Liang, Zhenguo; Zhao, Zhiyan; Zhou, Qi 1-d quantum harmonic oscillator with time quasi-periodic quadratic perturbation: reducibility and growth of Sobolev norms. (English. French summary) Zbl 07305912 J. Math. Pures Appl. (9) 146, 158-182 (2021). MSC: 35Q40 35Q41 47G30 PDF BibTeX XML Cite \textit{Z. Liang} et al., J. Math. Pures Appl. (9) 146, 158--182 (2021; Zbl 07305912) Full Text: DOI
Biswas, Subhadip; Chowdhury, Pratyusha; Bhattacharjee, Jayanta K. Instability zones in the dynamics of a quantum mechanical quasiperiodic parametric oscillator. (English) Zbl 07274929 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105537, 13 p. (2021). MSC: 34C15 34D20 PDF BibTeX XML Cite \textit{S. Biswas} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105537, 13 p. (2021; Zbl 07274929) Full Text: DOI
Liang, Z.; Luo, J. Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations. (English) Zbl 1451.35152 J. Differ. Equations 270, 343-389 (2021). MSC: 35Q41 35B05 PDF BibTeX XML Cite \textit{Z. Liang} and \textit{J. Luo}, J. Differ. Equations 270, 343--389 (2021; Zbl 1451.35152) Full Text: DOI
Anikin, A. Yu.; Dobrokhotov, S. Yu.; Tsvetkova, A. V. Airy functions and transition between semiclassical and harmonic oscillator approximations for one-dimensional bound states. (English. Russian original) Zbl 07283649 Theor. Math. Phys. 204, No. 2, 984-992 (2020); translation from Teor. Mat. Fiz. 204, No. 2, 171-180 (2020). MSC: 81Q10 81Q20 35P05 35B40 33C10 PDF BibTeX XML Cite \textit{A. Yu. Anikin} et al., Theor. Math. Phys. 204, No. 2, 984--992 (2020; Zbl 07283649); translation from Teor. Mat. Fiz. 204, No. 2, 171--180 (2020) Full Text: DOI
Fernández, Francisco M. Comment on: “Entanglement in three coupled oscillators”. (English) Zbl 1448.81104 Phys. Lett., A 384, No. 25, Article ID 126577, 2 p. (2020). MSC: 81P40 81P42 PDF BibTeX XML Cite \textit{F. M. Fernández}, Phys. Lett., A 384, No. 25, Article ID 126577, 2 p. (2020; Zbl 1448.81104) Full Text: DOI
Kekejian, David; Draayer, Jerry P.; Dytrych, Tomáš; Launey, Kristina D. Overlaps of deformed and non-deformed harmonic oscillator basis states. (English) Zbl 1448.81309 Phys. Lett., A 384, No. 7, Article ID 126162, 4 p. (2020). MSC: 81Q05 81V45 PDF BibTeX XML Cite \textit{D. Kekejian} et al., Phys. Lett., A 384, No. 7, Article ID 126162, 4 p. (2020; Zbl 1448.81309) Full Text: DOI
Belmonte, Fabián; Cuéllar, Sebastián Constants of motion of the harmonic oscillator. (English) Zbl 1451.81279 Math. Phys. Anal. Geom. 23, No. 4, Paper No. 35, 21 p. (2020). MSC: 81S08 81Q10 81R05 53D55 34B20 34C14 PDF BibTeX XML Cite \textit{F. Belmonte} and \textit{S. Cuéllar}, Math. Phys. Anal. Geom. 23, No. 4, Paper No. 35, 21 p. (2020; Zbl 1451.81279) Full Text: DOI
Jafarov, E. I.; Nagiyev, S. M.; Jafarova, A. M. Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator. (English) Zbl 1451.81229 Rep. Math. Phys. 86, No. 1, 25-37 (2020). MSC: 81Q05 34L40 33C45 34A05 PDF BibTeX XML Cite \textit{E. I. Jafarov} et al., Rep. Math. Phys. 86, No. 1, 25--37 (2020; Zbl 1451.81229) Full Text: DOI
Cushman, Richard; Śniatycki, Jędrzej Geometric quantization of the \(1:1\) oscillator. (English) Zbl 1452.81120 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 81, 25 p. (2020). Reviewer: Andrea Galasso (Taipei) MSC: 81Q70 70H05 81S08 17B08 81S10 PDF BibTeX XML Cite \textit{R. Cushman} and \textit{J. Śniatycki}, Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 81, 25 p. (2020; Zbl 1452.81120) Full Text: DOI
Sen, Abhijit; Silagadze, Zurab Ermakov-Lewis invariant in Koopman-von Neumann mechanics. (English) Zbl 1447.81117 Int. J. Theor. Phys. 59, No. 7, 2187-2190 (2020). MSC: 81Q05 35Q41 PDF BibTeX XML Cite \textit{A. Sen} and \textit{Z. Silagadze}, Int. J. Theor. Phys. 59, No. 7, 2187--2190 (2020; Zbl 1447.81117) Full Text: DOI
Ishida, Atsuhide; Kawamoto, Masaki Existence and nonexistence of wave operators for time-decaying harmonic oscillators. (English) Zbl 1447.81190 Rep. Math. Phys. 85, No. 3, 335-350 (2020). MSC: 81U20 35P25 35Q41 81Q10 81V10 PDF BibTeX XML Cite \textit{A. Ishida} and \textit{M. Kawamoto}, Rep. Math. Phys. 85, No. 3, 335--350 (2020; Zbl 1447.81190) Full Text: DOI
Kycia, Radosław Antoni The Poincaré lemma, antiexact forms, and fermionic quantum harmonic oscillator. (English) Zbl 1451.58002 Result. Math. 75, No. 3, Paper No. 122, 14 p. (2020). Reviewer: Marian Ioan Munteanu (Iaşi) MSC: 58A12 58A10 58Z05 81V74 PDF BibTeX XML Cite \textit{R. A. Kycia}, Result. Math. 75, No. 3, Paper No. 122, 14 p. (2020; Zbl 1451.58002) Full Text: DOI
Dhahri, Ameur; Fagnola, Franco; Yoo, Hyun Jae Quadratic open quantum harmonic oscillator. (English) Zbl 07214318 Lett. Math. Phys. 110, No. 7, 1759-1782 (2020). Reviewer: Alexander Belton (Lancaster) MSC: 46L55 46L53 81S25 82C10 60J27 PDF BibTeX XML Cite \textit{A. Dhahri} et al., Lett. Math. Phys. 110, No. 7, 1759--1782 (2020; Zbl 07214318) Full Text: DOI
