Conant, Gabriel; Kruckman, Alex Independence in generic incidence structures. (English) Zbl 07186306 J. Symb. Log. 84, No. 2, 750-780 (2019). MSC: 03C10 03C45 03C52 51E15 51E30 03C65 51E30 PDF BibTeX XML Cite \textit{G. Conant} and \textit{A. Kruckman}, J. Symb. Log. 84, No. 2, 750--780 (2019; Zbl 07186306) Full Text: DOI
Krajewski, Stanisław All quantifiers versus the quantifier all. (English) Zbl 07003807 Garrido, Ángel (ed.) et al., The Lvov-Warsaw school. Past and present. Cham: Birkhäuser (ISBN 978-3-319-65429-4/hbk; 978-3-319-65430-0/ebook). Studies in Universal Logic, 693-702 (2018). MSC: 03-03 01A60 PDF BibTeX XML Cite \textit{S. Krajewski}, in: The Lvov-Warsaw school. Past and present. Cham: Birkhäuser. 693--702 (2018; Zbl 07003807) Full Text: DOI
Bazzoni, André Hintikka on the foundations of mathematics: IF logic and uniformity concepts. (English) Zbl 1334.03032 J. Philos. Log. 44, No. 5, 507-516 (2015). MSC: 03B60 03A05 PDF BibTeX XML Cite \textit{A. Bazzoni}, J. Philos. Log. 44, No. 5, 507--516 (2015; Zbl 1334.03032) Full Text: DOI
Boxall, Gareth; Bradley-Williams, David; Kestner, Charlotte; Aziz, Alexandra Omar; Penazzi, Davide Weak one-basedness. (English) Zbl 1282.03017 Notre Dame J. Formal Logic 54, No. 3-4, 435-448 (2013). Reviewer: Martin Hils (Paris) MSC: 03C45 03C10 03C95 PDF BibTeX XML Cite \textit{G. Boxall} et al., Notre Dame J. Formal Logic 54, No. 3--4, 435--448 (2013; Zbl 1282.03017) Full Text: DOI Euclid
Engström, Fredrik; Kontinen, Juha Characterizing quantifier extensions of dependence logic. (English) Zbl 1273.03134 J. Symb. Log. 78, No. 1, 307-316 (2013). MSC: 03C80 03B60 PDF BibTeX XML Cite \textit{F. Engström} and \textit{J. Kontinen}, J. Symb. Log. 78, No. 1, 307--316 (2013; Zbl 1273.03134) Full Text: DOI Euclid arXiv
Keskinen, Lauri Characterizing all models in infinite cardinalities. (English) Zbl 1269.03038 Ann. Pure Appl. Logic 164, No. 3, 230-250 (2013). Reviewer: Martin Weese (Potsdam) MSC: 03C55 03C35 03C85 03C95 03E35 PDF BibTeX XML Cite \textit{L. Keskinen}, Ann. Pure Appl. Logic 164, No. 3, 230--250 (2013; Zbl 1269.03038) Full Text: DOI
Hintikka, Jaakko Which mathematical logic is the logic of mathematics? (English) Zbl 1272.03024 Log. Univers. 6, No. 3-4, 459-475 (2012). MSC: 03A05 00A30 03B60 PDF BibTeX XML Cite \textit{J. Hintikka}, Log. Univers. 6, No. 3--4, 459--475 (2012; Zbl 1272.03024) Full Text: DOI
Bélair, Luc; Point, Françoise Corrigendum to: “Quantifier elimination in valued Ore modules”. (English) Zbl 1239.03024 J. Symb. Log. 77, No. 2, 727-728 (2012). MSC: 03C60 03C10 12J10 16S36 PDF BibTeX XML Cite \textit{L. Bélair} and \textit{F. Point}, J. Symb. Log. 77, No. 2, 727--728 (2012; Zbl 1239.03024) Full Text: DOI Euclid
