×

Reconstructing plane quartics from their invariants. (English) Zbl 1439.13020

Let \(R_{3,n}\) denote the ring of ternary forms of degree \(n\) over the complex field \(\mathbb{C}\). Consider the action of \(\operatorname{SL} _3(\mathbb{C})\) on the ring \(R_{3,n}\). Explicit generators are known for \(n \leq 4\). While the cases \(n \leq 3\) are classically known, the case of \(n = 4\) was shown by J. Dixmier [Adv. Math. 64, 279–304 (1987; Zbl 0668.14006)] and by Ohno (unpublished, see also A.-S. Elsenhans [J. Symb. Comput. 68, Part 2, 109–115 (2015; Zbl 1360.13017)] and M. Girard and D. R. Kohel [Lect. Notes Comput. Sci. 4076, 346–360 (2006; Zbl 1143.14304)]). By the work of these authors it follows that the ring \(\mathbb{C}[R_{3,4}]^{\operatorname{SL} _3(\mathbb{C})}\) is generated by 13 elements, the so-called Dixmier-Ohno invariants of ternary quartics. The main result of the present paper is an explicit method that, given a generic tuple of Dixmier-Ohno invariants, reconstructs a corresponding plane quartic curve. The main technical tool is a method of J.-F. Mestre [Prog. Math. 94, 313–334 (1991; Zbl 0752.14027)], see also the authors in [Open Book Ser. 1, 463–486 (2013; Zbl 1344.11049)]. A Magma package of the authors for reconstructing plane quartics from Dixmier-Ohno invariants is available under https://github.com/JRSijsling/quartic\_reconstruction/.

MSC:

