 p. (2021). MSC: 47H05 47H07 47H10 54H25 PDF BibTeX XML Cite \textit{Z. Xie} et al., J. Sci. Comput. 88, No. 3, Paper No. 50, 19 p. (2021; Zbl 07389347) Full Text: DOI
Godwin, E. C.; Izuchukwu, C.; Mewomo, O. T. An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces. (English) Zbl 1494.47106 Boll. Unione Mat. Ital. 14, No. 2, 379-401 (2021). MSC: 47J25 47H09 49J40 PDF BibTeX XML Cite \textit{E. C. Godwin} et al., Boll. Unione Mat. Ital. 14, No. 2, 379--401 (2021; Zbl 1494.47106) Full Text: DOI
Kien, Bui Trong; Qin, Xiaolong; Wen, Ching-Feng; Yao, Jen-Chih The Galerkin method and regularization for variational inequalities in reflexive Banach spaces. (English) Zbl 07359214 J. Optim. Theory Appl. 189, No. 2, 578-596 (2021). MSC: 47J20 49J40 49J53 90C33 PDF BibTeX XML Cite \textit{B. T. Kien} et al., J. Optim. Theory Appl. 189, No. 2, 578--596 (2021; Zbl 07359214) Full Text: DOI
Reich, Simeon; Thong, Duong Viet; Dong, Qiao-Li; Li, Xiao-Huan; Dung, Vu Tien New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings. (English) Zbl 1465.65054 Numer. Algorithms 87, No. 2, 527-549 (2021). MSC: 65K15 65J99 47H09 47J05 47J25 PDF BibTeX XML Cite \textit{S. Reich} et al., Numer. Algorithms 87, No. 2, 527--549 (2021; Zbl 1465.65054) Full Text: DOI
Anh, Pham Ngoc; Thang, T. V.; Thach, H. T. C. Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces. (English) Zbl 1489.65093 Numer. Algorithms 87, No. 1, 335-363 (2021). Reviewer: Bing Tan (Chengdu) MSC: 65K15 47J20 PDF BibTeX XML Cite \textit{P. N. Anh} et al., Numer. Algorithms 87, No. 1, 335--363 (2021; Zbl 1489.65093) Full Text: DOI
Carl, Siegfried; Le, Vy. K. On systems of parabolic variational inequalities with multivalued terms. (English) Zbl 1458.35239 Monatsh. Math. 194, No. 2, 227-260 (2021). MSC: 35K86 47H04 PDF BibTeX XML Cite \textit{S. Carl} and \textit{Vy. K. Le}, Monatsh. Math. 194, No. 2, 227--260 (2021; Zbl 1458.35239) Full Text: DOI
Gebrie, Anteneh Getachew; Wangkeeree, Rabian Parallel projected subgradient method for solving split system of fixed point set constraint equilibrium problems in Hilbert spaces. (English) Zbl 07336865 Novi Sad J. Math. 50, No. 2, 7-33 (2020). MSC: 47-XX PDF BibTeX XML Cite \textit{A. G. Gebrie} and \textit{R. Wangkeeree}, Novi Sad J. Math. 50, No. 2, 7--33 (2020; Zbl 07336865) Full Text: DOI
Hieu, Dang Van; Cho, Yeol Je; Xiao, Yi-bin; Kumam, Poom Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces. (English) Zbl 1459.65096 Optimization 69, No. 10, 2279-2304 (2020). MSC: 65K15 47H10 47H05 65J22 65Y05 68W10 PDF BibTeX XML Cite \textit{D. Van Hieu} et al., Optimization 69, No. 10, 2279--2304 (2020; Zbl 1459.65096) Full Text: DOI
Bahrouni, Anouar; Rădulescu, Vicenţiu D.; Winkert, Patrick Double phase problems with variable growth and convection for the Baouendi-Grushin operator. (English) Zbl 1454.35179 Z. Angew. Math. Phys. 71, No. 6, Paper No. 183, 14 p. (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J70 35P30 76H05 PDF BibTeX XML Cite \textit{A. Bahrouni} et al., Z. Angew. Math. Phys. 71, No. 6, Paper No. 183, 14 p. (2020; Zbl 1454.35179) Full Text: DOI