Bélair, Luc; Point, Françoise Quantifier elimination in valued Ore modules. (English) Zbl 1225.03039 J. Symb. Log. 75, No. 3, 1007-1034 (2010); corrigendum ibid. 77, No. 2, 727-728 (2012). MSC: 03C60 03C10 12J10 16S36 PDF BibTeX XML Cite \textit{L. Bélair} and \textit{F. Point}, J. Symb. Log. 75, No. 3, 1007--1034 (2010; Zbl 1225.03039) Full Text: DOI
Manin, Yu. I. A course in mathematical logic for mathematicians. Chapters I–VIII translated from the Russian by Neal Koblitz. With new chapters by Boris Zilber and Yuri I. Manin. 2nd ed. (English) Zbl 1180.03002 Graduate Texts in Mathematics 53. Berlin: Springer (ISBN 978-1-4419-0614-4/hbk; 978-1-4419-0615-1/ebook). xviii, 384 p. (2010). Reviewer: Branislav Boričić (Beograd) MSC: 03-01 03-02 03B10 03B25 03C07 03C10 03C35 03C45 03C98 03D20 03D35 03D80 03E30 03E35 03E50 03F20 03F30 03F40 11U05 20A15 68Q05 68Q15 81P10 94C10 PDF BibTeX XML Cite \textit{Yu. I. Manin}, A course in mathematical logic for mathematicians. Chapters I--VIII translated from the Russian by Neal Koblitz. With new chapters by Boris Zilber and Yuri I. Manin. 2nd ed. Berlin: Springer (2010; Zbl 1180.03002) Full Text: DOI
Sevenster, Merlijn On the computational consequences of independence in propositional logic. (English) Zbl 1103.03027 Synthese 149, No. 2, 257-283 (2006). MSC: 03B60 03C80 03D15 68Q17 68Q25 PDF BibTeX XML Cite \textit{M. Sevenster}, Synthese 149, No. 2, 257--283 (2006; Zbl 1103.03027) Full Text: DOI
Libkin, Leonid Variable independence for first-order definable constraints. (English) Zbl 1365.03024 ACM Trans. Comput. Log. 4, No. 4, 431-451 (2003). MSC: 03B70 03B25 03C07 03C10 68P15 68Q25 PDF BibTeX XML Cite \textit{L. Libkin}, ACM Trans. Comput. Log. 4, No. 4, 431--451 (2003; Zbl 1365.03024) Full Text: DOI
Montalbán, Antonio Embedding jump upper semilattices into the Turing degrees. (English) Zbl 1059.03038 J. Symb. Log. 68, No. 3, 989-1014 (2003). MSC: 03D28 03B25 03E35 03E50 PDF BibTeX XML Cite \textit{A. Montalbán}, J. Symb. Log. 68, No. 3, 989--1014 (2003; Zbl 1059.03038) Full Text: DOI Euclid
Baudisch, Andreas Generic variations of models of \(T\). (English) Zbl 1018.03026 J. Symb. Log. 67, No. 3, 1025-1038 (2002). Reviewer: Frank Wagner (Villeurbanne) MSC: 03C45 03C10 PDF BibTeX XML Cite \textit{A. Baudisch}, J. Symb. Log. 67, No. 3, 1025--1038 (2002; Zbl 1018.03026) Full Text: DOI
Stavi, Jonathan; Väänänen, Jouko Reflection principles for the continuum. (English) Zbl 1013.03059 Zhang, Yi (ed.), Logic and algebra. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 302, 59-84 (2002). MSC: 03E50 03E35 03E40 03B10 03C80 PDF BibTeX XML Cite \textit{J. Stavi} and \textit{J. Väänänen}, Contemp. Math. 302, 59--84 (2002; Zbl 1013.03059) Backlinks: MO