Mbadjoun, B. Tchana; Ema’a, J. M. Ema’a; Abiama, P. Ele; Ben-Bolie, G. H.; Ateba, P. Owono Effect of gravity and electromagnetic field on the spectra of cylindrical quantum dots together with AB flux field. (English) Zbl 1435.81276 Mod. Phys. Lett. A 35, No. 12, Article ID 2050092, 21 p. (2020). MSC: 81V65 81V17 81V10 PDF BibTeX XML Cite \textit{B. T. Mbadjoun} et al., Mod. Phys. Lett. A 35, No. 12, Article ID 2050092, 21 p. (2020; Zbl 1435.81276) Full Text: DOI
Bruschi, David Edward Time evolution of two harmonic oscillators with cross-Kerr interactions. (English) Zbl 1439.81100 J. Math. Phys. 61, No. 3, 032102, 13 p. (2020). MSC: 81V80 81P17 81Q05 35Q55 82D20 81U15 PDF BibTeX XML Cite \textit{D. E. Bruschi}, J. Math. Phys. 61, No. 3, 032102, 13 p. (2020; Zbl 1439.81100) Full Text: DOI
Mustafa, Omar PDM creation and annihilation operators of the harmonic oscillators and the emergence of an alternative PDM-Hamiltonian. (English) Zbl 1434.81031 Phys. Lett., A 384, No. 13, Article ID 126265, 9 p. (2020). MSC: 81Q05 81Q80 PDF BibTeX XML Cite \textit{O. Mustafa}, Phys. Lett., A 384, No. 13, Article ID 126265, 9 p. (2020; Zbl 1434.81031) Full Text: DOI
Nammas, F. S. Analytical ground-state of an exciton trapped in a circular parabolic quantum dot in the presence of a magnetic field. (English) Zbl 1433.81090 Int. J. Theor. Phys. 59, No. 3, 807-823 (2020). MSC: 81Q37 82D20 82D37 78A30 PDF BibTeX XML Cite \textit{F. S. Nammas}, Int. J. Theor. Phys. 59, No. 3, 807--823 (2020; Zbl 1433.81090) Full Text: DOI
Iliev, Plamen; Xu, Yuan Hahn polynomials on polyhedra and quantum integrability. (English) Zbl 1448.33012 Adv. Math. 364, Article ID 107032, 37 p. (2020). Reviewer: Nicolae Cotfas (Bucureşti) MSC: 33C50 33C80 81R12 PDF BibTeX XML Cite \textit{P. Iliev} and \textit{Y. Xu}, Adv. Math. 364, Article ID 107032, 37 p. (2020; Zbl 1448.33012) Full Text: DOI
Mumtaz, Faisal; Saidaoui, Hamed; Alharbi, Fahhad H. Efficient high order method for differential equations in unbounded domains using generalized coordinate transformation. (English) Zbl 1451.65156 J. Comput. Phys. 381, 275-289 (2019). MSC: 65M70 65L60 65M60 35J05 35Q40 PDF BibTeX XML Cite \textit{F. Mumtaz} et al., J. Comput. Phys. 381, 275--289 (2019; Zbl 1451.65156) Full Text: DOI
Grishechkin, Yu. A.; Pavlenko, A. V.; Kapshaĭ, V. N. On an approximate analytical method for solving the Schrödinger equation with the Gaussian potential. (Russian. English summary) Zbl 1450.81037 Probl. Fiz. Mat. Tekh. 2019, No. 4(41), 7-10 (2019). MSC: 81Q05 81U15 PDF BibTeX XML Cite \textit{Yu. A. Grishechkin} et al., Probl. Fiz. Mat. Tekh. 2019, No. 4(41), 7--10 (2019; Zbl 1450.81037) Full Text: MNR
Grébert, Benoît; Paturel, Eric On reducibility of quantum harmonic oscillator on \(\mathbb{R}^d\) with quasiperiodic in time potential. (English. French summary) Zbl 1439.81039 Ann. Fac. Sci. Toulouse, Math. (6) 28, No. 5, 977-1014 (2019). MSC: 81Q05 35Q41 35B15 PDF BibTeX XML Cite \textit{B. Grébert} and \textit{E. Paturel}, Ann. Fac. Sci. Toulouse, Math. (6) 28, No. 5, 977--1014 (2019; Zbl 1439.81039) Full Text: DOI
Borzov, V. V.; Damaskinsky, E. V. Local perturbation of the discrete Schrödinger operator and a generalized Chebyshev oscillator. (English. Russian original) Zbl 1436.81041 Theor. Math. Phys. 200, No. 3, 1348-1359 (2019); translation from Teor. Mat. Fiz. 200, No. 3, 494-506 (2019). MSC: 81Q10 33C45 42C05 33C20 41A50 PDF BibTeX XML Cite \textit{V. V. Borzov} and \textit{E. V. Damaskinsky}, Theor. Math. Phys. 200, No. 3, 1348--1359 (2019; Zbl 1436.81041); translation from Teor. Mat. Fiz. 200, No. 3, 494--506 (2019) Full Text: DOI
Rosas-Ortiz, Oscar Coherent and squeezed states: introductory review of basic notions, properties, and generalizations. (English) Zbl 1425.81056 Kuru, Şengül (ed.) et al., Integrability, supersymmetry and coherent states. A volume in honour of Professor Véronique Hussin. In part selected contributions from the 6th international workshop on new challenges in quantum mechanics: integrability and supersymmetry, Valladolid, Spain, June 27–30, 2017. Cham: Springer. CRM Ser. Math. Phys., 187-230 (2019). MSC: 81R30 81V80 81P15 PDF BibTeX XML Cite \textit{O. Rosas-Ortiz}, in: Integrability, supersymmetry and coherent states. A volume in honour of Professor Véronique Hussin. In part selected contributions from the 6th international workshop on new challenges in quantum mechanics: integrability and supersymmetry, Valladolid, Spain, June 27--30, 2017. Cham: Springer. 187--230 (2019; Zbl 1425.81056) Full Text: DOI
Grishechkin, Yu. A.; Kapshai, V. N. Solution of the Logunov-Tavkhelidze equation for the three-dimensional oscillator potential in the relativistic configuration representation. (English. Russian original) Zbl 1423.81066 Russ. Phys. J. 61, No. 9, 1645-1652 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 61, No. 9, 83-89 (2018). MSC: 81Q05 81Q40 PDF BibTeX XML Cite \textit{Yu. A. Grishechkin} and \textit{V. N. Kapshai}, Russ. Phys. J. 61, No. 9, 1645--1652 (2019; Zbl 1423.81066); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 61, No. 9, 83--89 (2018) Full Text: DOI
