Le Thi Phuong Ngoc; Nguyen Anh Triet; Phan Thi My Duyen; Nguyen Thanh Long General decay and blow-up results of a Robin-Dirichlet problem for a pseudoparabolic nonlinear equation of Kirchhoff-Carrier type with viscoelastic term. (English) Zbl 07686830 Acta Math. Vietnam. 48, No. 1, 151-191 (2023). MSC: 34B60 35K55 35B40 35K70 PDF BibTeX XML Cite \textit{Le Thi Phuong Ngoc} et al., Acta Math. Vietnam. 48, No. 1, 151--191 (2023; Zbl 07686830) Full Text: DOI OpenURL
Fu, Jun-Liang; Liu, Jijun On the determination of the spatial-dependent potential coefficient in a linear pseudoparabolic equation. (English) Zbl 07681473 Adv. Comput. Math. 49, No. 2, Paper No. 28, 31 p. (2023). MSC: 35R30 35A02 35B09 35B30 35K70 65K05 65M32 PDF BibTeX XML Cite \textit{J.-L. Fu} and \textit{J. Liu}, Adv. Comput. Math. 49, No. 2, Paper No. 28, 31 p. (2023; Zbl 07681473) Full Text: DOI OpenURL
Yuan, Wen-Shuo; Ge, Bin; Cao, Qing-Hai Initial boundary value problem for \(p\)-Laplacian type parabolic equation with singular potential and logarithmic nonlinearity. (English) Zbl 07655409 Anal. Math. Phys. 13, No. 1, Paper No. 20, 18 p. (2023). MSC: 35B40 35B44 35K20 35K70 35K92 PDF BibTeX XML Cite \textit{W.-S. Yuan} et al., Anal. Math. Phys. 13, No. 1, Paper No. 20, 18 p. (2023; Zbl 07655409) Full Text: DOI OpenURL
Nghia, Bui Dai; Nguyen, Van Tien; Long, Le Dinh On Cauchy problem for pseudo-parabolic equation with Caputo-Fabrizio operator. (English) Zbl 1507.35328 Demonstr. Math. 56, Article ID 20220180, 20 p. (2023). MSC: 35R11 26A33 35B65 35K20 35K70 PDF BibTeX XML Cite \textit{B. D. Nghia} et al., Demonstr. Math. 56, Article ID 20220180, 20 p. (2023; Zbl 1507.35328) Full Text: DOI OpenURL
Di, Huafei; Qian, Xian; Peng, Xiaoming Blow up and exponential growth for a pseudo-parabolic equation with \(p ( x )\)-Laplacian and variable exponents. (English) Zbl 1505.35053 Appl. Math. Lett. 138, Article ID 108517, 8 p. (2023). MSC: 35B44 35K35 35K70 35K92 PDF BibTeX XML Cite \textit{H. Di} et al., Appl. Math. Lett. 138, Article ID 108517, 8 p. (2023; Zbl 1505.35053) Full Text: DOI OpenURL
Fu, Jun-Liang; Liu, Jijun Recovery of a potential coefficient in a pseudoparabolic system from nonlocal observation. (English) Zbl 1504.35644 Appl. Numer. Math. 184, 121-136 (2023). MSC: 35R30 35K70 65M32 PDF BibTeX XML Cite \textit{J.-L. Fu} and \textit{J. Liu}, Appl. Numer. Math. 184, 121--136 (2023; Zbl 1504.35644) Full Text: DOI OpenURL
Fjellström, Carmina; Nyström, Kaj; Vestberg, Matias Tug-of-war with Kolmogorov. (English) Zbl 1501.35251 J. Differ. Equations 342, 501-558 (2023). MSC: 35K65 35B05 35K51 35K70 35K92 35H20 35R03 35Q91 91A80 91A05 PDF BibTeX XML Cite \textit{C. Fjellström} et al., J. Differ. Equations 342, 501--558 (2023; Zbl 1501.35251) Full Text: DOI arXiv OpenURL
Beshtokov, Murat Khamidbievich Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind. (Russian. English summary) Zbl 07643867 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 32, No. 4, 502-527 (2022). MSC: 65M06 65M12 35R09 35L35 PDF BibTeX XML Cite \textit{M. K. Beshtokov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 32, No. 4, 502--527 (2022; Zbl 07643867) Full Text: DOI MNR OpenURL
Aitzhanov, S. E.; Kusherbayeva, U. R.; Bekenayeva, K. S. Solvability of pseudoparabolic equation with Caputo fractional derivative. (English) Zbl 1504.35610 Chaos Solitons Fractals 160, Article ID 112193, 10 p. (2022). MSC: 35R11 26A33 35B40 35B44 PDF BibTeX XML Cite \textit{S. E. Aitzhanov} et al., Chaos Solitons Fractals 160, Article ID 112193, 10 p. (2022; Zbl 1504.35610) Full Text: DOI OpenURL
Dien, Nguyen Minh On mild solutions of the generalized nonlinear fractional pseudo-parabolic equation with a nonlocal condition. (English) Zbl 1503.35254 Fract. Calc. Appl. Anal. 25, No. 2, 559-583 (2022). MSC: 35R11 35K70 35S10 35B30 26A33 PDF BibTeX XML Cite \textit{N. M. Dien}, Fract. Calc. Appl. Anal. 25, No. 2, 559--583 (2022; Zbl 1503.35254) Full Text: DOI OpenURL
Anceschi, Francesca; Rebucci, Annalaura A note on the weak regularity theory for degenerate Kolmogorov equations. (English) Zbl 1505.35061 J. Differ. Equations 341, 538-588 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35K70 35B09 35B65 35H20 35Q84 PDF BibTeX XML Cite \textit{F. Anceschi} and \textit{A. Rebucci}, J. Differ. Equations 341, 538--588 (2022; Zbl 1505.35061) Full Text: DOI arXiv OpenURL
Yang, Fan; Xu, Jian-Ming; Li, Xiao-Xiao Regularization methods for identifying the initial value of time fractional pseudo-parabolic equation. (English) Zbl 1503.35284 Calcolo 59, No. 4, Paper No. 47, 39 p. (2022). MSC: 35R25 35K70 35R11 35R30 47A52 PDF BibTeX XML Cite \textit{F. Yang} et al., Calcolo 59, No. 4, Paper No. 47, 39 p. (2022; Zbl 1503.35284) Full Text: DOI OpenURL
Vu, Ngo Tran; Dung, Dao Bao; Dung, Huynh Thi Hoang General decay for a nonlinear pseudo-parabolic equation with viscoelastic term. (English) Zbl 1503.35100 Demonstr. Math. 55, 737-751 (2022). MSC: 35K70 35B40 35K20 PDF BibTeX XML Cite \textit{N. T. Vu} et al., Demonstr. Math. 55, 737--751 (2022; Zbl 1503.35100) Full Text: DOI OpenURL