Janssen, Theo M. V. Independent choices and the interpretation of IF logic. (English) Zbl 1003.03025 J. Logic Lang. Inf. 11, No. 3, 367-387 (2002). MSC: 03B60 03C80 91A80 PDF BibTeX XML Cite \textit{T. M. V. Janssen}, J. Logic Lang. Inf. 11, No. 3, 367--387 (2002; Zbl 1003.03025) Full Text: DOI
Hyttinen, Tapani; Sandu, Gabriel Henkin quantifiers and the definability of truth. (English) Zbl 0970.03035 J. Philos. Log. 29, No. 5, 507-527 (2000). MSC: 03C80 03A05 03B10 91A05 91A80 PDF BibTeX XML Cite \textit{T. Hyttinen} and \textit{G. Sandu}, J. Philos. Log. 29, No. 5, 507--527 (2000; Zbl 0970.03035) Full Text: DOI
Bélair, Luc Types in valued fields with coefficient maps. (Types dans les corps valués munis d’applications coefficients.) (French) Zbl 0927.03067 Ill. J. Math. 43, No. 2, 410-425 (1999). Reviewer: Luc Bélair (Montréal) MSC: 03C60 12J10 03C10 12L12 PDF BibTeX XML Cite \textit{L. Bélair}, Ill. J. Math. 43, No. 2, 410--425 (1999; Zbl 0927.03067)
Hintikka, Jaakko Truth definitions, Skolem functions and axiomatic set theory. (English) Zbl 0918.03005 Bull. Symb. Log. 4, No. 3, 303-337 (1998). Reviewer: G.Mints (Stanford) MSC: 03A05 03F40 03B10 03C07 03C80 PDF BibTeX XML Cite \textit{J. Hintikka}, Bull. Symb. Log. 4, No. 3, 303--337 (1998; Zbl 0918.03005) Full Text: DOI Link
Hintikka, Jaakko; Sandu, Gabriel A revolution in logic? (English) Zbl 0891.03001 Nord. J. Philos. Log. 1, No. 2, 169-183 (1996). Reviewer: L.Löfgren (Lund) MSC: 03A05 03-03 01A55 PDF BibTeX XML Cite \textit{J. Hintikka} and \textit{G. Sandu}, Nord. J. Philos. Log. 1, No. 2, 169--183 (1996; Zbl 0891.03001) Full Text: Link
Kaye, Richard The quantifier complexity of NF. (English) Zbl 0856.03043 Bull. Belg. Math. Soc. - Simon Stevin 3, No. 3, 301-312 (1996). MSC: 03E70 03D15 03E35 PDF BibTeX XML Cite \textit{R. Kaye}, Bull. Belg. Math. Soc. - Simon Stevin 3, No. 3, 301--312 (1996; Zbl 0856.03043) Full Text: EuDML
van Lambalgen, Michiel Independence, randomness and the axiom of choice. (English) Zbl 0781.03042 J. Symb. Log. 57, No. 4, 1274-1304 (1992). Reviewer: S.Gottwald (Leipzig) MSC: 03E65 03E25 60A05 03E60 03F50 03C80 03E35 PDF BibTeX XML Cite \textit{M. van Lambalgen}, J. Symb. Log. 57, No. 4, 1274--1304 (1992; Zbl 0781.03042) Full Text: DOI
Herre, Heinrich; Krynicki, Michał; Pinus, Alexander; Väänänen, Jouko The Härtig quantifier: A survey. (English) Zbl 0737.03013 J. Symb. Log. 56, No. 4, 1153-1183 (1991). Reviewer: M.Weese (Berlin) MSC: 03C80 03-02 PDF BibTeX XML Cite \textit{H. Herre} et al., J. Symb. Log. 56, No. 4, 1153--1183 (1991; Zbl 0737.03013) Full Text: DOI
van Lambalgen, Michiel The axiomatization of randomness. (English) Zbl 0724.03026 J. Symb. Log. 55, No. 3, 1143-1167 (1990). MSC: 03C65 03C80 60A99 03C90 03F65 03C10 03F35 PDF BibTeX XML Cite \textit{M. van Lambalgen}, J. Symb. Log. 55, No. 3, 1143--1167 (1990; Zbl 0724.03026) Full Text: DOI
