×

Average ranks of elliptic curves: tension between data and conjecture. (English) Zbl 1190.11032

Summary: Rational points on elliptic curves are the gems of arithmetic: they are, to Diophantine geometry, what units in rings of integers are to algebraic number theory, what algebraic cycles are to algebraic geometry. A rational point in just the right context, at one place in the theory, can inhibit and control – thanks to ideas of Kolyvagin – the existence of rational points and other mathematical structures elsewhere. Despite all that we know about these objects, the initial mystery and excitement that drew mathematicians to this arena in the first place remains in full force today.
We have a network of heuristics and conjectures regarding rational points, and we have massive data accumulated to exhibit instances of the phenomena. Generally, we would expect that our data support our conjectures, and if not, we lose faith in our conjectures. But here there is a somewhat more surprising interrelation between data and conjecture: they are not exactly in open conflict one with the other, but they are no great comfort to each other either. We discuss various aspects of this story, including recent heuristics and data that attempt to resolve this mystery. We shall try to convince the reader that, despite seeming discrepancy, data and conjecture are, in fact, in harmony.

MSC:

11G05 Elliptic curves over global fields
11-02 Research exposition (monographs, survey articles) pertaining to number theory
11D25 Cubic and quartic Diophantine equations
11Y35 Analytic computations
11Y40 Algebraic number theory computations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. Allombert, K. Belabas, H. Cohen, X. Roblot, and I. Zakharevitch, PARI/GP, computer software, pari.math.u-bordeaux.fr
[2] J. D. Bekenstein, An alternative to the dark matter paradigm: relativistic MOND gravitation. Invited talk at the 28th Johns Hopkins Workshop on Current Problems in Particle Theory, June 2004, Johns Hopkins University, Baltimore. Published online in JHEP Proceedings of Science, arxiv.org/astro-ph/0412652
[3] Manjul Bhargava, The density of discriminants of quartic rings and fields, Ann. of Math. (2) 162 (2005), no. 2, 1031 – 1063. · Zbl 1159.11045
[4] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7 – 25. , https://doi.org/10.1515/crll.1963.212.7 B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79 – 108. · Zbl 0147.02506
[5] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over \?: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843 – 939. · Zbl 0982.11033
[6] Armand Brumer and Oisín McGuinness, The behavior of the Mordell-Weil group of elliptic curves, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 375 – 382. · Zbl 0741.14010
[7] J. W. S. Cassels, Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95 – 112. · Zbl 0106.03706
[8] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier, Counting discriminants of number fields of degree up to four, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 269 – 283. · Zbl 0987.11080
[9] J. B. Conrey, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, On the frequency of vanishing of quadratic twists of modular \?-functions, Number theory for the millennium, I (Urbana, IL, 2000) A K Peters, Natick, MA, 2002, pp. 301 – 315. · Zbl 1044.11035
[10] J. B. Conrey, J. P. Keating, M. O. Rubinstein, and N. C. Snaith, Random matrix theory and the Fourier coefficients of half-integral-weight forms, Experiment. Math. 15 (2006), no. 1, 67 – 82. · Zbl 1144.11035
[11] J. B. Conrey, A. Pokharel, M. O. Rubinstein, and M. Watkins, Secondary terms in the number of vanishings of quadratic twists of elliptic curve \( L\)-functions (2005); arxiv.org/math.NT/0509059 · Zbl 1193.11063
[12] J. B. Conrey, M. O. Rubinstein, N. C. Snaith, and M. Watkins, Discretisation for odd quadratic twists (2006); arxiv.org/math.NT/0509428 · Zbl 1193.11064
[13] J. E. Cremona, Elliptic curve tables, www.maths.nott.ac.uk/personal/jec/ftp/data · JFM 01.0253.01
[14] J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997. · Zbl 0872.14041
[15] Chantal David, Jack Fearnley, and Hershy Kisilevsky, On the vanishing of twisted \?-functions of elliptic curves, Experiment. Math. 13 (2004), no. 2, 185 – 198. · Zbl 1115.11033
[16] William Duke, Elliptic curves with no exceptional primes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 8, 813 – 818 (English, with English and French summaries). · Zbl 1002.11049
[17] Gerd Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 9 – 27. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349 – 366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab] by Edward Shipz. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349 – 366 (German). , https://doi.org/10.1007/BF01388432 G. Faltings, Erratum: ”Finiteness theorems for abelian varieties over number fields”, Invent. Math. 75 (1984), no. 2, 381 (German). , https://doi.org/10.1007/BF01388572 G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349 – 366 (German). , https://doi.org/10.1007/BF01388432 G. Faltings, Erratum: ”Finiteness theorems for abelian varieties over number fields”, Invent. Math. 75 (1984), no. 2, 381 (German).
[18] Stéfane Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur Q, Experiment. Math. 5 (1996), no. 2, 119 – 130 (French, with English and French summaries). · Zbl 0873.11033
