×

The \(\infty \)-Poincaré inequality on metric measure spaces. (English) Zbl 1275.46018

A metric measure space \((X,d,\mu)\) is said to support a weak \(\infty\)-Poincaré inequality if there exist constants \(C>0\) and \(\lambda \geq1\) such that, for every Borel measurable function \(u:X\rightarrow \mathbb R \cup \{\infty\}\) and every upper gradient \(g:X\rightarrow [0,\infty]\) of \(u\), the pair \((u,g)\) satisfies the inequality \[ \frac {1}{\mu(B(x,r))} \int_{B(x,r)}|u-u_{B(x,r)}|\, d\mu\leq Cr\|g\|_{L^{\infty}(B(x,\lambda r))} \] for each ball \(B(x,r)\subset X\).
The \(\infty\)-Poincaré inequality is a weaker condition than any \(p\)-Poincaré inequality with finite \(p\geq 1\), but it still gives reasonable information on the geometry of the space. The main result of this paper states that a connected complete doubling metric measure space supports a weak \(\infty\)-Poincaré inequality if and only if it is thick quasiconvex, i.e., every pair of points can be connected by a “thick” family of quasiconvex curves in the sense that the \(\infty\)-modulus of this family is positive. The authors also prove that supporting an \(\infty\)-Poincaré inequality is also equivalent to the condition that \(LIP^\infty(X)=N^{1,\infty}(X)\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
30L99 Analysis on metric spaces
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] S. G. Bobkov and C. Houdré, Some connections between isoperimetric and Sobolev-type inequalities, Mem. Amer. Math. Soc. 129 (1997). · Zbl 0886.49033
[2] M. Bourdon and H. Pajot, Quasi-conformal geometry and hyperbolic geometry, Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1-17, Springer-Verlag, Berlin, 2002. · Zbl 1002.30012
[3] E. Durand-Cartagena and J. A. Jaramillo, Pointwise Lipschitz functions on metric spaces, J. Math. Anal. Appl. 363 (2010), 525-548. · Zbl 1200.46030 · doi:10.1016/j.jmaa.2009.09.039
[4] G. B. Folland, Real analysis. Modern techniques and their applications, Pure Appl. Math. (N.Y.), Wiley, New York, 1999. · Zbl 0924.28001
[5] P. Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), Contemp. Math., 338, pp. 173-218, Amer. Math. Soc, Providence, RI, 2003. · Zbl 1048.46033 · doi:10.1090/conm/338/06074
[6] P. Hajlasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000).
[7] J. Heinonen, Lectures on analysis on metric spaces, Springer-Verlag, New York, 2001. · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[8] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1-61. · Zbl 0915.30018 · doi:10.1007/BF02392747
[9] —, A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math. 28 (1999), 37-42. · Zbl 1015.46020
[10] E. Järvenpää, M. Järvenpää, N. Shanmugalingam, K. Rogovin, and S. Rogovin, Measurability of equivalence classes and MEC \(_p\) -property in metric spaces, Rev. Mat. Iberoamericana 23 (2007), 811-830. · Zbl 1146.28001 · doi:10.4171/RMI/514
[11] S. Keith and X. Zhong, The Poincaré inequality is an open ended condition, Ann. of Math. (2) 167 (2008), 575-599. · Zbl 1180.46025 · doi:10.4007/annals.2008.167.575
[12] J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, J. Math. Anal. Appl. 344 (2008), 1093-1104. · Zbl 1154.46018 · doi:10.1016/j.jmaa.2008.03.070
[13] R. Korte, Geometric implications of the Poincaré inequality, Licentiate thesis, Helsinki University of Technology, 2006. · Zbl 1146.46019 · doi:10.1007/s00025-006-0237-x
[14] T. J. Laakso, Ahlfors \(Q\) -regular spaces with arbitrary \(Q>1\) admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000), 111-123. · Zbl 0962.30006 · doi:10.1007/s000390050003
[15] P. Mattila, Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Stud. Adv. Math., 44, Cambridge Univ. Press, 1995. · Zbl 0819.28004
[16] M. Miranda, Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82 (2003), 975-1004. · Zbl 1109.46030 · doi:10.1016/S0021-7824(03)00036-9
[17] S. Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), 155-295. · Zbl 0870.54031 · doi:10.1007/BF01587936
[18] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Ph.D. thesis, University of Michigan, 1999, \(\langle\)http:math.uc.edu/\raise1pt\(\MTSY{6.50pt{6.00pt}{5.00pt} \sim}nages/papers.html\)\rangle.\(\) · Zbl 0974.46038 · doi:10.4171/RMI/275
[19] —, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), 243-279. · Zbl 0974.46038 · doi:10.4171/RMI/275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.