Růžička, Michael Nonlinear functional analysis. An introduction. 2nd revised edition. (Nichtlineare Funktionalanalysis. Eine Einführung.) (German) Zbl 1448.46002 Masterclass. Berlin: Springer Spektrum (ISBN 978-3-662-62190-5/pbk; 978-3-662-62190-5/ebook). xii, 227 p. (2020). MSC: 46-01 47-01 47H05 47H10 47H11 PDF BibTeX XML Cite \textit{M. Růžička}, Nichtlineare Funktionalanalysis. Eine Einführung. 2nd revised edition. Berlin: Springer Spektrum (2020; Zbl 1448.46002) Full Text: DOI
Migórski, Stanisław; Pączka, Dariusz Almost history-dependent variational-hemivariational inequality for frictional contact problems. (English) Zbl 1448.74079 SIAM J. Math. Anal. 52, No. 5, 4362-4390 (2020). MSC: 74M15 74M10 74H20 74H25 74D99 74C99 PDF BibTeX XML Cite \textit{S. Migórski} and \textit{D. Pączka}, SIAM J. Math. Anal. 52, No. 5, 4362--4390 (2020; Zbl 1448.74079) Full Text: DOI
Peng, Zijia Optimal obstacle control problems involving nonsmooth cost functionals and quasilinear variational inequalities. (English) Zbl 1454.49017 SIAM J. Control Optim. 58, No. 4, 2236-2255 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 49J40 47J20 49J20 49K20 PDF BibTeX XML Cite \textit{Z. Peng}, SIAM J. Control Optim. 58, No. 4, 2236--2255 (2020; Zbl 1454.49017) Full Text: DOI
Migórski, Stanisław; Nguyen, van Thien; Zeng, Shengda Nonlocal elliptic variational-hemivariational inequalities. (English) Zbl 1445.35310 J. Integral Equations Appl. 32, No. 1, 51-58 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35R11 49J52 35J87 PDF BibTeX XML Cite \textit{S. Migórski} et al., J. Integral Equations Appl. 32, No. 1, 51--58 (2020; Zbl 1445.35310) Full Text: DOI Euclid
Hieu, Dang Van; Quy, Pham Kim An inertial modified algorithm for solving variational inequalities. (English) Zbl 1516.65050 RAIRO, Oper. Res. 54, No. 1, 163-178 (2020). MSC: 65K15 47H05 47J25 47J20 49J40 90C33 91B50 PDF BibTeX XML Cite \textit{D. Van Hieu} and \textit{P. K. Quy}, RAIRO, Oper. Res. 54, No. 1, 163--178 (2020; Zbl 1516.65050) Full Text: DOI
Migórski, Stanisław; Pączka, Dariusz Variational inequality with almost history-dependent operator for frictionless contact problems. (English) Zbl 1431.74094 J. Math. Anal. Appl. 485, No. 2, Article ID 123803, 23 p. (2020). MSC: 74M15 49J40 74P10 35Q74 PDF BibTeX XML Cite \textit{S. Migórski} and \textit{D. Pączka}, J. Math. Anal. Appl. 485, No. 2, Article ID 123803, 23 p. (2020; Zbl 1431.74094) Full Text: DOI
Kravvaritis, Dimitrios C.; Yannacopoulos, Athanasios N. Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. (English) Zbl 1443.49001 De Gruyter Graduate. Berlin: De Gruyter (ISBN 978-3-11-064736-5/pbk; 978-3-11-064738-9/ebook). xxv, 474 p. (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 49-02 47-02 35J20 35J25 35J50 35J57 46A55 47H04 47H05 47H09 47H10 47J20 47J25 47J30 49J35 49J40 49J50 49J52 49J53 49K20 49K35 49N15 49N60 58C30 58E05 58E30 58E35 58J05 58J32 90C25 PDF BibTeX XML Cite \textit{D. C. Kravvaritis} and \textit{A. N. Yannacopoulos}, Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. Berlin: De Gruyter (2020; Zbl 1443.49001) Full Text: DOI