[19] Dorian Goldfeld, Conjectures on elliptic curves over quadratic fields, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979) Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 108 – 118. · Zbl 0417.14031
[20] See, for instance, a book review of Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers by Dan Rockmore, reviewed by S. W. Graham in the MAA Online book review column at www.maa.org/reviews/stalkingrh.html, where discrepancies in versions of the story are discussed.
[21] Andrew Granville and Thomas J. Tucker, It’s as easy as \?\?\?, Notices Amer. Math. Soc. 49 (2002), no. 10, 1224 – 1231. · Zbl 1160.11318
[22] D. R. Heath-Brown, The size of Selmer groups for the congruent number problem, Invent. Math. 111 (1993), no. 1, 171 – 195. , https://doi.org/10.1007/BF01231285 D. R. Heath-Brown, The size of Selmer groups for the congruent number problem. II, Invent. Math. 118 (1994), no. 2, 331 – 370. With an appendix by P. Monsky. · Zbl 0815.11032
[23] H. A. Helfgott, On the behaviour of root numbers in families of elliptic curves (2004), submitted; arxiv.org/math.NT/0408141
[24] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. · Zbl 0958.11004
[25] J. P. Keating and N. C. Snaith, Random matrix theory and \?(1/2+\?\?), Comm. Math. Phys. 214 (2000), no. 1, 57 – 89. , https://doi.org/10.1007/s002200000261 J. P. Keating and N. C. Snaith, Random matrix theory and \?-functions at \?=1/2, Comm. Math. Phys. 214 (2000), no. 1, 91 – 110. · Zbl 1051.11047
[26] СХ(\?,\?) фор а субцласс оф Щеил цурвес, Изв. Акад. Наук СССР Сер. Мат. 52 (1988), но. 3, 522 – 540, 670 – 671 (Руссиан); Енглиш трансл., Матх. УССР-Изв. 32 (1989), но. 3, 523 – 541.
[27] E. Kowalski, Elliptic curves, rank in families and random matrices. To appear in the Proceedings of the Isaac Newton Institute workshop on random matrices and \( L\)-functions (July 2004). Also related to the author’s lecture at the AIM/Princeton workshop on the Birch and Swinnerton-Dyer conjecture (November 2003). See www.math.u-bordeaux1.fr/ kowalski/elliptic-curves-families.pdf · Zbl 1213.11136
[28] E. Kowalski, On the rank of quadratic twists of elliptic curves over function fields. To appear in International J. Number Theory. Online at arxiv.org/math.NT/0503732 · Zbl 1115.11030
[29] Gunter Malle, On the distribution of Galois groups, J. Number Theory 92 (2002), no. 2, 315 – 329. · Zbl 1022.11058
[30] Gunter Malle, On the distribution of Galois groups. II, Experiment. Math. 13 (2004), no. 2, 129 – 135. · Zbl 1099.11065
[31] Matplotlib, computer software, matplotlib.sourceforge.net
[32] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1 – 61. · Zbl 0281.14016
[33] Madan Lal Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. · Zbl 1107.15019
[34] L. J. Mordell, On the Rational Solutions of the Indeterminate Equations of the Third and Fourth Degrees, Proc. Cambridge Philos. Soc. 21 (1922-23), 179-192.
[35] Karl Rubin and Alice Silverberg, Ranks of elliptic curves, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 4, 455 – 474. · Zbl 1052.11039
[36] Daniel Shanks, Solved and unsolved problems in number theory, 3rd ed., Chelsea Publishing Co., New York, 1985. · Zbl 0997.11503
[37] Alice Silverberg, Open questions in arithmetic algebraic geometry, Arithmetic algebraic geometry (Park City, UT, 1999) IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, RI, 2001, pp. 83 – 142. · Zbl 1011.11038
[38] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original. · Zbl 0585.14026
[39] W. Stein and D. Joyner, Sage: System for algebra and geometry experimentation, Communications in Computer Algebra (SIGSAM Bulletin) (July 2005). Online at sage.sourceforge.net · Zbl 1341.68315
[40] W. A. Stein and M. Watkins, A database of elliptic curves–first report, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 267-275. Online from modular.ucsd.edu/papers/stein-watkins · Zbl 1058.11036
[41] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 33 – 52. Lecture Notes in Math., Vol. 476. · Zbl 1214.14020
[42] M. Tegmark et al., Cosmological parameters from SDSS and WMAP, Phys. Rev. D 69 (2004) 103501. Online at arxiv.org/astro-ph/0310723.
[43] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. (9) 60 (1981), no. 4, 375 – 484 (French). · Zbl 0431.10015
[44] M. Watkins, Rank distribution in a family of cubic twists. To appear in Proceedings of the Issac Newton Institute Workshop on Elliptic Curves and Random Matrix Theory. Online at arxiv.org/math.NT/0412427 · Zbl 1213.11138
[45] -, Some heuristics about elliptic curves, Preprint (2006). To be submitted to Experimental Mathematics; currently online at www.maths.bris.ac.uk/ mamjw/heur.ps
[46] Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443 – 551. · Zbl 0823.11029
[47] Matthew P. Young, Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc. 19 (2006), no. 1, 205 – 250. · Zbl 1086.11032
[48] M. P. Young, On the nonvanishing of elliptic curve L-functions at the central point (2005), to appear in Proc. London Math. Soc.; arxiv.org/math.NT/0508185, AIM preprint 2004-30.
[49] D. Zagier and G. Kramarz, Numerical investigations related to the \?-series of certain elliptic curves, J. Indian Math. Soc. (N.S.) 52 (1987), 51 – 69 (1988). · Zbl 0688.14016
[50] F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln (German) [The red shift of extragalactic nebulae], Helvetica Phys. Acta, vol. 6 (1933), 110-127. · JFM 59.1632.03
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.