Almalki, Fadhel; Kisil, Vladimir V. Geometric dynamics of a harmonic oscillator, arbitrary minimal uncertainty states and the smallest step 3 nilpotent Lie group. (English) Zbl 1422.81124 J. Phys. A, Math. Theor. 52, No. 2, Article ID 025301, 25 p. (2019). MSC: 81R30 81Q05 35J10 22E15 35R03 22E27 PDF BibTeX XML Cite \textit{F. Almalki} and \textit{V. V. Kisil}, J. Phys. A, Math. Theor. 52, No. 2, Article ID 025301, 25 p. (2019; Zbl 1422.81124) Full Text: DOI
Mukherjee, Neetik; Roy, Amlan K. Some complexity measures in confined isotropic harmonic oscillator. (English) Zbl 1433.82004 J. Math. Chem. 57, No. 7, 1806-1821 (2019). MSC: 82B10 PDF BibTeX XML Cite \textit{N. Mukherjee} and \textit{A. K. Roy}, J. Math. Chem. 57, No. 7, 1806--1821 (2019; Zbl 1433.82004) Full Text: DOI
Olendski, O. Rényi and Tsallis entropies: three analytic examples. (English) Zbl 1421.81026 Eur. J. Phys. 40, No. 2, Article ID 025402, 32 p. (2019). MSC: 81P45 81S05 94A17 62J10 81R30 81P05 81Q10 PDF BibTeX XML Cite \textit{O. Olendski}, Eur. J. Phys. 40, No. 2, Article ID 025402, 32 p. (2019; Zbl 1421.81026) Full Text: DOI
Boyer, Timothy H. Thermodynamics of the harmonic oscillator: derivation of the Planck blackbody spectrum from pure thermodynamics. (English) Zbl 1421.81007 Eur. J. Phys. 40, No. 2, Article ID 025101, 16 p. (2019). MSC: 81P05 80A10 80A20 78A40 82B30 81V80 PDF BibTeX XML Cite \textit{T. H. Boyer}, Eur. J. Phys. 40, No. 2, Article ID 025101, 16 p. (2019; Zbl 1421.81007) Full Text: DOI
Murgan, Rajan; Zender, Autumn Energy eigenvalues of the three-dimensional quantum harmonic oscillator from \(\operatorname{SU}(3)\) cubic Casimir operator. (English) Zbl 1421.81045 Eur. J. Phys. 40, No. 1, Article ID 015405, 14 p. (2019). MSC: 81Q10 81R05 22E70 97M50 PDF BibTeX XML Cite \textit{R. Murgan} and \textit{A. Zender}, Eur. J. Phys. 40, No. 1, Article ID 015405, 14 p. (2019; Zbl 1421.81045) Full Text: DOI
Pavšič, Matej A novel view on successive quantizations, leading to increasingly more “miraculous” states. (English) Zbl 1418.81009 Mod. Phys. Lett. A 34, No. 23, Article ID 1950186, 17 p. (2019). MSC: 81P05 81T70 81S05 PDF BibTeX XML Cite \textit{M. Pavšič}, Mod. Phys. Lett. A 34, No. 23, Article ID 1950186, 17 p. (2019; Zbl 1418.81009) Full Text: DOI
Mouayn, Z.; Kassogue, H.; Kayupe Kikodio, Patrick; Fatani, Imade F. Generalized Wehrl entropies and Euclidean Landau levels. (English) Zbl 1419.81022 Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 4, Article ID 1950024, 20 p. (2019). MSC: 81R30 94A15 94A17 81Q10 33C47 97K50 PDF BibTeX XML Cite \textit{Z. Mouayn} et al., Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 4, Article ID 1950024, 20 p. (2019; Zbl 1419.81022) Full Text: DOI
Liang, Zhenguo; Wang, Zhiguo Reducibility of quantum harmonic oscillator on \(\mathbb{R}^d\) with differential and quasi-periodic in time potential. (English) Zbl 1430.35170 J. Differ. Equations 267, No. 5, 3355-3395 (2019). Reviewer: Christian Seifert (Hamburg) MSC: 35P05 37K55 81Q15 35Q41 PDF BibTeX XML Cite \textit{Z. Liang} and \textit{Z. Wang}, J. Differ. Equations 267, No. 5, 3355--3395 (2019; Zbl 1430.35170) Full Text: DOI
Dehghani, A.; Mojaveri, B.; Faseghandis, S. Amiri Photon added coherent states of the parity deformed oscillator. (English) Zbl 1412.81151 Mod. Phys. Lett. A 34, No. 14, Article ID 1950104, 14 p. (2019). MSC: 81R30 81V80 PDF BibTeX XML Cite \textit{A. Dehghani} et al., Mod. Phys. Lett. A 34, No. 14, Article ID 1950104, 14 p. (2019; Zbl 1412.81151) Full Text: DOI
Shapiro, Boris; Tater, Miloš Asymptotics and monodromy of the algebraic spectrum of quasi-exactly solvable sextic oscillator. (English) Zbl 1414.81108 Exp. Math. 28, No. 1, 16-23 (2019). MSC: 81Q10 81Q80 14D05 35P05 35B40 PDF BibTeX XML Cite \textit{B. Shapiro} and \textit{M. Tater}, Exp. Math. 28, No. 1, 16--23 (2019; Zbl 1414.81108) Full Text: DOI
Znojil, Miloslav; Růžička, František Multi-well log-anharmonic oscillators. (English) Zbl 1411.81104 Mod. Phys. Lett. A 34, No. 11, Article ID 1950085, 13 p. (2019). MSC: 81Q80 81Q05 PDF BibTeX XML Cite \textit{M. Znojil} and \textit{F. Růžička}, Mod. Phys. Lett. A 34, No. 11, Article ID 1950085, 13 p. (2019; Zbl 1411.81104) Full Text: DOI arXiv
Mota, R. D.; Ojeda-Guillén, D.; Salazar-Ramírez, M.; Granados, V. D. Non-Hermitian inverted harmonic oscillator-type Hamiltonians generated from supersymmetry with reflections. (English) Zbl 1407.81099 Mod. Phys. Lett. A 34, No. 4, Article ID 1950028, 9 p. (2019). MSC: 81Q12 81Q60 PDF BibTeX XML Cite \textit{R. D. Mota} et al., Mod. Phys. Lett. A 34, No. 4, Article ID 1950028, 9 p. (2019; Zbl 1407.81099) Full Text: DOI arXiv