Bahrouni, Anouar; Bahrouni, Sabri; Xiang, Mingqi On a class of nonvariational problems in fractional Orlicz-Sobolev spaces. (English) Zbl 1430.35084 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111595, 13 p. (2020). MSC: 35J60 35R11 46E35 PDF BibTeX XML Cite \textit{A. Bahrouni} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111595, 13 p. (2020; Zbl 1430.35084) Full Text: DOI
Guibé, Olivier; Mokrane, A.; Tahraoui, Y.; Vallet, G. Lewy-Stampacchia’s inequality for a pseudomonotone parabolic problem. (English) Zbl 1420.35143 Adv. Nonlinear Anal. 9, 591-612 (2020). MSC: 35K86 35R35 PDF BibTeX XML Cite \textit{O. Guibé} et al., Adv. Nonlinear Anal. 9, 591--612 (2020; Zbl 1420.35143) Full Text: DOI
Tahraoui, Yassine Tools to prove a parabolic Lewy-Stampacchia’s inequality. (English) Zbl 1470.35212 Ahusborde, É. (ed.) et al., Fifteenth international conference Zaragoza-Pau on mathematics and its applications. Proceedings of the conference, Jaca, Spain, September 10–12, 2018. Zaragoza: Prensas de la Universidad de Zaragoza. Monogr. Mat. García Galdeano 42, 285-295 (2019). MSC: 35K86 35R35 PDF BibTeX XML Cite \textit{Y. Tahraoui}, Monogr. Mat. García Galdeano 42, 285--295 (2019; Zbl 1470.35212)
Motreanu, Dumitru; Peng, Zijia Doubly coupled systems of elliptic hemivariational inequalities: existence and location. (English) Zbl 1442.35154 Comput. Math. Appl. 77, No. 11, 3001-3009 (2019). MSC: 35J88 35B51 35J62 35R70 PDF BibTeX XML Cite \textit{D. Motreanu} and \textit{Z. Peng}, Comput. Math. Appl. 77, No. 11, 3001--3009 (2019; Zbl 1442.35154) Full Text: DOI
Hieu, Dang Van; Cho, Yeol Je; Xiao, Yi-Bin Golden ratio algorithms with new stepsize rules for variational inequalities. (English) Zbl 1512.90229 Math. Methods Appl. Sci. 42, No. 18, 6067-6082 (2019). MSC: 90C33 49J40 65K10 90C47 PDF BibTeX XML Cite \textit{D. Van Hieu} et al., Math. Methods Appl. Sci. 42, No. 18, 6067--6082 (2019; Zbl 1512.90229) Full Text: DOI arXiv
Ogbuisi, Ferdinard U.; Shehu, Yekini A projected subgradient-proximal method for split equality equilibrium problems of pseudomonotone bifunctions in Banach spaces. (English) Zbl 1479.47071 J. Nonlinear Var. Anal. 3, No. 2, 205-224 (2019). MSC: 47J25 47H05 65K10 47N20 PDF BibTeX XML Cite \textit{F. U. Ogbuisi} and \textit{Y. Shehu}, J. Nonlinear Var. Anal. 3, No. 2, 205--224 (2019; Zbl 1479.47071) Full Text: DOI
Vinh, Nguyen The; Muu, Le Dung Inertial extragradient algorithms for solving equilibrium problems. (English) Zbl 07115063 Acta Math. Vietnam. 44, No. 3, 639-663 (2019). MSC: 47H10 47J25 47N10 90C25 PDF BibTeX XML Cite \textit{N. T. Vinh} and \textit{L. D. Muu}, Acta Math. Vietnam. 44, No. 3, 639--663 (2019; Zbl 07115063) Full Text: DOI
Peng, Zijia; Gasiński, Leszek; Migórski, Stanisław; Ochal, Anna A class of evolution variational inequalities with nonconvex constraints. (English) Zbl 07111797 Optimization 68, No. 10, 1881-1895 (2019). MSC: 47J35 47J20 47J22 35K86 PDF BibTeX XML Cite \textit{Z. Peng} et al., Optimization 68, No. 10, 1881--1895 (2019; Zbl 07111797) Full Text: DOI
Shehu, Yekini; Iyiola, Olaniyi On a modified extragradient method for variational inequality problem with application to industrial electricity production. (English) Zbl 1415.47009 J. Ind. Manag. Optim. 15, No. 1, 319-342 (2019). MSC: 47J25 47H06 47H09 47J20 PDF BibTeX XML Cite \textit{Y. Shehu} and \textit{O. Iyiola}, J. Ind. Manag. Optim. 15, No. 1, 319--342 (2019; Zbl 1415.47009) Full Text: DOI
