×

Complete solution of a family of quartic Thue equations. (English) Zbl 0853.11021

This is the second example of a family of quartic Thue equations, depending on an integer parameter \(a\), which is completely solved for all values of \(a\). The first analogous example is due to M. Mignotte, the second named author and R. Roth [Math. Comput. 65, 341-354 (1996; see the following review)]. The authors solve completely the quartic Thue equations \[ F_a (x, y)= x^4- ax^3 y- 6x^2 y^2+ axy^3+ y^4= c, \qquad c\in \{\pm 1, \pm 4\} \] for all values of \(a\).
Their method is much in the spirit of the aforementioned paper but, certainly, less technical – due to the nice properties of the number fields defined by a root of \(F_a (X, 1)\) – and by far less demanding in computer assistance. These features make the present paper more easily readable than that of Mignotte et al, which means that, if one wants to understand the underlying method in both these papers, one should probably start form the one under review. An interesting proposition characterizing the units of the maximal order of the corresponding quartic fields is also proved.

MSC:

11D25 Cubic and quartic Diophantine equations
11R16 Cubic and quartic extensions
11R27 Units and factorization
11Y50 Computer solution of Diophantine equations

Citations:

Zbl 0853.11022
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baker, A., Contribution to the theory of Diophantine equations I. On the representation of integers by binary forms, Philos. Trans. Roy. Soc. Londen, 263, 173-191 (1968) · Zbl 0157.09702 · doi:10.1098/rsta.1968.0010
[2] I. Gaál. On the resolution of some diophantine equations. In:Computational Number Theory, Colloquim on Computational Number Theory, Debrecen, 1989. Eds.: A. Pethő, M. Pohst, H.C. Williams, H.G. Zimmer. De Gruyter 1991, 261-280. · Zbl 0733.11054
[3] Gaál, I.; Pethő, A.; Pohst, M., On the resolution of a family of index form equations in quartic number fields, J. Symbolic Comp., 16, 563-584 (1993) · Zbl 0808.11023 · doi:10.1006/jsco.1993.1064
[4] I. Gaál, A. Pethő andM. Pohst. Simultaneous representation of integers by a pair of ternary quadratic forms with an application to index form equations in quartic number fields.J. Number Theory, to appear. · Zbl 0853.11023
[5] M. N. Gras. Table numerique du nombre de classe et des unites des extensions cycliques reelles de degré 4 de ℒ.Publ. Math. Fac. Sci. Besançon (1977-1978), fasc. 2. · Zbl 0471.12006
[6] Lazarus, A. J., On the class number and unit index of simplest quartic fields, Nagoya Math. J., 121, 1-13 (1991) · Zbl 0719.11073
[7] Mahler, K., An inequality for the discriminant of a polynomial, Michigan Math. J., 11, 257-262 (1964) · Zbl 0135.01702 · doi:10.1307/mmj/1028999140
[8] Mignotte, M., Verification of a Conjecture of E. Thomas, J. Number Theory, 44, 172-177 (1993) · Zbl 0780.11013 · doi:10.1006/jnth.1993.1043
[9] M. Mignotte, A. Pethő andR. Roth. Complete solutions of quartic Thue and index form equations.Math. Comp., to appear. · Zbl 0853.11022
[10] Mignotte, M.; Tzanakis, N., On a family of cubics, J. Number Theory, 39, 41-49 (1991) · Zbl 0734.11025 · doi:10.1016/0022-314X(91)90032-7
[11] Pethő, A., Complete solutions to families of quartic Thue equations, Math. Comp., 57, 777-798 (1991) · Zbl 0738.11028 · doi:10.2307/2938717
[12] Pethő, A.; Schulenberg, R., Effektives Lösen von Thue Gleichungen, Publ. Math. Debrecen, 34, 189-196 (1987) · Zbl 0657.10015
[13] M. Pohst andH. Zassenhaus.Algorithmic Algebraic Number Theory. Cambridge Univ. Press 1989. · Zbl 0685.12001
[14] Shanks, D., The simplest cubic fields, Math. Comp., 28, 1134-1152 (1974) · Zbl 0307.12005
[15] Thomas, E., Fundamental units for orders in certain cubic number fields, J. reine angew. Math., 310, 33-55 (1979) · Zbl 0427.12005
[16] Thomas, E., Complete solutions to a family of cubic diophantine equations, J. Number Theory, 34, 235-250 (1990) · Zbl 0697.10011 · doi:10.1016/0022-314X(90)90154-J
[17] Thomas, E., Solutions to certain families of Thue equations, J. Number Theory, 43, 319-369 (1993) · Zbl 0774.11013 · doi:10.1006/jnth.1993.1024
[18] Thue, A., Über Annäherungswerte algebraischer Zahlen, J. reine angew. Math., 135, 284-305 (1909) · JFM 40.0265.01
[19] Tzanakis, N.; de Weger, B. M. M., On the practical solution of the Thue equation, J. Number Theory, 31, 99-132 (1989) · Zbl 0657.10014 · doi:10.1016/0022-314X(89)90014-0
[20] Waldschmidt, M., Linear independence of logarithms of algebraic numbers (1992), Madras: The Institute of Math. Sciences, Madras · Zbl 0809.11038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.