13A50 Actions of groups on commutative rings; invariant theory
14L24 Geometric invariant theory
14H10 Families, moduli of curves (algebraic)
14H25 Arithmetic ground fields for curves
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Artebani, M.; Quispe, S., Fields of moduli and fields of definition of odd signature curves, Arch. Math. (Basel), 99, 4, 333-344 (2012) · Zbl 1267.14040
[2] Basson, R.: Arithmétique des espaces de modules des courbes hyperelliptiques de genre \(3\) en caractéristique positive. PhD thesis, Université de Rennes 1 (2015). https://tel.archives-ouvertes.fr/tel-01170922
[3] Böhning, Christian, The Rationality of the Moduli Space of Curves of Genus 3 after P. Katsylo, Cohomological and Geometric Approaches to Rationality Problems, 17-53 (2009), Boston: Birkhäuser Boston, Boston · Zbl 1197.14010
[4] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symb. Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039
[5] Brouwer, Ae; Popoviciu, M., The invariants of the binary decimic, J. Symb. Comput., 45, 8, 837-843 (2010) · Zbl 1192.13005
[6] Brouwer, Ae; Popoviciu, M., The invariants of the binary nonic, J. Symb. Comput., 45, 6, 709-720 (2010) · Zbl 1189.13005
[7] Clebsch, A., Theorie der binären algebraischen Formen (1872), Leipzig: B.G. Teubner, Leipzig · JFM 04.0047.02
[8] Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2006) · Zbl 1082.94001
[9] Dixmier, J., On the projective invariants of quartic plane curves, Adv. Math., 64, 3, 279-304 (1987) · Zbl 0668.14006
[10] Dolgachev, I., Lectures on Invariant Theory (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1023.13006
[11] Elsenhans, A-S, Explicit computations of invariants of plane quartic curves, J. Symb. Comput., 68, 2, 109-115 (2015) · Zbl 1360.13017
[12] Von Gall, Das vollständige Formensystem einer binären Form achter Ordnung, Mathematische Annalen, 17, 1, 31-51 (1880) · JFM 12.0093.02
[13] Freiherr Von Gall, A., Das vollständige Formensystem der binären Form 7ter Ordnung, Math. Ann., 31, 3, 318-336 (1888) · JFM 20.0128.01
[14] Fulton, W.; Harris, J., Representation Theory (1991), New York: Springer, New York
[15] Gatti, V.; Viniberghi, E., Spinors of \(13\)-dimensional space, Adv. Math., 30, 2, 137-155 (1978) · Zbl 0429.20043
[16] Girard, M.; Kohel, Dr; Hess, F.; Pauli, S.; Pohst, M., Classification of genus 3 curves in special strata of the moduli space, Algorithmic Number Theory, 346-360 (2006), Berlin: Springer, Berlin · Zbl 1143.14304
[17] Gordan, P., Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist, J. Reine Angew. Math., 69, 323-354 (1868) · JFM 01.0046.01
[18] Hashimoto, M., Equivariant total ring of fractions and factoriality of rings generated by semi-invariants, Commun. Algebra, 43, 4, 1524-1562 (2015) · Zbl 1391.13013
[19] Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge: Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd Sturmfels (1993) · Zbl 0801.13001
[20] Katsylo, Pi; Vinberg, Eb, On the birational geometry of the space of ternary quartics, Lie Groups, Their Discrete Subgroups, and Invariant Theory, 95-103 (1992), Providence: American Mathematical Society, Providence · Zbl 0778.14006
[21] Katsylo, P., Rationality of the moduli variety of curves of genus 3, Comment. Math. Helv., 71, 4, 507-524 (1996) · Zbl 0885.14013
[22] Kılıçer, P., Labrande, H., Lercier, R., Ritzenthaler, C., Sijsling, J., Streng, M.: Plane quartics over \({\mathbb{Q}}\) with complex multiplication. Acta Arith. 185(2), 127-156 (2018). arXiv:1701.06489 · Zbl 1409.14051
[23] Kraft, H., Procesi, C.: Classical Invariant Theory. A Primer (1996). Notes available at https://www2.bc.edu/benjamin-howard/MATH8845/classical_invariant_theory.pdf
[24] Lercier, R., Lorenzo García, E., Ritzenthaler, C.: Reduction type of non-hyperelliptic genus 3 curves (2018). arXiv:1803.05816 · Zbl 1519.11035
[25] Lercier, R.; Ritzenthaler, C., Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects, J. Algebra, 372, 595-636 (2012) · Zbl 1276.14088
[26] Lercier, Reynald; Ritzenthaler, Christophe; Sijsling, Jeroen, Fast computation of isomorphisms of hyperelliptic curves and explicit Galois descent, The Open Book Series, 1, 1, 463-486 (2013) · Zbl 1344.11049
[27] Lercier, Reynald; Ritzenthaler, Christophe; Rovetta, Florent; Sijsling, Jeroen, Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields, LMS Journal of Computation and Mathematics, 17, A, 128-147 (2014) · Zbl 1333.14060
[28] Lercier, R., Ritzenthaler, C., Sijsling, J.: \(quartic_-\) reconstruction: a Magma package for reconstructing plane quartics from Dixmier-Ohno invariants. https://github.com/JRSijsling/quartic_reconstruction/ (2016)
[29] Looijenga, E.; Keum, J.; Kondō, S., Invariants of quartic plane curves as automorphic forms, Algebraic Geometry, 107-120 (2007), Providence: American Mathematical Society, Providence · Zbl 1126.14034
[30] Lorenzo García, E., Twists of non-hyperelliptic curves, Rev. Mat. Iberoam., 33, 1, 169-182 (2017) · Zbl 1381.11050
[31] Maeda, T., On the invariant field of binary octavics, Hiroshima Math. J., 20, 3, 619-632 (1990) · Zbl 0741.14004
[32] Mestre, J-F; Mora, T.; Traverso, C., Construction de courbes de genre \(2\) à partir de leurs modules, Effective Methods in Algebraic Geometry, 313-334 (1991), Boston: Birkhäuser, Boston · Zbl 0752.14027
[33] Mumford, D.; Fogarty, J.; Kirwan, F., Geometric Invariant Theory (1994), Berlin: Springer, Berlin · Zbl 0797.14004
[34] Olive, M., About Gordan’s algorithm for binary forms, Found. Comput. Math., 17, 6, 1407-1466 (2017) · Zbl 1408.13017
[35] Olver, P.J.: Classical Invariant Theory. London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999) · Zbl 0971.13004
[36] Popov, Vl, Stability of the action of an algebraic group on an algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat., 36, 371-385 (1972) · Zbl 0232.14018
[37] Procesi, C.: Invariant Theory. Monografías del Instituto de Matemática y Ciencias Afines, vol. 2. Instituto de Matemática y Ciencias Afines, IMCA, Lima (1998) · Zbl 1159.13300
[38] Rökaeus, K.; Aubry, Y.; Ritzenthaler, C.; Zykin, A., Computer search for curves with many points among abelian covers of genus 2 curves, Arithmetic, Geometry, Cryptography and Coding Theory, 145-150 (2012), Providence: American Mathematical Society, Providence · Zbl 1317.11006
[39] Salmon, G., A treatise on the higher plane curves: intended as a sequel to “A treatise on conic sections” (1960), New York: Chelsea, New York · JFM 05.0340.03
[40] Shioda, T., On the graded ring of invariants of binary octavics, Am. J. Math., 89, 4, 1022-1046 (1967) · Zbl 0188.53304
[41] Springer, Ta, Invariant Theory. Lecture Notes in Mathematics (1977), Berlin: Springer, Berlin
[42] Stoll, M., Reduction theory of point clusters in projective space, Groups Geom. Dyn., 5, 2, 553-565 (2011) · Zbl 1242.11027
[43] Sturmfels, B., Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation (2008), Vienna: Springer, Vienna
[44] Van Leeuwen, Maa; Cohen, Am; Lisser, B., LiE, A Package for Lie Group Computations (1997), Amsterdam: Computer Algebra Nederland, Amsterdam
[45] van Rijnswou, S.M.: Testing the Equivalence of Planar Curves. PhD thesis, Technische Universiteit Eindhoven, Eindhoven (2001). https://research.tue.nl/en/publications/testing-the-equivalence-of-planar-curves · Zbl 0982.13004
[46] Weil, A., The field of definition of a variety, Am. J. Math., 78, 509-524 (1956) · Zbl 0072.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.