Dong, Hongjie; Guo, Yan; Yastrzhembskiy, Timur Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition. (English) Zbl 1498.35542 Kinet. Relat. Models 15, No. 3, 467-516 (2022). MSC: 35Q84 35K70 35H10 35B45 34A12 35Q70 PDF BibTeX XML Cite \textit{H. Dong} et al., Kinet. Relat. Models 15, No. 3, 467--516 (2022; Zbl 1498.35542) Full Text: DOI arXiv OpenURL
Borikhanov, Meiirkhan B.; Torebek, Berikbol T. Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation. (English) Zbl 1498.35107 Appl. Math. Lett. 134, Article ID 108366, 7 p. (2022). MSC: 35B44 35B33 35K58 35K70 PDF BibTeX XML Cite \textit{M. B. Borikhanov} and \textit{B. T. Torebek}, Appl. Math. Lett. 134, Article ID 108366, 7 p. (2022; Zbl 1498.35107) Full Text: DOI arXiv OpenURL
Ngo Tran Vu; Dao Bao Dung; Huynh Thi Hoang Dung General decay and blow-up results for a class of nonlinear pseudo-parabolic equations with viscoelastic term. (English) Zbl 1497.35053 J. Math. Anal. Appl. 516, No. 2, Article ID 126557, 25 p. (2022). MSC: 35B40 35B44 35K35 35K58 35K70 35R09 PDF BibTeX XML Cite \textit{Ngo Tran Vu} et al., J. Math. Anal. Appl. 516, No. 2, Article ID 126557, 25 p. (2022; Zbl 1497.35053) Full Text: DOI OpenURL
Zeng, Fugeng; Deng, Qigang; Huang, Yao Global existence and blow up for a class of pseudo-parabolic equations with logarithmic nonlinearity. (English) Zbl 1497.35068 Results Appl. Math. 15, Article ID 100308, 14 p. (2022). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35B44 35K35 35K58 35K70 PDF BibTeX XML Cite \textit{F. Zeng} et al., Results Appl. Math. 15, Article ID 100308, 14 p. (2022; Zbl 1497.35068) Full Text: DOI OpenURL
Qu, Chengyuan; Zhou, Wenshu Asymptotic analysis for a pseudo-parabolic equation with nonstandard growth conditions. (English) Zbl 1496.35107 Appl. Anal. 101, No. 13, 4701-4720 (2022). MSC: 35B44 35B40 35D30 35K35 35K58 35K70 PDF BibTeX XML Cite \textit{C. Qu} and \textit{W. Zhou}, Appl. Anal. 101, No. 13, 4701--4720 (2022; Zbl 1496.35107) Full Text: DOI OpenURL
Polat, Mustafa On the blow-up of solutions to a fourth-order pseudoparabolic equation. (English) Zbl 1496.35106 Turk. J. Math. 46, No. 3, 946-952 (2022). MSC: 35B44 35A23 35B10 35K35 35K70 35R09 PDF BibTeX XML Cite \textit{M. Polat}, Turk. J. Math. 46, No. 3, 946--952 (2022; Zbl 1496.35106) Full Text: DOI OpenURL
Gao, Peng Limiting dynamics for stochastic nonclassical diffusion equations. (English) Zbl 1496.60071 Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5597-5629 (2022). MSC: 60H15 35K70 35Q35 35A01 PDF BibTeX XML Cite \textit{P. Gao}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 10, 5597--5629 (2022; Zbl 1496.60071) Full Text: DOI arXiv OpenURL
Vabishchevich, P. N. Splitting schemes for one class of operator differential equations. (English. Russian original) Zbl 1496.65131 Comput. Math. Math. Phys. 62, No. 7, 1033-1040 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1059-1066 (2022). MSC: 65M06 65N06 35K70 76A10 35Q35 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Math. Math. Phys. 62, No. 7, 1033--1040 (2022; Zbl 1496.65131); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 7, 1059--1066 (2022) Full Text: DOI OpenURL
Ruzhansky, Michael; Serikbaev, Daurenbek; Torebek, Berikbol T.; Tokmagambetov, Niyaz Direct and inverse problems for time-fractional pseudo-parabolic equations. (English) Zbl 1495.35201 Quaest. Math. 45, No. 7, 1071-1089 (2022). MSC: 35R11 35D30 35K70 35R30 45K05 PDF BibTeX XML Cite \textit{M. Ruzhansky} et al., Quaest. Math. 45, No. 7, 1071--1089 (2022; Zbl 1495.35201) Full Text: DOI arXiv OpenURL
Guerand, Jessica; Mouhot, Clément Quantitative De Giorgi methods in kinetic theory. (Méthodes à la De Giorgi quantitatives en théorie cinétique.) (English. French summary) Zbl 1495.35109 J. Éc. Polytech., Math. 9, 1159-1181 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K70 35Q84 35R09 35B45 35B65 PDF BibTeX XML Cite \textit{J. Guerand} and \textit{C. Mouhot}, J. Éc. Polytech., Math. 9, 1159--1181 (2022; Zbl 1495.35109) Full Text: DOI arXiv OpenURL
Kitaeva, Ol’ga Gennad’evna Invariant manifolds of semilinear Sobolev type equations. (English) Zbl 1492.35003 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 101-111 (2022). MSC: 35-02 35B42 35K70 35S10 37L25 PDF BibTeX XML Cite \textit{O. G. Kitaeva}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 101--111 (2022; Zbl 1492.35003) Full Text: DOI MNR OpenURL
Zamyshlyaeva, Alena Aleksandrovna; Bychkov, Evgeniĭ Viktorovich Semilinear Sobolev type mathematical models. (English) Zbl 1492.35006 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 43-59 (2022). MSC: 35-02 34G20 35C09 35K70 35Q35 PDF BibTeX XML Cite \textit{A. A. Zamyshlyaeva} and \textit{E. V. Bychkov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 15, No. 1, 43--59 (2022; Zbl 1492.35006) Full Text: DOI MNR OpenURL