Koepke, Peter On the elimination of Malitz quantifiers over Archimedian real closed fields. (English) Zbl 0693.03021 Arch. Math. Logic 28, No. 3, 167-171 (1989). MSC: 03C80 03C10 12L12 03E35 03C60 03E50 PDF BibTeX XML Cite \textit{P. Koepke}, Arch. Math. Logic 28, No. 3, 167--171 (1989; Zbl 0693.03021) Full Text: DOI
Bürger, Gerd The \({\mathcal L}^{<\omega}\)-theory of the class of Archimedian real closed fields. (English) Zbl 0682.03018 Arch. Math. Logic 28, No. 3, 155-166 (1989). Reviewer: G.Bürger MSC: 03C60 03E35 12L12 03C10 03C80 03E50 PDF BibTeX XML Cite \textit{G. Bürger}, Arch. Math. Logic 28, No. 3, 155--166 (1989; Zbl 0682.03018) Full Text: DOI
Bürger, Gerhard Die Malitz-Logik für Archimedische Modelle. (The Malitz logic for Archimedean models). (German) Zbl 0722.03029 Freiburg: Univ. Freiburg, Math.-Naturwissenschaftliche Fak., Diss. 76 S. (1989). Reviewer: H.-J.Vogel (Potsdam) MSC: 03C10 03C80 03E35 03C25 03E25 03C55 03E50 PDF BibTeX XML Cite \textit{G. Bürger}, Die Malitz-Logik für Archimedische Modelle. (The Malitz logic for Archimedean models). Freiburg: Univ. Freiburg, Math.-Naturwissenschaftliche Fak. (1989; Zbl 0722.03029)
Joseph, Deborah; Young, Paul A survey of some recent results on computational complexity in weak theories of arithmetic. (English) Zbl 0606.03016 Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf. 8, 103-121 (1985). MSC: 03F35 03D15 68Q25 PDF BibTeX XML Cite \textit{D. Joseph} and \textit{P. Young}, Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf. 8, 103--121 (1985; Zbl 0606.03016)
Gurevich, Y.; Schmitt, P. H. The theory of ordered abelian groups does not have the independence property. (English) Zbl 0507.03012 Trans. Am. Math. Soc. 284, 171-182 (1984). MSC: 03C45 03C10 03C52 PDF BibTeX XML Cite \textit{Y. Gurevich} and \textit{P. H. Schmitt}, Trans. Am. Math. Soc. 284, 171--182 (1984; Zbl 0507.03012) Full Text: DOI
Kaufmann, Matt Set theory with a filter quantifier. (English) Zbl 0518.03007 J. Symb. Log. 48, 263-287 (1983). MSC: 03B60 03C25 03E35 PDF BibTeX XML Cite \textit{M. Kaufmann}, J. Symb. Log. 48, 263--287 (1983; Zbl 0518.03007) Full Text: DOI
Väänänen, Jouko Abstract logic and set theory. II. Large cardinals. (English) Zbl 0531.03019 J. Symb. Log. 47, 335-346 (1982). Reviewer: J.Oikkonen MSC: 03C95 03E55 03E35 PDF BibTeX XML Cite \textit{J. Väänänen}, J. Symb. Log. 47, 335--346 (1982; Zbl 0531.03019) Full Text: DOI
Väänänen, Jouko Two axioms of set theory with applications to logic. (English) Zbl 0392.03034 Ann. Acad. Sci. Fenn., Ser. A I, Diss. 20, 19 p. (1978). MSC: 03E35 03E55 03C80 PDF BibTeX XML Cite \textit{J. Väänänen}, Ann. Acad. Sci. Fenn., Ser. A I, Diss. 20, 19 p. (1978; Zbl 0392.03034)