Currie, Sonja; Roth, Thomas T.; Watson, Bruce A. Inverse problems for first-order differential systems with periodic \( 2\times 2\) matrix potentials and quasi-periodic boundary conditions. (English) Zbl 1410.34262 Math. Methods Appl. Sci. 41, No. 15, 5985-5988 (2018). Reviewer: Jonathan Eckhardt (Loughborough) MSC: 34L40 34B05 34A55 PDF BibTeX XML Cite \textit{S. Currie} et al., Math. Methods Appl. Sci. 41, No. 15, 5985--5988 (2018; Zbl 1410.34262) Full Text: DOI
Lou, Zhaowei; Si, Jianguo Quasi-periodic solutions for the reversible derivative nonlinear Schrödinger equations with periodic boundary conditions. (English) Zbl 1377.37109 J. Dyn. Differ. Equations 29, No. 3, 1031-1069 (2017). MSC: 37K55 35Q41 35B15 PDF BibTeX XML Cite \textit{Z. Lou} and \textit{J. Si}, J. Dyn. Differ. Equations 29, No. 3, 1031--1069 (2017; Zbl 1377.37109) Full Text: DOI
Gao, Meina; Liu, Jianjun Invariant tori for 1D quintic nonlinear wave equation. (English) Zbl 1379.35190 J. Differ. Equations 263, No. 12, 8533-8564 (2017). MSC: 35L71 35L20 37K55 PDF BibTeX XML Cite \textit{M. Gao} and \textit{J. Liu}, J. Differ. Equations 263, No. 12, 8533--8564 (2017; Zbl 1379.35190) Full Text: DOI
Gao, Yixian; Zhang, Weipeng; Ji, Shuguan Quasi-periodic solutions of nonlinear wave equation with \(x\)-dependent coefficients. (English) Zbl 1314.35007 Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 3, Article ID 1550043, 24 p. (2015). MSC: 35B15 35L70 35L05 PDF BibTeX XML Cite \textit{Y. Gao} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 25, No. 3, Article ID 1550043, 24 p. (2015; Zbl 1314.35007) Full Text: DOI
Tuo, Qiuju; Si, Jianguo Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities. (English) Zbl 1315.35017 Electron. J. Differ. Equ. 2015, Paper No. 11, 20 p. (2015). MSC: 35B15 37K50 58E05 35L76 37K55 PDF BibTeX XML Cite \textit{Q. Tuo} and \textit{J. Si}, Electron. J. Differ. Equ. 2015, Paper No. 11, 20 p. (2015; Zbl 1315.35017) Full Text: EMIS
Beylkin, Gregory; Kurcz, Christopher; Monzón, Lucas Fast algorithms for Helmholtz Green’s functions. (English) Zbl 1186.65155 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 464, No. 2100, 3301-3326 (2008). MSC: 65R10 65T50 PDF BibTeX XML Cite \textit{G. Beylkin} et al., Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 464, No. 2100, 3301--3326 (2008; Zbl 1186.65155) Full Text: DOI
Veliev, O. A. On non-self-adjoint Sturm-Liouville operators with matrix potentials. (English. Russian original) Zbl 1153.34018 Math. Notes 81, No. 4, 440-448 (2007); translation from Mat. Zametki 81, No. 4, 496-506 (2007). Reviewer: Amin Boumenir (Carrollton) MSC: 34B24 34L20 47E05 PDF BibTeX XML Cite \textit{O. A. Veliev}, Math. Notes 81, No. 4, 440--448 (2007; Zbl 1153.34018); translation from Mat. Zametki 81, No. 4, 496--506 (2007) Full Text: DOI
Amaziane, B.; Pankratov, L. On the homogenization of some linear problems in domains weakly connected by a system of traps. (English) Zbl 1134.35009 Math. Methods Appl. Sci. 30, No. 15, 1855-1883 (2007). Reviewer: Alain Brillard (Riedisheim) MSC: 35B27 35B40 35J25 35K20 76M50 PDF BibTeX XML Cite \textit{B. Amaziane} and \textit{L. Pankratov}, Math. Methods Appl. Sci. 30, No. 15, 1855--1883 (2007; Zbl 1134.35009) Full Text: DOI