Dong, Hongjie; Yastrzhembskiy, Timur Global \({L}_p\) estimates for kinetic Kolmogorov-Fokker-Planck equations in nondivergence form. (English) Zbl 1493.35015 Arch. Ration. Mech. Anal. 245, No. 1, 501-564 (2022). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35B45 35K10 35K70 35Q84 PDF BibTeX XML Cite \textit{H. Dong} and \textit{T. Yastrzhembskiy}, Arch. Ration. Mech. Anal. 245, No. 1, 501--564 (2022; Zbl 1493.35015) Full Text: DOI arXiv OpenURL
Anceschi, Francesca Spatial regularity for a class of degenerate Kolmogorov equations. (English) Zbl 1492.35060 Ric. Mat. 71, No. 1, 271-281 (2022). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35B45 35K70 35Q84 35B65 PDF BibTeX XML Cite \textit{F. Anceschi}, Ric. Mat. 71, No. 1, 271--281 (2022; Zbl 1492.35060) Full Text: DOI arXiv OpenURL
Kozhanov, A. I. Boundary-value problems for Sobolev-type equations with irreversible operator coefficient of the highest derivatives. (English. Russian original) Zbl 1491.35295 J. Math. Sci., New York 260, No. 3, 307-314 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 34-41 (2019). MSC: 35M13 35A01 35A02 35K70 PDF BibTeX XML Cite \textit{A. I. Kozhanov}, J. Math. Sci., New York 260, No. 3, 307--314 (2022; Zbl 1491.35295); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 34--41 (2019) Full Text: DOI OpenURL
Chuong, Quach Van; Nhan, Le Cong; Truong, Le Xuan Existence and non-existence of global solutions of pseudo-parabolic equations involving \(p(x)\)-Laplacian and logarithmic nonlinearity. (English) Zbl 1490.35212 J. Elliptic Parabol. Equ. 8, No. 1, 483-512 (2022). MSC: 35K70 35A01 35B40 35B44 35K92 PDF BibTeX XML Cite \textit{Q. Van Chuong} et al., J. Elliptic Parabol. Equ. 8, No. 1, 483--512 (2022; Zbl 1490.35212) Full Text: DOI OpenURL
Nguyen, Huy Tuan; Tuan, Nguyen Anh; Yang, Chao Global well-posedness for fractional Sobolev-Galpern type equations. (English) Zbl 1489.35303 Discrete Contin. Dyn. Syst. 42, No. 6, 2637-2665 (2022). MSC: 35R11 35K20 35K58 35K70 PDF BibTeX XML Cite \textit{H. T. Nguyen} et al., Discrete Contin. Dyn. Syst. 42, No. 6, 2637--2665 (2022; Zbl 1489.35303) Full Text: DOI arXiv OpenURL
Edoh, Ametana; Zakari, Djibibe Moussa; Koulinté, Aleda Strongly generalized solution of a fractional problem of parabolic evolution of order-two in a plate with integral boundary conditions. (English) Zbl 1499.35632 Adv. Differ. Equ. Control Process. 26, 131-141 (2022). MSC: 35R11 35K70 35B45 46E30 35D30 35B30 PDF BibTeX XML Cite \textit{A. Edoh} et al., Adv. Differ. Equ. Control Process. 26, 131--141 (2022; Zbl 1499.35632) Full Text: DOI OpenURL
Djibibe, Moussa Zakari; Soampa, Bangan; Tcharie, Kokou Uniqueness of the solutions of nonlocal pluriparabolic fractional problems with weighted integral boundary conditions. (English) Zbl 1499.35366 Adv. Differ. Equ. Control Process. 26, 103-112 (2022). MSC: 35K70 35B45 46E30 35D30 35B30 PDF BibTeX XML Cite \textit{M. Z. Djibibe} et al., Adv. Differ. Equ. Control Process. 26, 103--112 (2022; Zbl 1499.35366) Full Text: DOI OpenURL
Tuan, Nguyen Anh; O’Regan, Donal; Baleanu, Dumitru; Tuan, Nguyen H. On time fractional pseudo-parabolic equations with nonlocal integral conditions. (English) Zbl 1497.35503 Evol. Equ. Control Theory 11, No. 1, 225-238 (2022). MSC: 35R11 35K70 26A33 35B65 PDF BibTeX XML Cite \textit{N. A. Tuan} et al., Evol. Equ. Control Theory 11, No. 1, 225--238 (2022; Zbl 1497.35503) Full Text: DOI OpenURL
Ipocoana, Erica; Rebucci, Annalaura Pointwise estimates for degenerate Kolmogorov equations with \(L^p\)-source term. (English) Zbl 1487.35134 J. Evol. Equ. 22, No. 1, Paper No. 2, 25 p. (2022). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35B45 35B44 35K70 35K65 35B65 PDF BibTeX XML Cite \textit{E. Ipocoana} and \textit{A. Rebucci}, J. Evol. Equ. 22, No. 1, Paper No. 2, 25 p. (2022; Zbl 1487.35134) Full Text: DOI arXiv OpenURL
Chattouh, Abdeldjalil; Saoudi, Khaled; Nouar, Maroua Rothe-Legendre pseudospectral method for a semilinear pseudoparabolic equation with nonclassical boundary condition. (English) Zbl 07473978 Nonlinear Anal., Model. Control 27, No. 1, 38-53 (2022). MSC: 65Mxx 35Kxx 35Qxx PDF BibTeX XML Cite \textit{A. Chattouh} et al., Nonlinear Anal., Model. Control 27, No. 1, 38--53 (2022; Zbl 07473978) Full Text: DOI OpenURL
Litsgård, Malte; Nyström, Kaj Potential theory for a class of strongly degenerate parabolic operators of Kolmogorov type with rough coefficients. (English. French summary) Zbl 1481.35262 J. Math. Pures Appl. (9) 157, 45-100 (2022). MSC: 35K65 35H20 35K20 35K70 35R03 PDF BibTeX XML Cite \textit{M. Litsgård} and \textit{K. Nyström}, J. Math. Pures Appl. (9) 157, 45--100 (2022; Zbl 1481.35262) Full Text: DOI arXiv OpenURL
Dai, Xiaoqiang; Han, Jiangbo; Lin, Qiang; Tian, Xueteng Anomalous pseudo-parabolic Kirchhoff-type dynamical model. (English) Zbl 1479.35544 Adv. Nonlinear Anal. 11, 503-534 (2022). MSC: 35K70 35B40 35B44 35K20 35K59 35R11 PDF BibTeX XML Cite \textit{X. Dai} et al., Adv. Nonlinear Anal. 11, 503--534 (2022; Zbl 1479.35544) Full Text: DOI OpenURL
