Inf-convolution quasi-convexe des fonctionnelles positives. (Quasi-convex inf-convolution of positive functionals). (French) Zbl 0783.49008

Summary: The infimal convolution has an important role in convex analysis. It is closely related to a polar of a convex function. We use the definition of a quasiconvex infimal convolution to define our polar which is related to the polars defined respectively by J. P. Crouzeix [‘Contributions à l’étude des fonctions quasiconvexes’, Thèse de Doctorat d’État, Série E, No. d’Ordre 250 (1977), Univ. de Clermont-Ferrand] and H. J. Greenberg and W. P. Pierskalla [Cah. Centre Etudes Rech. Oper. 15, 437-448 (1973; Zbl 0276.90051)]. In this work, we shall define its quasi-tangential and we shall end by an example: the “surrogate duality”.


49J52 Nonsmooth analysis


Zbl 0276.90051
Full Text: DOI EuDML