Berti, Massimiliano Nonlinear vibrations of completely resonant wave equations. (English) Zbl 1121.35083 Jachymski, Jacek (ed.) et al., Fixed point theory and its applications. Proceedings of the international conference, Bȩdlewo, Poland, August 1–5, 2005. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications 77, 49-60 (2007). Reviewer: Guy Katriel (Haifa) MSC: 35L70 35B10 37K50 58E05 35B15 35L20 37K55 PDF BibTeX XML Cite \textit{M. Berti}, Banach Cent. Publ. 77, 49--60 (2007; Zbl 1121.35083) Full Text: Link
Procesi, Michela Quasi-periodic solutions for completely resonant nonlinear wave equations in 1D and 2D. (English) Zbl 1086.35007 Discrete Contin. Dyn. Syst. 13, No. 3, 541-552 (2005). MSC: 35B15 37K50 37C55 37K55 35L70 35L20 PDF BibTeX XML Cite \textit{M. Procesi}, Discrete Contin. Dyn. Syst. 13, No. 3, 541--552 (2005; Zbl 1086.35007) Full Text: DOI
Kappeler, Thomas; Pöschel, Jürgen On the Korteweg-de Vries equation and KAM theory. (English) Zbl 1033.35101 Hildebrandt, Stefan (ed.) et al., Geometric analysis and nonlinear partial differential equations. Berlin: Springer (ISBN 3-540-44051-8/hbk). 397-416 (2003). MSC: 35Q53 37K55 35-02 PDF BibTeX XML Cite \textit{T. Kappeler} and \textit{J. Pöschel}, in: Geometric analysis and nonlinear partial differential equations. Berlin: Springer. 397--416 (2003; Zbl 1033.35101)
Takáč, P. Bifurcations and vortex formation in the Ginzburg-Landau equations. (English) Zbl 1097.35529 ZAMM, Z. Angew. Math. Mech. 81, No. 8, 523-539 (2001). MSC: 35J60 30E25 35B10 35J20 35Q40 35Q55 81Q15 82D55 PDF BibTeX XML Cite \textit{P. Takáč}, ZAMM, Z. Angew. Math. Mech. 81, No. 8, 523--539 (2001; Zbl 1097.35529) Full Text: DOI
Verbus, V. A.; Protogenov, A. P. Equations of motion and conserved quantities in non-abelian discrete integrable models. (English. Russian original) Zbl 0991.81038 Theor. Math. Phys. 119, No. 1, 420-430 (1999); translation from Teor. Mat. Fiz. 119, No. 1, 34-46 (1999). MSC: 81R12 82B23 39A12 PDF BibTeX XML Cite \textit{V. A. Verbus} and \textit{A. P. Protogenov}, Theor. Math. Phys. 119, No. 1, 420--430 (1999; Zbl 0991.81038); translation from Teor. Mat. Fiz. 119, No. 1, 34--46 (1999) Full Text: DOI
Das, Jyoti; Chakravorty, Arnab Kumar The interlacing property of the eigenvalues of a mixed Sturm-Liouville problem with the eigenvalues of suitable separated Sturm-Liouville problems. (English) Zbl 0867.34016 J. Anal. 4, 143-151 (1996). MSC: 34B24 PDF BibTeX XML Cite \textit{J. Das} and \textit{A. K. Chakravorty}, J. Anal. 4, 143--151 (1996; Zbl 0867.34016)
Bourgain, Jean Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. (English) Zbl 0817.35102 Int. Math. Res. Not. 1994, No. 11, 475-497 (1994). MSC: 35Q55 37J99 PDF BibTeX XML Cite \textit{J. Bourgain}, Int. Math. Res. Not. 1994, No. 11, 475--497 (1994; Zbl 0817.35102) Full Text: DOI
Cazenave, Thierry; Haraux, Alain; Weissler, Fred B. A complete integrable wave equation with a cubic homogeneous nonlinearity. (Une équation des ondes complètement intégrable avec non- linéarité homogène de degré trois.) (French. Abridged English version) Zbl 0755.35009 C. R. Acad. Sci., Paris, Sér. I 313, No. 5, 237-241 (1991). MSC: 35B40 58D25 35G10 35K25 37J35 37K10 35Q58 PDF BibTeX XML Cite \textit{T. Cazenave} et al., C. R. Acad. Sci., Paris, Sér. I 313, No. 5, 237--241 (1991; Zbl 0755.35009)