Yen, Dang Van; Binh, Ho Duy; Long, Le Dinh; Van, Ho Thi Kim Well-posedness results and blow-up for a class of semilinear heat equations. (English) Zbl 1494.35087 Adv. Difference Equ. 2021, Paper No. 241, 11 p. (2021). MSC: 35K05 35B44 35K60 35K55 35K70 PDF BibTeX XML Cite \textit{D. Van Yen} et al., Adv. Difference Equ. 2021, Paper No. 241, 11 p. (2021; Zbl 1494.35087) Full Text: DOI OpenURL
Long, Le Dinh; Zhou, Yong; Sakthivel, Rathinasamy; Tuan, Nguyen Huy Well-posedness and ill-posedness results for backward problem for fractional pseudo-parabolic equation. (English) Zbl 1490.35214 J. Appl. Math. Comput. 67, No. 1-2, 175-206 (2021). MSC: 35K70 26A33 35B45 35B65 35K20 35R11 PDF BibTeX XML Cite \textit{L. D. Long} et al., J. Appl. Math. Comput. 67, No. 1--2, 175--206 (2021; Zbl 1490.35214) Full Text: DOI OpenURL
Yuan, Jianbo; Zhang, Shixuan; Xie, Yongqin; Zhang, Jiangwei Exponential attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. (English) Zbl 07533400 AIMS Math. 6, No. 11, 11778-11795 (2021). MSC: 35B41 35B40 35K58 35K70 PDF BibTeX XML Cite \textit{J. Yuan} et al., AIMS Math. 6, No. 11, 11778--11795 (2021; Zbl 07533400) Full Text: DOI OpenURL
Kuznetsov, Ivan; Sazhenkov, Sergey Singular limits of the quasi-linear Kolmogorov-type equation with a source term. (English) Zbl 1490.35213 J. Hyperbolic Differ. Equ. 18, No. 4, 789-856 (2021). MSC: 35K70 35D30 35R12 PDF BibTeX XML Cite \textit{I. Kuznetsov} and \textit{S. Sazhenkov}, J. Hyperbolic Differ. Equ. 18, No. 4, 789--856 (2021; Zbl 1490.35213) Full Text: DOI arXiv OpenURL
Azizbayov, Elvin I. The unique solvability of a nonlocal inverse boundary-value problem for the pseudo-hyperbolic equation of fourth order. (English) Zbl 1499.35710 Adv. Differ. Equ. Control Process. 24, No. 1, 79-100 (2021). MSC: 35R30 35K70 35A01 35A02 35A09 PDF BibTeX XML Cite \textit{E. I. Azizbayov}, Adv. Differ. Equ. Control Process. 24, No. 1, 79--100 (2021; Zbl 1499.35710) Full Text: DOI OpenURL
Xie, Yongqin; Li, Jun; Zhu, Kaixuan Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth. (English) Zbl 1487.35106 Adv. Difference Equ. 2021, Paper No. 75, 18 p. (2021). MSC: 35B41 35K57 35B40 35K70 37L30 PDF BibTeX XML Cite \textit{Y. Xie} et al., Adv. Difference Equ. 2021, Paper No. 75, 18 p. (2021; Zbl 1487.35106) Full Text: DOI OpenURL
Karapinar, Erdal; Binh, Ho Duy; Luc, Nguyen Hoang; Can, Nguyen Huu On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. (English) Zbl 1487.35407 Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021). MSC: 35R11 35K70 26A33 PDF BibTeX XML Cite \textit{E. Karapinar} et al., Adv. Difference Equ. 2021, Paper No. 70, 24 p. (2021; Zbl 1487.35407) Full Text: DOI OpenURL
Lyubanova, Anna Sh. The regularity of the solutions of inverse problems for the pseudoparabolic equation. (English) Zbl 07510964 J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 414-424 (2021). MSC: 35Kxx 35Rxx 35Lxx PDF BibTeX XML Cite \textit{A. Sh. Lyubanova}, J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 414--424 (2021; Zbl 07510964) Full Text: DOI MNR OpenURL
Xiao, Liming; Li, Mingkun Initial boundary value problem for a class of higher-order \(n\)-dimensional nonlinear pseudo-parabolic equations. (English) Zbl 1487.35231 Bound. Value Probl. 2021, Paper No. 5, 24 p. (2021). MSC: 35K70 35B45 35D30 35D35 35K35 35K58 PDF BibTeX XML Cite \textit{L. Xiao} and \textit{M. Li}, Bound. Value Probl. 2021, Paper No. 5, 24 p. (2021; Zbl 1487.35231) Full Text: DOI OpenURL
Orumbayeva, N. T.; Tokmagambetova, T. D. On one solution of the boundary value problem for a pseudohyperbolic equation of fourth order. (English) Zbl 1489.35170 Lobachevskii J. Math. 42, No. 15, 3705-3714 (2021). MSC: 35L82 35A01 PDF BibTeX XML Cite \textit{N. T. Orumbayeva} and \textit{T. D. Tokmagambetova}, Lobachevskii J. Math. 42, No. 15, 3705--3714 (2021; Zbl 1489.35170) Full Text: DOI OpenURL
Taramova, Khedi Sumanovna On the global solvability of the Cahn-Hilliard equation. (Russian. English summary) Zbl 1486.35280 Chebyshevskiĭ Sb. 22, No. 3(79), 467-473 (2021). MSC: 35K70 35K30 35K58 PDF BibTeX XML Cite \textit{K. S. Taramova}, Chebyshevskiĭ Sb. 22, No. 3(79), 467--473 (2021; Zbl 1486.35280) Full Text: DOI MNR OpenURL
Dron’, V. S.; Medyns’kyĭ, I. P. Properties of integrals which have the type of derivatives of volume potentials for degenerated \(\vec{2b}\)-parabolic equation of Kolmogorov type. (English) Zbl 1499.35367 Bukovyn. Mat. Zh. 9, No. 2, 7-21 (2021). MSC: 35K70 PDF BibTeX XML Cite \textit{V. S. Dron'} and \textit{I. P. Medyns'kyĭ}, Bukovyn. Mat. Zh. 9, No. 2, 7--21 (2021; Zbl 1499.35367) Full Text: DOI OpenURL
Beshtokov, Murat Khamidbievich A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation. (Russian. English summary) Zbl 07482133 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 3, 384-408 (2021). MSC: 65-XX 35K70 PDF BibTeX XML Cite \textit{M. K. Beshtokov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 3, 384--408 (2021; Zbl 07482133) Full Text: DOI MNR OpenURL