Gromov, N. A.; Kuratov, V. V. Harmonic oscillator on Minkowski plane. (Russian. English summary) Zbl 1430.81030 Vestn. Syktyvkar. Univ., Ser. 1, Mat. Mekh. Inform. 27, No. 2, 10-23 (2018). MSC: 81Q10 34L40 83A05 70H40 PDF BibTeX XML Cite \textit{N. A. Gromov} and \textit{V. V. Kuratov}, Vestn. Syktyvkar. Univ., Ser. 1, Mat. Mekh. Inform. 27, No. 2, 10--23 (2018; Zbl 1430.81030)
Rachid, Assel Absolute continuity of the magnetic Schrödinger operator with periodic potential. (English) Zbl 1428.35242 Korean J. Math. 26, No. 4, 601-614 (2018). Reviewer: Michael Perelmuter (Kyïv) MSC: 35P05 35J10 81Q10 PDF BibTeX XML Cite \textit{A. Rachid}, Korean J. Math. 26, No. 4, 601--614 (2018; Zbl 1428.35242) Full Text: DOI
Bebiano, N.; da Providência, J. Implications of losing hermiticity in quantum mechanics. (English) Zbl 1419.81015 Linear Algebra Appl. 542, 54-65 (2018). MSC: 81Q12 81Q10 46N50 35P05 42C30 PDF BibTeX XML Cite \textit{N. Bebiano} and \textit{J. da Providência}, Linear Algebra Appl. 542, 54--65 (2018; Zbl 1419.81015) Full Text: DOI
Cardona, Duván; Barraza, E. Samuel Characterization of nuclear pseudo-multipliers associated to the harmonic oscillator. (English) Zbl 1424.81010 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 4, 163-172 (2018). MSC: 81Q10 47B10 81Q05 PDF BibTeX XML Cite \textit{D. Cardona} and \textit{E. S. Barraza}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 4, 163--172 (2018; Zbl 1424.81010)
Cardona, Duván A brief description of operators associated to the quantum harmonic oscillator on Schatten-von Neumann classes. (Spanish. English summary) Zbl 1415.81023 Rev. Integr. 36, No. 1, 49-57 (2018). MSC: 81Q10 47B10 81Q05 PDF BibTeX XML Cite \textit{D. Cardona}, Rev. Integr. 36, No. 1, 49--57 (2018; Zbl 1415.81023) Full Text: DOI
Mukherjee, Neetik; Roy, Amlan K. Relative Fisher information in some central potentials. (English) Zbl 1404.81064 Ann. Phys. 398, 190-202 (2018). MSC: 81P45 94A17 PDF BibTeX XML Cite \textit{N. Mukherjee} and \textit{A. K. Roy}, Ann. Phys. 398, 190--202 (2018; Zbl 1404.81064) Full Text: DOI
Gnatenko, Kh. P. System of interacting harmonic oscillators in rotationally invariant noncommutative phase space. (English) Zbl 1404.81121 Phys. Lett., A 382, No. 46, 3317-3324 (2018). MSC: 81Q65 82C22 PDF BibTeX XML Cite \textit{Kh. P. Gnatenko}, Phys. Lett., A 382, No. 46, 3317--3324 (2018; Zbl 1404.81121) Full Text: DOI
Bagarello, F. Finite-dimensional pseudo-bosons: a non-Hermitian version of the truncated harmonic oscillator. (English) Zbl 1404.81120 Phys. Lett., A 382, No. 36, 2526-2532 (2018). MSC: 81Q65 81Q05 PDF BibTeX XML Cite \textit{F. Bagarello}, Phys. Lett., A 382, No. 36, 2526--2532 (2018; Zbl 1404.81120) Full Text: DOI
Freitas, Pedro The spectral determinant of the isotropic quantum harmonic oscillator in arbitrary dimensions. (English) Zbl 1403.81013 Math. Ann. 372, No. 3-4, 1081-1101 (2018). MSC: 81Q05 81Q10 11M36 41A60 35P20 PDF BibTeX XML Cite \textit{P. Freitas}, Math. Ann. 372, No. 3--4, 1081--1101 (2018; Zbl 1403.81013) Full Text: DOI
Fucci, Guglielmo Asymptotic expansion of the heat kernel trace of Laplacians with polynomial potentials. (English) Zbl 1402.35133 Lett. Math. Phys. 108, No. 11, 2453-2478 (2018). MSC: 35K08 34E05 35J10 81Q10 81Q20 81Q80 PDF BibTeX XML Cite \textit{G. Fucci}, Lett. Math. Phys. 108, No. 11, 2453--2478 (2018; Zbl 1402.35133) Full Text: DOI
Rajeev, Karthik; Chakraborty, Sumanta; Padmanabhan, T. Inverting a normal harmonic oscillator: physical interpretation and applications. (English) Zbl 1403.83017 Gen. Relativ. Gravitation 50, No. 9, Paper No. 116, 38 p. (2018). MSC: 83C47 83C10 81S10 PDF BibTeX XML Cite \textit{K. Rajeev} et al., Gen. Relativ. Gravitation 50, No. 9, Paper No. 116, 38 p. (2018; Zbl 1403.83017) Full Text: DOI
Wang, Bing-Qian; Long, Zheng-Wen; Long, Chao-Yun; Wu, Shu-Rui The study of a half-spin relativistic particle in the rotating cosmic string space-time. (English) Zbl 1401.81048 Int. J. Mod. Phys. A 33, No. 27, Article ID 1850158, 16 p. (2018). MSC: 81Q05 81R20 81Q35 83C10 83E30 PDF BibTeX XML Cite \textit{B.-Q. Wang} et al., Int. J. Mod. Phys. A 33, No. 27, Article ID 1850158, 16 p. (2018; Zbl 1401.81048) Full Text: DOI
Hoffmann, Scott E.; Hussin, Véronique; Marquette, Ian; Zhang, Yao-Zhong Coherent states for ladder operators of general order related to exceptional orthogonal polynomials. (English) Zbl 1397.81083 J. Phys. A, Math. Theor. 51, No. 31, Article ID 315203, 19 p. (2018). MSC: 81Q60 81R30 81Q05 42C05 81P40 81S30 62J10 PDF BibTeX XML Cite \textit{S. E. Hoffmann} et al., J. Phys. A, Math. Theor. 51, No. 31, Article ID 315203, 19 p. (2018; Zbl 1397.81083) Full Text: DOI