Galewski, Marek On the application of monotonicity methods to the boundary value problems on the Sierpinski gasket. (English) Zbl 1444.35141 Numer. Funct. Anal. Optim. 40, No. 11, 1344-1354 (2019). MSC: 35R02 35J25 28A80 47H05 PDF BibTeX XML Cite \textit{M. Galewski}, Numer. Funct. Anal. Optim. 40, No. 11, 1344--1354 (2019; Zbl 1444.35141) Full Text: DOI
Vuong, Phan Tu; Shehu, Yekini Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. (English) Zbl 1415.47011 Numer. Algorithms 81, No. 1, 269-291 (2019). MSC: 47J25 49J40 49J15 65K15 PDF BibTeX XML Cite \textit{P. T. Vuong} and \textit{Y. Shehu}, Numer. Algorithms 81, No. 1, 269--291 (2019; Zbl 1415.47011) Full Text: DOI
Pączka, Dariusz Elastic contact problem with Coulomb friction and normal compliance in Orlicz spaces. (English) Zbl 1443.49019 Nonlinear Anal., Real World Appl. 45, 97-115 (2019). Reviewer: Leszek Gasiński (Kraków) MSC: 49J40 49J27 47J22 46E30 PDF BibTeX XML Cite \textit{D. Pączka}, Nonlinear Anal., Real World Appl. 45, 97--115 (2019; Zbl 1443.49019) Full Text: DOI
Carl, Siegfried; Motreanu, Dumitru Extremal solutions for quasilinear parabolic systems in trapping regions. (English) Zbl 1474.35197 Pure Appl. Funct. Anal. 3, No. 1, 57-74 (2018). MSC: 35D30 35K51 35K90 35K92 PDF BibTeX XML Cite \textit{S. Carl} and \textit{D. Motreanu}, Pure Appl. Funct. Anal. 3, No. 1, 57--74 (2018; Zbl 1474.35197) Full Text: Link
Buranakorn, Kan; Plubtieng, Somyot; Yuying, Tadchai New forward backward splitting methods for solving pseudomonotone variational inequalities. (English) Zbl 1446.47061 Thai J. Math. 16, No. 2, 489-502 (2018). MSC: 47J25 47H05 49J40 65K05 90C25 PDF BibTeX XML Cite \textit{K. Buranakorn} et al., Thai J. Math. 16, No. 2, 489--502 (2018; Zbl 1446.47061) Full Text: Link
Thong, Duong Viet; Hieu, Dang Van Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. (English) Zbl 07143612 J. Comput. Appl. Math. 341, 80-98 (2018). MSC: 65K15 65Y05 68W10 47H05 47H10 PDF BibTeX XML Cite \textit{D. V. Thong} and \textit{D. Van Hieu}, J. Comput. Appl. Math. 341, 80--98 (2018; Zbl 07143612) Full Text: DOI
Gasiński, Leszek; Migórski, Stanisław; Ochal, Anna; Peng, Zijia Optimal control for doubly nonlinear evolutionary inclusions. (English) Zbl 1426.49004 Appl. Math. Comput. 321, 244-254 (2018). MSC: 49J20 34G25 47J20 49J40 PDF BibTeX XML Cite \textit{L. Gasiński} et al., Appl. Math. Comput. 321, 244--254 (2018; Zbl 1426.49004) Full Text: DOI
Solonukha, O. V. On an elliptic differential-difference equation with nonsymmetric shift operator. (English. Russian original) Zbl 1409.35206 Math. Notes 104, No. 4, 572-586 (2018); translation from Mat. Zametki 104, No. 4, 604-620 (2018). MSC: 35R10 PDF BibTeX XML Cite \textit{O. V. Solonukha}, Math. Notes 104, No. 4, 572--586 (2018; Zbl 1409.35206); translation from Mat. Zametki 104, No. 4, 604--620 (2018) Full Text: DOI