Huntul, M. J. Space-dependent heat source determination problem with nonlocal periodic boundary conditions. (English) Zbl 1481.35402 Results Appl. Math. 12, Article ID 100223, 11 p. (2021). MSC: 35R30 35K35 35K70 65M32 PDF BibTeX XML Cite \textit{M. J. Huntul}, Results Appl. Math. 12, Article ID 100223, 11 p. (2021; Zbl 1481.35402) Full Text: DOI OpenURL
Nhan, Nguyen Huu; Nhan, Truong Thi; Ngoc, Le Thi Phuong; Long, Nguyen Thanh Local existence and exponential decay of solutions for a nonlinear pseudoparabolic equation with viscoelastic term. (English) Zbl 1480.35044 Nonlinear Funct. Anal. Appl. 26, No. 1, 35-64 (2021). MSC: 35B40 35K20 35K70 35K55 35Q74 PDF BibTeX XML Cite \textit{N. H. Nhan} et al., Nonlinear Funct. Anal. Appl. 26, No. 1, 35--64 (2021; Zbl 1480.35044) Full Text: Link OpenURL
Zamorano, S. Approximate controllability from the exterior for a nonlocal Sobolev-Galpern type equation. (English) Zbl 1478.35229 Math. Notes 110, No. 4, 609-622 (2021). MSC: 35R11 35B60 35K20 35K70 93B05 PDF BibTeX XML Cite \textit{S. Zamorano}, Math. Notes 110, No. 4, 609--622 (2021; Zbl 1478.35229) Full Text: DOI OpenURL
Huntul, M. J.; Dhiman, Neeraj; Tamsir, Mohammad Reconstructing an unknown potential term in the third-order pseudo-parabolic problem. (English) Zbl 1476.65219 Comput. Appl. Math. 40, No. 4, Paper No. 140, 18 p. (2021). MSC: 65M32 65M22 65M30 35K70 PDF BibTeX XML Cite \textit{M. J. Huntul} et al., Comput. Appl. Math. 40, No. 4, Paper No. 140, 18 p. (2021; Zbl 1476.65219) Full Text: DOI OpenURL
Jiang, Feida; Shen, Xinyi A matrix Harnack estimate for a Kolmogorov type equation. (English) Zbl 1485.35276 Grigor’yan, Alexander (ed.) et al., Analysis and partial differential equations on manifolds, fractals and graphs. Contributions of the conference, Tianjin, China, September 2019. Berlin: De Gruyter. Adv. Anal. Geom. 3, 345-358 (2021). Reviewer: Antonio Vitolo (Fisciano) MSC: 35K70 35B45 35B50 PDF BibTeX XML Cite \textit{F. Jiang} and \textit{X. Shen}, Adv. Anal. Geom. 3, 345--358 (2021; Zbl 1485.35276) Full Text: DOI OpenURL
Roumaissa, Sassane; Nadjib, Boussetila; Faouzia, Rebbani A variant of quasi-reversibility method for a class of heat equations with involution perturbation. (English) Zbl 1476.35329 Math. Methods Appl. Sci. 44, No. 15, 11933-11943 (2021). MSC: 35R25 35K05 35K20 35K70 PDF BibTeX XML Cite \textit{S. Roumaissa} et al., Math. Methods Appl. Sci. 44, No. 15, 11933--11943 (2021; Zbl 1476.35329) Full Text: DOI OpenURL
Alikhanov, Anatoly; Beshtokov, Murat; Mehra, Mani The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation. (English) Zbl 1498.65133 Fract. Calc. Appl. Anal. 24, No. 4, 1231-1256 (2021). MSC: 65M06 65M12 65M15 35R11 PDF BibTeX XML Cite \textit{A. Alikhanov} et al., Fract. Calc. Appl. Anal. 24, No. 4, 1231--1256 (2021; Zbl 1498.65133) Full Text: DOI arXiv OpenURL
Cao, Yang; Zhao, Qiuting Asymptotic behavior of global solutions to a class of mixed pseudo-parabolic Kirchhoff equations. (English) Zbl 1475.35041 Appl. Math. Lett. 118, Article ID 107119, 6 p. (2021). MSC: 35B40 35K20 35K70 35K92 PDF BibTeX XML Cite \textit{Y. Cao} and \textit{Q. Zhao}, Appl. Math. Lett. 118, Article ID 107119, 6 p. (2021; Zbl 1475.35041) Full Text: DOI OpenURL
Zamyshlyaeva, Alyona Aleksandrovna; Lut, Aleksandr Valeryevich Inverse problem for incomplete Sobolev type equation of higher order. (English) Zbl 1475.35419 Differ. Uravn. Protsessy Upr. 2021, No. 3, 71-84 (2021). MSC: 35R30 35K15 35K70 35K90 PDF BibTeX XML Cite \textit{A. A. Zamyshlyaeva} and \textit{A. V. Lut}, Differ. Uravn. Protsessy Upr. 2021, No. 3, 71--84 (2021; Zbl 1475.35419) Full Text: Link OpenURL
Ivasyshen, S. D.; Pasichnyk, H. S. Representation of solutions of Kolmogorov type equations with increasing coefficients and degenerations on the initial hyperplane. (Ukrainian. English summary) Zbl 1488.35321 Bukovyn. Mat. Zh. 9, No. 1, 189-199 (2021). MSC: 35K70 35B53 PDF BibTeX XML Cite \textit{S. D. Ivasyshen} and \textit{H. S. Pasichnyk}, Bukovyn. Mat. Zh. 9, No. 1, 189--199 (2021; Zbl 1488.35321) Full Text: DOI OpenURL
Litsgård, Malte; Nyström, Kaj The Dirichlet problem for Kolmogorov-Fokker-Planck type equations with rough coefficients. (English) Zbl 1484.35357 J. Funct. Anal. 281, No. 10, Article ID 109226, 39 p. (2021). Reviewer: Dejun Luo (Beijing) MSC: 35Q84 35D30 35A01 35A02 35K65 35K70 35H20 35R03 PDF BibTeX XML Cite \textit{M. Litsgård} and \textit{K. Nyström}, J. Funct. Anal. 281, No. 10, Article ID 109226, 39 p. (2021; Zbl 1484.35357) Full Text: DOI arXiv OpenURL
Li, Fengjie; Liu, Jiaqi; Liu, Bingchen Classification of initial energy in a pseudo-parabolic equation with variable exponents. (English) Zbl 1472.35233 Anal. Math. Phys. 11, No. 4, Paper No. 148, 19 p. (2021). MSC: 35K70 35A01 35B44 35K20 35K58 PDF BibTeX XML Cite \textit{F. Li} et al., Anal. Math. Phys. 11, No. 4, Paper No. 148, 19 p. (2021; Zbl 1472.35233) Full Text: DOI OpenURL