Liu, Jie; Li, Sheng-Chang; Fu, Li-Bin; Ye, Di-Fa Nonlinear adiabatic evolution of quantum systems. Geometric phase and virtual magnetic monopole. (English) Zbl 1405.81009 Singapore: Springer (ISBN 978-981-13-2642-4/hbk; 978-981-13-2643-1/ebook). ix, 190 p. (2018). Reviewer: Alex B. Gaina (Chisinau) MSC: 81-02 81Q70 81V10 00A79 PDF BibTeX XML Cite \textit{J. Liu} et al., Nonlinear adiabatic evolution of quantum systems. Geometric phase and virtual magnetic monopole. Singapore: Springer (2018; Zbl 1405.81009) Full Text: DOI
Atakishiyev, Natig M.; Pogosyan, George S.; Wolf, Kurt Bernardo; Yakhno, Alexander Elliptic basis for the Zernike system: Heun function solutions. (English) Zbl 1401.78002 J. Math. Phys. 59, No. 7, 073503, 15 p. (2018). Reviewer: Vladimir Čadež (Beograd) MSC: 78A05 35A18 33C45 81V45 PDF BibTeX XML Cite \textit{N. M. Atakishiyev} et al., J. Math. Phys. 59, No. 7, 073503, 15 p. (2018; Zbl 1401.78002) Full Text: DOI
Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S. Effect of the Wigner-Dunkl algebra on the Dirac equation and Dirac harmonic oscillator. (English) Zbl 1393.81019 Mod. Phys. Lett. A 33, No. 25, Article ID 1850146, 6 p. (2018). MSC: 81R50 35Q41 81Q10 PDF BibTeX XML Cite \textit{S. Sargolzaeipor} et al., Mod. Phys. Lett. A 33, No. 25, Article ID 1850146, 6 p. (2018; Zbl 1393.81019) Full Text: DOI
Bangu, Sorin; Moir, Robert H. C. The ‘miracle’ of applicability? The curious case of the simple harmonic oscillator. (English) Zbl 1394.81012 Found. Phys. 48, No. 5, 507-525 (2018). MSC: 81P05 PDF BibTeX XML Cite \textit{S. Bangu} and \textit{R. H. C. Moir}, Found. Phys. 48, No. 5, 507--525 (2018; Zbl 1394.81012) Full Text: DOI
Charron, Philippe A Pleijel-type theorem for the quantum harmonic oscillator. (English) Zbl 1400.35194 J. Spectr. Theory 8, No. 2, 715-732 (2018). Reviewer: Rodica Luca (Iaşi) MSC: 35P20 35J10 81Q05 81R12 PDF BibTeX XML Cite \textit{P. Charron}, J. Spectr. Theory 8, No. 2, 715--732 (2018; Zbl 1400.35194) Full Text: DOI arXiv
Gnatenko, Kh. P.; Shyiko, O. V. Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space. (English) Zbl 1390.81257 Mod. Phys. Lett. A 33, No. 16, Article ID 1850091, 11 p. (2018). MSC: 81R60 PDF BibTeX XML Cite \textit{Kh. P. Gnatenko} and \textit{O. V. Shyiko}, Mod. Phys. Lett. A 33, No. 16, Article ID 1850091, 11 p. (2018; Zbl 1390.81257) Full Text: DOI
Shababi, Homa; Chung, Won Sang Some applications of the most general form of the higher-order GUP with minimal length uncertainty and maximal momentum. (English) Zbl 1386.81147 Mod. Phys. Lett. A 33, No. 12, Article ID 1850068, 14 p. (2018). MSC: 81V17 83C45 PDF BibTeX XML Cite \textit{H. Shababi} and \textit{W. S. Chung}, Mod. Phys. Lett. A 33, No. 12, Article ID 1850068, 14 p. (2018; Zbl 1386.81147) Full Text: DOI
Vutha, Amar C.; Bohr, Eliot A.; Ransford, Anthony; Campbell, Wesley C.; Hamilton, Paul Displacement operators: the classical face of their quantum phase. (English) Zbl 1390.81277 Eur. J. Phys. 39, No. 2, Article ID 025405, 10 p. (2018). MSC: 81S30 70J10 81Q10 PDF BibTeX XML Cite \textit{A. C. Vutha} et al., Eur. J. Phys. 39, No. 2, Article ID 025405, 10 p. (2018; Zbl 1390.81277) Full Text: DOI
Enciso, Alberto; Hartley, David; Peralta-Salas, Daniel A problem of Berry and knotted zeros in the eigenfunctions of the harmonic oscillator. (English) Zbl 1421.35011 J. Eur. Math. Soc. (JEMS) 20, No. 2, 301-314 (2018). Reviewer: Mihai Pascu (Bucureşti) MSC: 35B05 35P05 35Q40 35B40 PDF BibTeX XML Cite \textit{A. Enciso} et al., J. Eur. Math. Soc. (JEMS) 20, No. 2, 301--314 (2018; Zbl 1421.35011) Full Text: DOI arXiv
Padmanabhan, T. Demystifying the constancy of the Ermakov-Lewis invariant for a time-dependent oscillator. (English) Zbl 1383.34055 Mod. Phys. Lett. A 33, No. 7-8, Article ID 1830005, 5 p. (2018). MSC: 34C14 34C15 81T99 PDF BibTeX XML Cite \textit{T. Padmanabhan}, Mod. Phys. Lett. A 33, No. 7--8, Article ID 1830005, 5 p. (2018; Zbl 1383.34055) Full Text: DOI
Pérez-Jordá, José M. On the recursive solution of the quantum harmonic oscillator. (English) Zbl 1390.81159 Eur. J. Phys. 39, No. 1, Article ID 015402, 17 p. (2018). MSC: 81Q05 PDF BibTeX XML Cite \textit{J. M. Pérez-Jordá}, Eur. J. Phys. 39, No. 1, Article ID 015402, 17 p. (2018; Zbl 1390.81159) Full Text: DOI
Hotta, Shu Mathematical physical chemistry. Practical and intuitive methodology. (English) Zbl 1411.81002 Singapore: Springer (ISBN 978-981-10-7670-1/hbk; 978-981-10-7671-8/ebook). xv, 627 p. (2018). Reviewer: Eugene Kryachko (Kyiv) MSC: 81-01 81Pxx 81Qxx 81Rxx 81V55 80A50 PDF BibTeX XML Cite \textit{S. Hotta}, Mathematical physical chemistry. Practical and intuitive methodology. Singapore: Springer (2018; Zbl 1411.81002) Full Text: DOI
Rosas-Ortiz, Oscar; Zelaya, Kevin Bi-orthogonal approach to non-Hermitian Hamiltonians with the oscillator spectrum: generalized coherent states for nonlinear algebras. (English) Zbl 1382.81118 Ann. Phys. 388, 26-53 (2018). MSC: 81R30 81Q12 PDF BibTeX XML Cite \textit{O. Rosas-Ortiz} and \textit{K. Zelaya}, Ann. Phys. 388, 26--53 (2018; Zbl 1382.81118) Full Text: DOI