Sofonea, Mircea; Bartosz, Krzysztof Subdifferential inclusions for stress formulations of unilateral contact problems. (English) Zbl 1404.74129 Math. Mech. Solids 23, No. 3, 392-410 (2018). MSC: 74M15 74G25 74G30 74H20 74H25 PDF BibTeX XML Cite \textit{M. Sofonea} and \textit{K. Bartosz}, Math. Mech. Solids 23, No. 3, 392--410 (2018; Zbl 1404.74129) Full Text: DOI
Kamaletdinov, A. Sh.; Kozhevnikova, L. M.; Melnik, L. Yu. Existence of solutions of anisotropic elliptic equations with variable exponents in unbounded domains. (English) Zbl 1394.35193 Lobachevskii J. Math. 39, No. 2, 224-235 (2018). MSC: 35J62 35J25 PDF BibTeX XML Cite \textit{A. Sh. Kamaletdinov} et al., Lobachevskii J. Math. 39, No. 2, 224--235 (2018; Zbl 1394.35193) Full Text: DOI
Aadi, S. Ben; Chadli, O.; Koukkous, A. Evolution hemivariational inequalities for non-stationary Navier-Stokes equations: existence of periodic solutions by an equilibrium problem approach. (English) Zbl 1395.49007 Minimax Theory Appl. 3, No. 1, 107-130 (2018). Reviewer: Leszek Gasiński (Kraków) MSC: 49J40 47J20 90C33 65K10 49M20 PDF BibTeX XML Cite \textit{S. B. Aadi} et al., Minimax Theory Appl. 3, No. 1, 107--130 (2018; Zbl 1395.49007) Full Text: Link
Inoan, D.; Kolumbán, Jozsef On quasi-equilibrium problems with trifunctions. (English) Zbl 06862655 Minimax Theory Appl. 3, No. 1, 161-172 (2018). MSC: 47J20 47N10 49J40 PDF BibTeX XML Cite \textit{D. Inoan} and \textit{J. Kolumbán}, Minimax Theory Appl. 3, No. 1, 161--172 (2018; Zbl 06862655) Full Text: Link
Van Hieu, Dang; Thong, Duong Viet New extragradient-like algorithms for strongly pseudomonotone variational inequalities. (English) Zbl 1384.65041 J. Glob. Optim. 70, No. 2, 385-399 (2018). Reviewer: Hans Benker (Merseburg) MSC: 65K15 47H05 49J40 PDF BibTeX XML Cite \textit{D. Van Hieu} and \textit{D. V. Thong}, J. Glob. Optim. 70, No. 2, 385--399 (2018; Zbl 1384.65041) Full Text: DOI
Carl, Siegfried; Tietz, Christoph Quasilinear elliptic equations with measures and multi-valued lower order terms. (English) Zbl 1386.35506 Discrete Contin. Dyn. Syst., Ser. S 11, No. 2, 193-212 (2018). MSC: 35R70 35R06 35J62 47H05 PDF BibTeX XML Cite \textit{S. Carl} and \textit{C. Tietz}, Discrete Contin. Dyn. Syst., Ser. S 11, No. 2, 193--212 (2018; Zbl 1386.35506) Full Text: DOI
Migórski, Stanisław; Pączka, Dariusz On steady flow of non-Newtonian fluids with frictional boundary conditions in reflexive Orlicz spaces. (English) Zbl 1448.76010 Nonlinear Anal., Real World Appl. 39, 337-361 (2018). MSC: 76A05 76D03 76M30 PDF BibTeX XML Cite \textit{S. Migórski} and \textit{D. Pączka}, Nonlinear Anal., Real World Appl. 39, 337--361 (2018; Zbl 1448.76010) Full Text: DOI
Kim, Jong Kyu; Raouf, A. A class of generalized operator equilibrium problems. (English) Zbl 1487.47092 Filomat 31, No. 1, 1-8 (2017). MSC: 47J20 47J25 PDF BibTeX XML Cite \textit{J. K. Kim} and \textit{A. Raouf}, Filomat 31, No. 1, 1--8 (2017; Zbl 1487.47092) Full Text: DOI
Chadli, O.; Koukkous, A.; Saidi, A. Existence of anti-periodic solutions for nonlinear implicit evolution equations with time dependent pseudomonotone operators. (English) Zbl 1402.35024 J. Nonlinear Var. Anal. 1, No. 1, 71-88 (2017). MSC: 35B10 47J35 47H05 35A01 90C33 PDF BibTeX XML Cite \textit{O. Chadli} et al., J. Nonlinear Var. Anal. 1, No. 1, 71--88 (2017; Zbl 1402.35024)