Zhou, Jun; Xu, Guangyu; Mu, Chunlai Analysis of a pseudo-parabolic equation by potential wells. (English) Zbl 1473.35348 Ann. Mat. Pura Appl. (4) 200, No. 6, 2741-2766 (2021). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35K70 35B40 35B44 35K58 PDF BibTeX XML Cite \textit{J. Zhou} et al., Ann. Mat. Pura Appl. (4) 200, No. 6, 2741--2766 (2021; Zbl 1473.35348) Full Text: DOI OpenURL
Protsakh, Nataliya Determining of three unknown functions of a semilinear ultraparabolic equation. (English) Zbl 1469.35261 Math. Methods Appl. Sci. 44, No. 1, 617-633 (2021). MSC: 35R30 35A01 35A02 35K20 35K70 PDF BibTeX XML Cite \textit{N. Protsakh}, Math. Methods Appl. Sci. 44, No. 1, 617--633 (2021; Zbl 1469.35261) Full Text: DOI OpenURL
Litsgård, Malte; Nyström, Kaj On the fine properties of parabolic measures associated to strongly degenerate parabolic operators of Kolmogorov type. (English) Zbl 1470.35208 Adv. Math. 387, Article ID 107833, 39 p. (2021). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35K65 35K70 35B65 35H20 35R03 PDF BibTeX XML Cite \textit{M. Litsgård} and \textit{K. Nyström}, Adv. Math. 387, Article ID 107833, 39 p. (2021; Zbl 1470.35208) Full Text: DOI arXiv OpenURL
Tuan, Nguyen Huy On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. (English) Zbl 1466.35362 Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5465-5494 (2021). MSC: 35R11 35K20 35K70 35K92 47A52 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan}, Discrete Contin. Dyn. Syst., Ser. B 26, No. 10, 5465--5494 (2021; Zbl 1466.35362) Full Text: DOI OpenURL
Ding, Hang; Zhou, Jun Comments on “Blow-up and decay for a class of pseudo-parabolic \(p\)-Laplacian equation with logarithmic nonlinearity”. (English) Zbl 07308033 Comput. Math. Appl. 84, 144-147 (2021). MSC: 35K70 35B40 35B44 93D15 35L20 PDF BibTeX XML Cite \textit{H. Ding} and \textit{J. Zhou}, Comput. Math. Appl. 84, 144--147 (2021; Zbl 07308033) Full Text: DOI OpenURL
Xie, Minghong; Tan, Zhong; Wu, Zhonger Local existence and uniqueness of weak solutions to fractional pseudo-parabolic equation with singular potential. (English) Zbl 1458.35461 Appl. Math. Lett. 114, Article ID 106898, 10 p. (2021). MSC: 35R11 35K70 35D30 PDF BibTeX XML Cite \textit{M. Xie} et al., Appl. Math. Lett. 114, Article ID 106898, 10 p. (2021; Zbl 1458.35461) Full Text: DOI OpenURL
Beshtokov, M. K. Difference methods for solving non-local boundary value problems for fractional-order pseudo-parabolic equations with the Bessel operator. (Russian. English summary) Zbl 07617060 Sib. Zh. Vychisl. Mat. 23, No. 3, 265-287 (2020). MSC: 65-XX 39-XX PDF BibTeX XML Cite \textit{M. K. Beshtokov}, Sib. Zh. Vychisl. Mat. 23, No. 3, 265--287 (2020; Zbl 07617060) Full Text: DOI MNR OpenURL
Di, Huafei; Shang, Yadong; Yu, Jiali Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term. (English) Zbl 1484.35272 AIMS Math. 5, No. 4, 3408-3422 (2020). MSC: 35K70 35B44 45K05 PDF BibTeX XML Cite \textit{H. Di} et al., AIMS Math. 5, No. 4, 3408--3422 (2020; Zbl 1484.35272) Full Text: DOI OpenURL
Cheng, Jiazhuo; Fang, Shaomei Well-posedness of the solution of the fractional semilinear pseudo-parabolic equation. (English) Zbl 1487.35073 Bound. Value Probl. 2020, Paper No. 137, 16 p. (2020). MSC: 35B40 35K15 35K70 35R11 PDF BibTeX XML Cite \textit{J. Cheng} and \textit{S. Fang}, Bound. Value Probl. 2020, Paper No. 137, 16 p. (2020; Zbl 1487.35073) Full Text: DOI OpenURL
Can, Nguyen Huu; Zhou, Yong; Tuan, Nguyen Huy; Thach, Tran Ngoc Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data. (English) Zbl 1489.35163 Chaos Solitons Fractals 136, Article ID 109847, 13 p. (2020). MSC: 35K70 35B40 35B44 35R11 35R30 PDF BibTeX XML Cite \textit{N. H. Can} et al., Chaos Solitons Fractals 136, Article ID 109847, 13 p. (2020; Zbl 1489.35163) Full Text: DOI OpenURL
Fayazov, Kudratillo Sadridinovich; Abdullayeva, Zamira Shamshaddinovna Conditional correctness of the internal boundary value problem of the pseudoparabolic equation with a changing time direction. (English) Zbl 1478.34077 Missouri J. Math. Sci. 32, No. 1, 49-60 (2020). MSC: 34K10 34K29 65N20 65N21 65Q10 PDF BibTeX XML Cite \textit{K. S. Fayazov} and \textit{Z. S. Abdullayeva}, Missouri J. Math. Sci. 32, No. 1, 49--60 (2020; Zbl 1478.34077) Full Text: DOI Euclid OpenURL
Orumbayeva, Nurgul T.; Keldibekova, Aliya B. On a solution of a nonlinear semi-periodic boundary value problem for a third-order pseudoparabolic equation. (English) Zbl 1488.35322 Mat. Zh. 20, No. 4, 119-132 (2020). MSC: 35K70 PDF BibTeX XML Cite \textit{N. T. Orumbayeva} and \textit{A. B. Keldibekova}, Mat. Zh. 20, No. 4, 119--132 (2020; Zbl 1488.35322) OpenURL
Beshtokov, Murat Khamidbievich Boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator and difference methods for their solution. (Russian. English summary) Zbl 1479.76096 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 30, No. 2, 158-175 (2020). MSC: 76S05 35R11 PDF BibTeX XML Cite \textit{M. K. Beshtokov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 30, No. 2, 158--175 (2020; Zbl 1479.76096) Full Text: DOI MNR OpenURL