Gangopadhyaya, Asim; Mallow, Jeffry V.; Rasinariu, Constantin Supersymmetric quantum mechanics. An introduction. 2nd edition. (English) Zbl 1375.81007 Hackensack, NJ: World Scientific (ISBN 978-981-3221-03-1/hbk; 978-981-3221-04-8/pbk). xii, 281 p. (2018). MSC: 81-01 81Q60 81T60 00A79 PDF BibTeX XML Cite \textit{A. Gangopadhyaya} et al., Supersymmetric quantum mechanics. An introduction. 2nd edition. Hackensack, NJ: World Scientific (2018; Zbl 1375.81007) Full Text: DOI
Ludyk, Günter Quantum mechanics in matrix form. (English) Zbl 1396.81002 Undergraduate Lecture Notes in Physics. Cham: Springer (ISBN 978-3-319-26364-9/pbk; 978-3-319-26366-3/ebook). xiii, 214 p. (2018). Reviewer: Serban Misicu (Bucureşti) MSC: 81-01 81P05 81V45 81V70 PDF BibTeX XML Cite \textit{G. Ludyk}, Quantum mechanics in matrix form. Cham: Springer (2018; Zbl 1396.81002) Full Text: DOI
Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) hfbtho (v3.00): a new version of the program. (English) Zbl 1411.81017 Comput. Phys. Commun. 220, 363-375 (2017). MSC: 81-04 81V35 PDF BibTeX XML Cite \textit{R. N. Perez} et al., Comput. Phys. Commun. 220, 363--375 (2017; Zbl 1411.81017) Full Text: DOI
An, Junxiu; Lu, Zhijun; Wang, Peng A covariance-matrix multi-scale quantum harmonic oscillator algorithm. (Chinese. English summary) Zbl 1399.68064 Control Decis. 32, No. 12, 2254-2260 (2017). MSC: 68Q12 90C26 PDF BibTeX XML Cite \textit{J. An} et al., Control Decis. 32, No. 12, 2254--2260 (2017; Zbl 1399.68064) Full Text: DOI
Domański, Ziemowit; Błaszak, Maciej Coherence and squeezing along quantum trajectories. (English) Zbl 1387.81241 Rep. Math. Phys. 80, No. 3, 373-389 (2017). MSC: 81R30 81S22 PDF BibTeX XML Cite \textit{Z. Domański} and \textit{M. Błaszak}, Rep. Math. Phys. 80, No. 3, 373--389 (2017; Zbl 1387.81241) Full Text: DOI arXiv
Marino, Massimo On the classical and quantum integrability of systems of resonant oscillators. (English) Zbl 1390.37100 Regul. Chaotic Dyn. 22, No. 1, 1-17 (2017). Reviewer: Willard Miller jun. (Minneapolis) MSC: 37J35 70H06 81S05 PDF BibTeX XML Cite \textit{M. Marino}, Regul. Chaotic Dyn. 22, No. 1, 1--17 (2017; Zbl 1390.37100) Full Text: DOI
Andreev, V. A.; Davidović, D. M.; Davidović, L. D.; Davidović, Milena D.; Davidović, Miloš D. Scale transformations in phase space and stretched states of a harmonic oscillator. (English. Russian original) Zbl 1390.81162 Theor. Math. Phys. 192, No. 1, 1080-1096 (2017); translation from Teor. Mat. Fiz. 192, No. 1, 164-184 (2017). MSC: 81Q10 81S05 62J10 81S30 PDF BibTeX XML Cite \textit{V. A. Andreev} et al., Theor. Math. Phys. 192, No. 1, 1080--1096 (2017; Zbl 1390.81162); translation from Teor. Mat. Fiz. 192, No. 1, 164--184 (2017) Full Text: DOI
Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar Optimum quantum receiver for detecting weak signals in PAM communication systems. (English) Zbl 1387.81033 Quantum Inf. Process. 16, No. 9, Paper No. 208, 22 p. (2017). MSC: 81P15 60G35 81Q05 PDF BibTeX XML Cite \textit{N. Sharma} et al., Quantum Inf. Process. 16, No. 9, Paper No. 208, 22 p. (2017; Zbl 1387.81033) Full Text: DOI
Dereziński, Jan; Karczmarczyk, Maciej On the Weyl symbol of the resolvent of the harmonic oscillator. (English) Zbl 1391.35117 Commun. Partial Differ. Equations 42, No. 10, 1537-1548 (2017). Reviewer: Andreas Kleefeld (Jülich) MSC: 35J05 33C15 47A10 81S30 PDF BibTeX XML Cite \textit{J. Dereziński} and \textit{M. Karczmarczyk}, Commun. Partial Differ. Equations 42, No. 10, 1537--1548 (2017; Zbl 1391.35117) Full Text: DOI
Zúñiga, José; Bastida, Adolfo; Requena, Alberto Quantum solution of coupled harmonic oscillator systems beyond normal coordinates. (English) Zbl 1387.82007 J. Math. Chem. 55, No. 10, 1964-1984 (2017). MSC: 82B10 PDF BibTeX XML Cite \textit{J. Zúñiga} et al., J. Math. Chem. 55, No. 10, 1964--1984 (2017; Zbl 1387.82007) Full Text: DOI
Robinson, T. R. The equally spaced energy levels of the quantum harmonic oscillator revisited: a back-to-front reconstruction of an \(n\)-body Hamiltonian. (English) Zbl 1386.81079 Eur. J. Phys. 38, No. 6, Article ID 065403, 14 p. (2017). MSC: 81Q10 81V70 PDF BibTeX XML Cite \textit{T. R. Robinson}, Eur. J. Phys. 38, No. 6, Article ID 065403, 14 p. (2017; Zbl 1386.81079) Full Text: DOI
Zarmi, Yair A classical limit-cycle system that mimics the quantum-mechanical harmonic oscillator. (English) Zbl 1378.34063 Physica D 359, 21-28 (2017). MSC: 34C15 34C05 PDF BibTeX XML Cite \textit{Y. Zarmi}, Physica D 359, 21--28 (2017; Zbl 1378.34063) Full Text: DOI
Bakhshi, Z.; Panahi, H.; Golchehre, S. G. Four-dimensional quantum oscillator and magnetic monopole with \(\mathrm{U}(1)\) dynamical group. (English) Zbl 1375.81080 Mod. Phys. Lett. A 32, No. 30, Article ID 1750161, 7 p. (2017). MSC: 81Q05 PDF BibTeX XML Cite \textit{Z. Bakhshi} et al., Mod. Phys. Lett. A 32, No. 30, Article ID 1750161, 7 p. (2017; Zbl 1375.81080) Full Text: DOI