Aussel, Didier; Sultana, Asrifa Quasi-variational inequality problems with non-compact valued constraint maps. (English) Zbl 06864253 J. Math. Anal. Appl. 456, No. 2, 1482-1494 (2017). MSC: 47-XX 49-XX PDF BibTeX XML Cite \textit{D. Aussel} and \textit{A. Sultana}, J. Math. Anal. Appl. 456, No. 2, 1482--1494 (2017; Zbl 06864253) Full Text: DOI
Pham Ky Anh; Tran Viet Anh; Le Dung Muu On bilevel split pseudomonotone variational inequality problems with applications. (English) Zbl 1370.47066 Acta Math. Vietnam. 42, No. 3, 413-429 (2017). MSC: 47J25 47N10 90C25 PDF BibTeX XML Cite \textit{Pham Ky Anh} et al., Acta Math. Vietnam. 42, No. 3, 413--429 (2017; Zbl 1370.47066) Full Text: DOI
Carl, Siegfried; Motreanu, Dumitru Extremal solutions for nonvariational quasilinear elliptic systems via expanding trapping regions. (English) Zbl 1368.35147 Monatsh. Math. 182, No. 4, 801-821 (2017). Reviewer: Giovanni Anello (Messina) MSC: 35J92 35J57 35B50 PDF BibTeX XML Cite \textit{S. Carl} and \textit{D. Motreanu}, Monatsh. Math. 182, No. 4, 801--821 (2017; Zbl 1368.35147) Full Text: DOI
Khan, Suhel Ahmad Generalized vector equilibrium problems with relatively monotone mappings. (English) Zbl 1366.49011 Thai J. Math. 14, No. 3, 741-755 (2016). MSC: 49J40 47N10 90C47 PDF BibTeX XML Cite \textit{S. A. Khan}, Thai J. Math. 14, No. 3, 741--755 (2016; Zbl 1366.49011) Full Text: Link
Chadli, Ouayl; Ansari, Qamrul Hasan; Al-Homidan, Suliman Existence of solutions for nonlinear implicit differential equations: an equilibrium problem approach. (English) Zbl 1364.34087 Numer. Funct. Anal. Optim. 37, No. 11, 1385-1419 (2016). Reviewer: Sotiris K. Ntouyas (Ioannina) MSC: 34G20 49J40 34A09 47N20 PDF BibTeX XML Cite \textit{O. Chadli} et al., Numer. Funct. Anal. Optim. 37, No. 11, 1385--1419 (2016; Zbl 1364.34087) Full Text: DOI
Asfaw, Teffera M. A new topological degree theory for perturbations of demicontinuous operators and applications to nonlinear equations with nonmonotone nonlinearities. (English) Zbl 1422.47060 J. Funct. Spaces 2016, Article ID 3970621, 15 p. (2016). Reviewer: Petru Jebelean (Timişoara) MSC: 47H11 47H05 35D30 PDF BibTeX XML Cite \textit{T. M. Asfaw}, J. Funct. Spaces 2016, Article ID 3970621, 15 p. (2016; Zbl 1422.47060) Full Text: DOI
Solonukha, Olesya V. On nonlinear and quasiliniear elliptic functional differential equations. (English) Zbl 1418.34131 Discrete Contin. Dyn. Syst., Ser. S 9, No. 3, 869-893 (2016). MSC: 34K10 35J25 35J40 35R20 PDF BibTeX XML Cite \textit{O. V. Solonukha}, Discrete Contin. Dyn. Syst., Ser. S 9, No. 3, 869--893 (2016; Zbl 1418.34131) Full Text: DOI
Kim, In-Sook; Bae, Jung-Hyun Elliptic boundary value problems with discontinuous nonlinearities. (English) Zbl 1338.35451 J. Nonlinear Convex Anal. 17, No. 1, 27-38 (2016). MSC: 35R05 35J40 35J60 47N20 47H04 47H05 47H11 47H30 PDF BibTeX XML Cite \textit{I.-S. Kim} and \textit{J.-H. Bae}, J. Nonlinear Convex Anal. 17, No. 1, 27--38 (2016; Zbl 1338.35451) Full Text: Link