Dong, Yan Integrability results for weak solutions to ultraparabolic equations. (English) Zbl 1488.35319 Math. Rep., Buchar. 22(72), No. 2, 133-161 (2020). Reviewer: Igor Bock (Bratislava) MSC: 35K70 35B45 35B65 35D30 35K65 PDF BibTeX XML Cite \textit{Y. Dong}, Math. Rep., Buchar. 22(72), No. 2, 133--161 (2020; Zbl 1488.35319) OpenURL
Long, Qunfei Bounds for the blow-up time on the pseudo-parabolic equation with nonlocal term. (English) Zbl 1474.35144 J. Partial Differ. Equations 33, No. 3, 222-234 (2020). MSC: 35B44 35K70 PDF BibTeX XML Cite \textit{Q. Long}, J. Partial Differ. Equations 33, No. 3, 222--234 (2020; Zbl 1474.35144) Full Text: DOI OpenURL
Di, Huafei; Shang, Yadong Blow-up time and blow-up rate for pseudo-parabolic equations with weighted source. (English) Zbl 1461.35071 Commun. Korean Math. Soc. 35, No. 4, 1143-1158 (2020). MSC: 35B44 35K20 35K58 35K70 PDF BibTeX XML Cite \textit{H. Di} and \textit{Y. Shang}, Commun. Korean Math. Soc. 35, No. 4, 1143--1158 (2020; Zbl 1461.35071) Full Text: DOI OpenURL
Protsakh, N. P.; Flyud, V. M. Determining of unknown functions of different arguments in minor coefficient and right-hand side of semilinear ultraparabolic equation. (English) Zbl 1458.35484 Carpathian Math. Publ. 12, No. 2, 317-332 (2020). MSC: 35R30 35K70 35K20 PDF BibTeX XML Cite \textit{N. P. Protsakh} and \textit{V. M. Flyud}, Carpathian Math. Publ. 12, No. 2, 317--332 (2020; Zbl 1458.35484) Full Text: DOI OpenURL
Mironova, L. B. A problem for a factorized equation with a pseudoparabolic differential operator. (English. Russian original) Zbl 1458.35135 Russ. Math. 64, No. 8, 37-41 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 8, 44-49 (2020). MSC: 35G15 35K70 PDF BibTeX XML Cite \textit{L. B. Mironova}, Russ. Math. 64, No. 8, 37--41 (2020; Zbl 1458.35135); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 8, 44--49 (2020) Full Text: DOI OpenURL
Beshtokov, Murat The first boundary value problem for multidimensional pseudoparabolic equation of the third order in the domain with an arbitrary boundary. (English) Zbl 1452.65149 Tarasyev, Alexander (ed.) et al., Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16–20, 2019. Cham: Springer. Lect. Notes Control Inf. Sci. – Proc., 169-186 (2020). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{M. Beshtokov}, in: Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16--20, 2019. Cham: Springer. 169--186 (2020; Zbl 1452.65149) Full Text: DOI OpenURL
Kozhanov, A. I. Boundary-value problems for ultraparabolic and quasi-ultraparabolic equations with alternating direction of evolution. (English. Russian original) Zbl 1450.35150 J. Math. Sci., New York 250, No. 5, 772-779 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 56-63 (2018). MSC: 35K70 35K20 35M13 PDF BibTeX XML Cite \textit{A. I. Kozhanov}, J. Math. Sci., New York 250, No. 5, 772--779 (2020; Zbl 1450.35150); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 56--63 (2018) Full Text: DOI OpenURL
Aristov, A. I. Exact solutions of the equation of a nonlinear conductor model. (English. Russian original) Zbl 1450.35100 Differ. Equ. 56, No. 9, 1113-1118 (2020); translation from Differ. Uravn. 56, No. 9, 1147-1152 (2020). MSC: 35C05 35K70 PDF BibTeX XML Cite \textit{A. I. Aristov}, Differ. Equ. 56, No. 9, 1113--1118 (2020; Zbl 1450.35100); translation from Differ. Uravn. 56, No. 9, 1147--1152 (2020) Full Text: DOI OpenURL
Protsakh, N. Inverse problem for higher order ultraparabolic equation with unknown minor coefficient and right-hand side function. (English) Zbl 1463.35325 Miskolc Math. Notes 21, No. 1, 335-350 (2020). MSC: 35K70 35R30 PDF BibTeX XML Cite \textit{N. Protsakh}, Miskolc Math. Notes 21, No. 1, 335--350 (2020; Zbl 1463.35325) Full Text: DOI OpenURL
Malytska, H. P.; Burtnyak, I. V. Construction of the fundamental solution of a class of degenerate parabolic equations of high order. (English) Zbl 1448.35012 Carpathian Math. Publ. 12, No. 1, 79-87 (2020). MSC: 35A08 35K30 35K65 35K70 PDF BibTeX XML Cite \textit{H. P. Malytska} and \textit{I. V. Burtnyak}, Carpathian Math. Publ. 12, No. 1, 79--87 (2020; Zbl 1448.35012) Full Text: DOI OpenURL
Assanova, A. T.; Kabdrakhova, S. S. Modification of the Euler polygonal method for solving a semi-periodic boundary value problem for pseudo-parabolic equation of special type. (English) Zbl 1450.35149 Mediterr. J. Math. 17, No. 4, Paper No. 109, 30 p. (2020). MSC: 35K70 35A35 35S15 34A45 34B05 65B15 PDF BibTeX XML Cite \textit{A. T. Assanova} and \textit{S. S. Kabdrakhova}, Mediterr. J. Math. 17, No. 4, Paper No. 109, 30 p. (2020; Zbl 1450.35149) Full Text: DOI OpenURL
Lian, Wei; Wang, Juan; Xu, Runzhang Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. (English) Zbl 1448.35322 J. Differ. Equations 269, No. 6, 4914-4959 (2020). MSC: 35K70 35A01 35B44 35K67 PDF BibTeX XML Cite \textit{W. Lian} et al., J. Differ. Equations 269, No. 6, 4914--4959 (2020; Zbl 1448.35322) Full Text: DOI OpenURL