Maziashvili, Michael Macroscopic detection of deformed QM by the harmonic oscillator. (English) Zbl 1373.81217 Ann. Phys. 383, 545-549 (2017). MSC: 81Q20 PDF BibTeX XML Cite \textit{M. Maziashvili}, Ann. Phys. 383, 545--549 (2017; Zbl 1373.81217) Full Text: DOI
Zhou, Shaosheng; Fu, Shizhou; Chen, Yuping Network realization of triplet-type quantum stochastic systems. (English) Zbl 1373.81128 Quantum Inf. Process. 16, No. 1, Paper No. 34, 20 p. (2017). MSC: 81P45 81S25 PDF BibTeX XML Cite \textit{S. Zhou} et al., Quantum Inf. Process. 16, No. 1, Paper No. 34, 20 p. (2017; Zbl 1373.81128) Full Text: DOI
Cassano, B.; Fanelli, L. Gaussian decay of harmonic oscillators and related models. (English) Zbl 1371.81111 J. Math. Anal. Appl. 456, No. 1, 214-228 (2017). MSC: 81Q10 81Q05 81S05 62J10 PDF BibTeX XML Cite \textit{B. Cassano} and \textit{L. Fanelli}, J. Math. Anal. Appl. 456, No. 1, 214--228 (2017; Zbl 1371.81111) Full Text: DOI
Austrich-Olivares, Joan A.; Garcia-Chung, Angel; Vergara, J. David Instanton solutions on the polymer harmonic oscillator. (English) Zbl 1370.83023 Classical Quantum Gravity 34, No. 11, Article ID 115005, 28 p. (2017). MSC: 83C45 81T20 PDF BibTeX XML Cite \textit{J. A. Austrich-Olivares} et al., Classical Quantum Gravity 34, No. 11, Article ID 115005, 28 p. (2017; Zbl 1370.83023) Full Text: DOI
Scherer, Philipp O. J.; Fischer, Sighart F. Theoretical molecular biophysics. 2nd edition. (English) Zbl 1395.92001 Biological and Medical Physics, Biomedical Engineering. Berlin: Springer (ISBN 978-3-662-55670-2/hbk; 978-3-662-55671-9/ebook). xvi, 513 p. (2017). Reviewer: Eugene Kryachko (Liège) MSC: 92-01 92C05 92E10 81-01 81V55 92E20 92D20 PDF BibTeX XML Cite \textit{P. O. J. Scherer} and \textit{S. F. Fischer}, Theoretical molecular biophysics. 2nd edition. Berlin: Springer (2017; Zbl 1395.92001) Full Text: DOI
Cariñena, José F.; Plyushchay, Mikhail S. ABC of ladder operators for rationally extended quantum harmonic oscillator systems. (English) Zbl 1370.81229 J. Phys. A, Math. Theor. 50, No. 27, Article ID 275202, 30 p. (2017). MSC: 81V70 81Q10 81R15 81Q80 PDF BibTeX XML Cite \textit{J. F. Cariñena} and \textit{M. S. Plyushchay}, J. Phys. A, Math. Theor. 50, No. 27, Article ID 275202, 30 p. (2017; Zbl 1370.81229) Full Text: DOI
Fano, Guido; Blinder, S. M. Twenty-first century quantum mechanics: Hilbert space to quantum computers. Mathematical methods and conceptual foundations. (English) Zbl 1377.81005 Unitext for Physics. Cham: Springer (ISBN 978-3-319-58731-8/hbk; 978-3-319-58732-5/ebook). xvi, 271 p. (2017). Reviewer: Eugene Kryachko (Liège) MSC: 81-02 81-03 81Qxx 81Rxx 00A79 PDF BibTeX XML Cite \textit{G. Fano} and \textit{S. M. Blinder}, Twenty-first century quantum mechanics: Hilbert space to quantum computers. Mathematical methods and conceptual foundations. Cham: Springer (2017; Zbl 1377.81005) Full Text: DOI
Wang, Zhiguo; Liang, Zhenguo Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay. (English) Zbl 1370.37135 Nonlinearity 30, No. 4, 1405-1448 (2017). Reviewer: Mihai Pascu (Bucureşti) MSC: 37K55 35P05 81Q15 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Z. Liang}, Nonlinearity 30, No. 4, 1405--1448 (2017; Zbl 1370.37135) Full Text: DOI arXiv
Kowalski, Zbigniew S. Stability of smooth extensions of Bernoulli shifts. (English) Zbl 1372.37009 Appl. Math. 44, No. 1, 85-104 (2017). MSC: 37A05 60G50 37B10 PDF BibTeX XML Cite \textit{Z. S. Kowalski}, Appl. Math. 44, No. 1, 85--104 (2017; Zbl 1372.37009) Full Text: DOI
Ma, Shan; Woolley, Matthew J.; Petersen, Ian R.; Yamamoto, Naoki Pure Gaussian states from quantum harmonic oscillator chains with a single local dissipative process. (English) Zbl 1362.81017 J. Phys. A, Math. Theor. 50, No. 13, Article ID 135301, 28 p. (2017). MSC: 81P40 81Q10 81V70 81R30 81P45 81S22 34C15 PDF BibTeX XML Cite \textit{S. Ma} et al., J. Phys. A, Math. Theor. 50, No. 13, Article ID 135301, 28 p. (2017; Zbl 1362.81017) Full Text: DOI arXiv
Ferkous, N.; Boudjedaa, T. Bound states energies of a harmonic oscillator perturbed by point interactions. (English) Zbl 1360.81141 Commun. Theor. Phys. 67, No. 3, 241-249 (2017). MSC: 81Q05 PDF BibTeX XML Cite \textit{N. Ferkous} and \textit{T. Boudjedaa}, Commun. Theor. Phys. 67, No. 3, 241--249 (2017; Zbl 1360.81141) Full Text: DOI
Ghazouani, Sami; Soltani, El Amine; Fitouhi, Ahmed A unified class of integral transforms related to the Dunkl transform. (English) Zbl 1359.44002 J. Math. Anal. Appl. 449, No. 2, 1797-1849 (2017). MSC: 44A15 81Q05 PDF BibTeX XML Cite \textit{S. Ghazouani} et al., J. Math. Anal. Appl. 449, No. 2, 1797--1849 (2017; Zbl 1359.44002) Full Text: DOI
Modanese, Giovanni Ultra-light and strong: the massless harmonic oscillator and its singular path integral. (English) Zbl 1356.81135 Int. J. Geom. Methods Mod. Phys. 14, No. 1, Article ID 1750010, 10 p. (2017). MSC: 81Q30 81Q05 82C31 PDF BibTeX XML Cite \textit{G. Modanese}, Int. J. Geom. Methods Mod. Phys. 14, No. 1, Article ID 1750010, 10 p. (2017; Zbl 1356.81135) Full Text: DOI