Asfaw, Teffera M. Noncoercive perturbed densely defined operators and application to parabolic problems. (English) Zbl 1439.47032 Abstr. Appl. Anal. 2015, Article ID 357934, 11 p. (2015); corrigendum ibid. 2017, Article ID 2739102, 1 p. (2017). MSC: 47H05 47H14 47N20 35K20 35K59 PDF BibTeX XML Cite \textit{T. M. Asfaw}, Abstr. Appl. Anal. 2015, Article ID 357934, 11 p. (2015; Zbl 1439.47032) Full Text: DOI
Kim, In-Sook; Bae, Jung-Hyun; Hong, Suk-Joon Periodic solutions of semilinear wave equations with discontinuous nonlinearities. (English) Zbl 1338.35298 Bound. Value Probl. 2015, Paper No. 197, 12 p. (2015). MSC: 35L71 35R05 47H04 47H05 47H11 35L20 35B10 PDF BibTeX XML Cite \textit{I.-S. Kim} et al., Bound. Value Probl. 2015, Paper No. 197, 12 p. (2015; Zbl 1338.35298) Full Text: DOI
Zgurovsky, Michael Z.; Kasyanov, Pavlo O. Evolution inclusions in nonsmooth systems with applications for Earth data processing. Uniform trajectory attrators for nonautonomous evolution inclusion solution with pointwise pseudomonotone mappings. (English) Zbl 1333.34101 Gao, David (ed.) et al., Advances in global optimization. Selected papers based on the presentations at the 3rd world congress on global optimization in engineering and science, WCGO, Anhui, China, July 8–12, 2013. Cham: Springer (ISBN 978-3-319-08376-6/hbk; 978-3-319-08377-3/ebook). Springer Proceedings in Mathematics & Statistics 95, 283-294 (2015). MSC: 34G25 34D45 34D05 37C60 47N20 PDF BibTeX XML Cite \textit{M. Z. Zgurovsky} and \textit{P. O. Kasyanov}, Springer Proc. Math. Stat. 95, 283--294 (2015; Zbl 1333.34101) Full Text: DOI
Huang, Yong; Liu, Zhenhai; Migórski, Stanislaw Elliptic hemivariational inequalities with nonhomogeneous Neumann boundary conditions and their applications to static frictional contact problems. (English) Zbl 1321.35063 Acta Appl. Math. 138, No. 1, 153-170 (2015). MSC: 35J87 35B34 47J20 49J40 65N25 PDF BibTeX XML Cite \textit{Y. Huang} et al., Acta Appl. Math. 138, No. 1, 153--170 (2015; Zbl 1321.35063) Full Text: DOI
Gasiński, Leszek; Migórski, Stanisław; Ochal, Anna Existence results for evolutionary inclusions and variational-hemivariational inequalities. (English) Zbl 1317.35135 Appl. Anal. 94, No. 8, 1670-1694 (2015). MSC: 35K85 47J20 35K20 35K60 35K90 34G25 35R70 PDF BibTeX XML Cite \textit{L. Gasiński} et al., Appl. Anal. 94, No. 8, 1670--1694 (2015; Zbl 1317.35135) Full Text: DOI
Xiao, Yi-bin; Huang, Nan-jing; Lu, Jue A system of time-dependent hemivariational inequalities with Volterra integral terms. (English) Zbl 1317.47060 J. Optim. Theory Appl. 165, No. 3, 837-853 (2015). MSC: 47J20 49J52 PDF BibTeX XML Cite \textit{Y.-b. Xiao} et al., J. Optim. Theory Appl. 165, No. 3, 837--853 (2015; Zbl 1317.47060) Full Text: DOI
Motreanu, Dumitru; Motreanu, Viorica Venera Location results for variational-hemivariational inequalities. (English) Zbl 1316.49015 Han, Weimin (ed.) et al., Advances in variational and hemivariational inequalities. Theory, numerical analysis, and applications. Cham: Springer (ISBN 978-3-319-14489-4/hbk; 978-3-319-14490-0/ebook). Advances in Mechanics and Mathematics 33, 65-88 (2015). MSC: 49J40 49J52 47J20 47H05 PDF BibTeX XML Cite \textit{D. Motreanu} and \textit{V. V. Motreanu}, Adv. Mech. Math. 33, 65--88 (2015; Zbl 1316.49015) Full Text: DOI