Di, Huafei; Shang, Yadong Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration. (English) Zbl 1448.35321 J. Differ. Equations 269, No. 5, 4566-4597 (2020). MSC: 35K70 35A01 35A15 35B44 35D40 35K58 PDF BibTeX XML Cite \textit{H. Di} and \textit{Y. Shang}, J. Differ. Equations 269, No. 5, 4566--4597 (2020; Zbl 1448.35321) Full Text: DOI OpenURL
Zhang, Hongwei; Hu, Qingying; Liu, Gongwei Global existence, asymptotic stability and blow-up of solutions for the generalized Boussinesq equation with nonlinear boundary condition. (English) Zbl 07198945 Math. Nachr. 293, No. 2, 386-404 (2020). MSC: 35K05 35K61 35K70 PDF BibTeX XML Cite \textit{H. Zhang} et al., Math. Nachr. 293, No. 2, 386--404 (2020; Zbl 07198945) Full Text: DOI OpenURL
Ngoc, Tran Bao; Zhou, Yong; O’Regan, Donal; Tuan, Nguyen Huy On a terminal value problem for pseudoparabolic equations involving Riemann-Liouville fractional derivatives. (English) Zbl 1442.35235 Appl. Math. Lett. 106, Article ID 106373, 8 p. (2020). MSC: 35K70 35B30 35R11 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., Appl. Math. Lett. 106, Article ID 106373, 8 p. (2020; Zbl 1442.35235) Full Text: DOI OpenURL
Zhou, Jun Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. (English) Zbl 1439.35301 Electron Res. Arch. 28, No. 1, 67-90 (2020). MSC: 35K70 35B05 35B40 PDF BibTeX XML Cite \textit{J. Zhou}, Electron Res. Arch. 28, No. 1, 67--90 (2020; Zbl 1439.35301) Full Text: DOI OpenURL
Bokalo, Mykola; Buhrii, Oleh; Hryadil, Nikolyetta Initial-boundary value problems for nonlinear elliptic-parabolic equations with variable exponents of nonlinearity in unbounded domains without conditions at infinity. (English) Zbl 1436.35248 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111700, 17 p. (2020). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35K65 35K55 35K70 58E05 PDF BibTeX XML Cite \textit{M. Bokalo} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111700, 17 p. (2020; Zbl 1436.35248) Full Text: DOI OpenURL
Zikirov, Obidjan Salijanovich; Kholikov, Dilshod Kamolovich Solvability of some non-local problems for the loaded pseudoparabolic equation. (Russian. English summary) Zbl 1436.35251 Sib. Èlektron. Mat. Izv. 17, 77-88 (2020). MSC: 35K70 35A01 PDF BibTeX XML Cite \textit{O. S. Zikirov} and \textit{D. K. Kholikov}, Sib. Èlektron. Mat. Izv. 17, 77--88 (2020; Zbl 1436.35251) OpenURL
Fedorov, Vladimir Evgenyevich; Ivanova, Natalia Dmitrievna Inverse problems for a class of linear Sobolev type equations with overdetermination on the kernel of operator at the derivative. (English) Zbl 1431.35240 J. Inverse Ill-Posed Probl. 28, No. 1, 53-61 (2020). MSC: 35R30 35K70 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{N. D. Ivanova}, J. Inverse Ill-Posed Probl. 28, No. 1, 53--61 (2020; Zbl 1431.35240) Full Text: DOI OpenURL
Maqbul, Md.; Raheem, A. Time-discretization schema for a semilinear pseudo-parabolic equation with integral conditions. (English) Zbl 1427.35238 Appl. Numer. Math. 148, 18-27 (2020). MSC: 35Q53 35K70 35R09 35D35 35A01 35A02 65M20 PDF BibTeX XML Cite \textit{Md. Maqbul} and \textit{A. Raheem}, Appl. Numer. Math. 148, 18--27 (2020; Zbl 1427.35238) Full Text: DOI OpenURL
Shergin, S. N. A numerical algorithm for solving inverse filtration problems with the pointwise overdetermination. (English) Zbl 1499.35722 J. Comput. Eng. Math. 6, No. 3, 39-53 (2019). MSC: 35R30 35K70 76S05 PDF BibTeX XML Cite \textit{S. N. Shergin}, J. Comput. Eng. Math. 6, No. 3, 39--53 (2019; Zbl 1499.35722) Full Text: DOI MNR OpenURL
Kassymov, A. Blow-up of solutions for nonlinear pseudo-parabolic Rockland equation on graded Lie groups. (English) Zbl 1488.35115 Mat. Zh. 19, No. 3, 89-100 (2019). MSC: 35B44 35K70 35R03 PDF BibTeX XML Cite \textit{A. Kassymov}, Mat. Zh. 19, No. 3, 89--100 (2019; Zbl 1488.35115) OpenURL
Fayazova, Zarina K. Boundary control for a pseudo-parabolic equation with a given flow on the boundary. (English) Zbl 1488.35320 Uzb. Math. J. 2019, No. 3, 40-48 (2019). MSC: 35K70 PDF BibTeX XML Cite \textit{Z. K. Fayazova}, Uzb. Math. J. 2019, No. 3, 40--48 (2019; Zbl 1488.35320) Full Text: DOI OpenURL
Cao, Yang; Yin, Jingxue A semilinear pseudo-parabolic equation in exterior domains. (English) Zbl 1449.35276 J. Math. Res. Appl. 39, No. 6, 607-618 (2019). MSC: 35K58 35K70 PDF BibTeX XML Cite \textit{Y. Cao} and \textit{J. Yin}, J. Math. Res. Appl. 39, No. 6, 607--618 (2019; Zbl 1449.35276) Full Text: DOI OpenURL
Dron’, V. S.; Ivasyshen, S. D.; Medyns’kyi, I. P. Properties of integrals which have the type of derivatives of volume potentials for one ultraparabolic arbitrary order equation. (English) Zbl 1433.35189 Carpathian Math. Publ. 11, No. 2, 268-280 (2019). MSC: 35K70 35K45 PDF BibTeX XML Cite \textit{V. S. Dron'} et al., Carpathian Math. Publ. 11, No. 2, 268--280 (2019; Zbl 1433.35189) Full Text: DOI OpenURL