Taylor, Alexander John Analysis of quantised vortex tangle. (English) Zbl 1361.82006 Springer Theses. Cham: Springer; Bristol: Univ. of Bristol (Diss.) (ISBN 978-3-319-48555-3/hbk; 978-3-319-48556-0/ebook). xvi, 197 p. (2017). Reviewer: Nasir N. Ganikhodjaev (Kuantan) MSC: 82-02 82D50 76A25 65Z05 00A79 PDF BibTeX XML Cite \textit{A. J. Taylor}, Analysis of quantised vortex tangle. Cham: Springer; Bristol: Univ. of Bristol (Diss.) (2017; Zbl 1361.82006) Full Text: DOI
Mourya, Brijesh Kumar; Mandal, Bhabani Prasad Green’s function of a general PT-symmetric non-Hermitian non-central potential. (English) Zbl 1402.81156 Bagarello, Fabio (ed.) et al., Non-Hermitian Hamiltonians in quantum physics. Selected contributions from the 15th international conference on non-Hermitian Hamiltonians in quantum physics, Palermo, Italy, May 18–23, 2015. Cham: Springer (ISBN 978-3-319-31354-2/hbk; 978-3-319-31356-6/ebook). Springer Proceedings in Physics 184, 319-327 (2016). MSC: 81Q12 35J08 PDF BibTeX XML Cite \textit{B. K. Mourya} and \textit{B. P. Mandal}, Springer Proc. Phys. 184, 319--327 (2016; Zbl 1402.81156) Full Text: DOI arXiv
Zhang, Lin; Zhang, Weiping Lie transformation method on quantum state evolution of a general time-dependent driven and damped parametric oscillator. (English) Zbl 1380.81124 Ann. Phys. 373, 424-455 (2016). MSC: 81Q12 81R05 35Q41 81Q05 PDF BibTeX XML Cite \textit{L. Zhang} and \textit{W. Zhang}, Ann. Phys. 373, 424--455 (2016; Zbl 1380.81124) Full Text: DOI
Chou, Chia-Chun Dissipative quantum trajectories in complex space: damped harmonic oscillator. (English) Zbl 1380.81102 Ann. Phys. 373, 325-345 (2016). MSC: 81Q05 35Q55 35C08 PDF BibTeX XML Cite \textit{C.-C. Chou}, Ann. Phys. 373, 325--345 (2016; Zbl 1380.81102) Full Text: DOI
Torres-Vega, Gabino Universal raising and lowering operators for a discrete energy spectrum. (English) Zbl 1380.81123 Found. Phys. 46, No. 6, 689-701 (2016). MSC: 81Q10 81R15 81Q05 PDF BibTeX XML Cite \textit{G. Torres-Vega}, Found. Phys. 46, No. 6, 689--701 (2016; Zbl 1380.81123) Full Text: DOI
Jahangiri, L.; Panahi, H. Quantum mechanical treatment of a constrained particle on two dimensional sphere. (English) Zbl 1378.81040 Ann. Phys. 375, 407-413 (2016). MSC: 81Q35 PDF BibTeX XML Cite \textit{L. Jahangiri} and \textit{H. Panahi}, Ann. Phys. 375, 407--413 (2016; Zbl 1378.81040) Full Text: DOI
Bouzeffour, Fethi; Ben Mansour, Hanen Meixner polynomials and ID para-Bose oscillator. (English) Zbl 1367.81053 Rep. Math. Phys. 78, No. 2, 183-197 (2016). MSC: 81Q10 81S05 33E30 34K11 81R30 PDF BibTeX XML Cite \textit{F. Bouzeffour} and \textit{H. Ben Mansour}, Rep. Math. Phys. 78, No. 2, 183--197 (2016; Zbl 1367.81053) Full Text: DOI
Singh, Manu Pratap; Rajput, B. S. Quantum encoding and entanglement in terms of phase operators associated with harmonic oscillator. (English) Zbl 1358.81043 Int. J. Theor. Phys. 55, No. 10, 4393-4405 (2016). MSC: 81P40 PDF BibTeX XML Cite \textit{M. P. Singh} and \textit{B. S. Rajput}, Int. J. Theor. Phys. 55, No. 10, 4393--4405 (2016; Zbl 1358.81043) Full Text: DOI
Wang, Peng; Huang, Yan; An, Junxiu; Li, Jianping Performance analysis of multi-scale quantum harmonic oscillator global optimization algorithm in combinatorial optimization problems. (Chinese. English summary) Zbl 1363.68089 J. Univ. Electron. Sci. Technol. China 45, No. 3, 469-474 (2016). MSC: 68Q12 90C27 PDF BibTeX XML Cite \textit{P. Wang} et al., J. Univ. Electron. Sci. Technol. China 45, No. 3, 469--474 (2016; Zbl 1363.68089) Full Text: DOI
Kheiri, R. Revealing a quantum feature of dimensionless uncertainty in linear and quadratic potentials by changing potential intervals. (English) Zbl 1355.81075 Eur. J. Phys. 37, No. 5, Article ID 055411 17 p. (2016). MSC: 81Q05 81P05 81P15 81S05 PDF BibTeX XML Cite \textit{R. Kheiri}, Eur. J. Phys. 37, No. 5, Article ID 055411 17 p. (2016; Zbl 1355.81075) Full Text: DOI
Kechrimparis, Spiros; Weigert, Stefan Universality in uncertainty relations for a quantum particle. (English) Zbl 1352.81041 J. Phys. A, Math. Theor. 49, No. 35, Article ID 355303, 22 p. (2016). MSC: 81S05 81R30 81P15 62J10 PDF BibTeX XML Cite \textit{S. Kechrimparis} and \textit{S. Weigert}, J. Phys. A, Math. Theor. 49, No. 35, Article ID 355303, 22 p. (2016; Zbl 1352.81041) Full Text: DOI
Nogueira, Pedro H. F.; de Castro, Antonio S. From the generalized Morse potential to a unified treatment of the \(D\)-dimensional singular harmonic oscillator and singular Coulomb potentials. (English) Zbl 1367.81082 J. Math. Chem. 54, No. 9, 1783-1791 (2016). MSC: 81R12 78A25 PDF BibTeX XML Cite \textit{P. H. F. Nogueira} and \textit{A. S. de Castro}, J. Math. Chem. 54, No. 9, 1783--1791 (2016; Zbl 1367.81082) Full Text: DOI arXiv