Bal, Kaushik; Garain, Prashanta Weighted and anisotropic Sobolev inequality with extremal. (English) Zbl 07529410 Manuscr. Math. 168, No. 1-2, 101-117 (2022). MSC: 35A23 35J62 35J70 35J75 PDF BibTeX XML Cite \textit{K. Bal} and \textit{P. Garain}, Manuscr. Math. 168, No. 1--2, 101--117 (2022; Zbl 07529410) Full Text: DOI OpenURL
El Hammar, Hasnae; Allalou, Chakir; Abbassi, Adil; Kassidi, Abderrazak The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities. (English. French summary) Zbl 07523612 Cubo 24, No. 1, 63-82 (2022). MSC: 35R11 35A16 35J25 35J92 47H11 PDF BibTeX XML Cite \textit{H. El Hammar} et al., Cubo 24, No. 1, 63--82 (2022; Zbl 07523612) Full Text: Link OpenURL
Ait Hammou, Mustapha Weak solutions for fractional \(p(x,\cdot)\)-Laplacian Dirichlet problems with weight. (English) Zbl 07523600 Analysis, München 42, No. 2, 121-132 (2022). MSC: 35R11 35J25 35J92 35S15 47H11 PDF BibTeX XML Cite \textit{M. Ait Hammou}, Analysis, München 42, No. 2, 121--132 (2022; Zbl 07523600) Full Text: DOI OpenURL
Motreanu, Dumitru Equations with \(s\)-fractional \((p,q)\)-Laplacian and convolution. (English) Zbl 07523124 Minimax Theory Appl. 7, No. 1, 159-172 (2022). MSC: 35S15 35J25 35J92 35R11 47G20 PDF BibTeX XML Cite \textit{D. Motreanu}, Minimax Theory Appl. 7, No. 1, 159--172 (2022; Zbl 07523124) Full Text: Link OpenURL
Cerrai, Sandra; Xi, Guangyu A Smoluchowski-Kramers approximation for an infinite dimensional system with state-dependent damping. (English) Zbl 07523049 Ann. Probab. 50, No. 3, 874-904 (2022). MSC: 35B25 35K59 35L20 35L71 35R60 60H15 PDF BibTeX XML Cite \textit{S. Cerrai} and \textit{G. Xi}, Ann. Probab. 50, No. 3, 874--904 (2022; Zbl 07523049) Full Text: DOI OpenURL
Biswas, Reshmi; Bahrouni, Sabri; Carvalho, Marcos L. Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition. (English) Zbl 07517423 Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022). MSC: 35R11 35A15 35J25 35J92 35S15 47G20 47J30 PDF BibTeX XML Cite \textit{R. Biswas} et al., Z. Angew. Math. Phys. 73, No. 3, Paper No. 99, 24 p. (2022; Zbl 07517423) Full Text: DOI OpenURL
Youkana, Abderrahmane; Messaoudi, Salim A. General and optimal decay for a quasilinear parabolic viscoelastic system. (English) Zbl 07512228 Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1307-1316 (2022). MSC: 35B40 35K51 35K59 35R09 PDF BibTeX XML Cite \textit{A. Youkana} and \textit{S. A. Messaoudi}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 5, 1307--1316 (2022; Zbl 07512228) Full Text: DOI OpenURL
Fall, Mouhamed Moustapha; Mengesha, Tadele; Schikorra, Armin; Yeepo, Sasikarn Calderón-Zygmund theory for non-convolution type nonlocal equations with continuous coefficient. (English) Zbl 07512038 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 24, 27 p. (2022). MSC: 35B45 35J92 35R11 46E35 47G30 PDF BibTeX XML Cite \textit{M. M. Fall} et al., SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 24, 27 p. (2022; Zbl 07512038) Full Text: DOI OpenURL
Chaker, Jamil; Kim, Minhyun Regularity estimates for fractional orthotropic \(p\)-Laplacians of mixed order. (English) Zbl 07511756 Adv. Nonlinear Anal. 11, 1307-1331 (2022). MSC: 35B65 35D30 35J92 35R11 47G20 31B05 42B25 PDF BibTeX XML Cite \textit{J. Chaker} and \textit{M. Kim}, Adv. Nonlinear Anal. 11, 1307--1331 (2022; Zbl 07511756) Full Text: DOI OpenURL
Antil, Harbir; Kubota, Shodai; Shirakawa, Ken; Yamazaki, Noriaki Constrained optimization problems governed by PDE models of grain boundary motions. (English) Zbl 07511754 Adv. Nonlinear Anal. 11, 1249-1286 (2022). MSC: 35K51 35K59 35Q93 49J20 49K20 74N05 PDF BibTeX XML Cite \textit{H. Antil} et al., Adv. Nonlinear Anal. 11, 1249--1286 (2022; Zbl 07511754) Full Text: DOI OpenURL
Su, Jiabao; Wang, Cong Weighted critical exponents of Sobolev-type embeddings for radial functions. (English) Zbl 07511752 Adv. Nonlinear Stud. 22, No. 1, 143-158 (2022). MSC: 35A23 35B33 35J20 35J62 46E35 PDF BibTeX XML Cite \textit{J. Su} and \textit{C. Wang}, Adv. Nonlinear Stud. 22, No. 1, 143--158 (2022; Zbl 07511752) Full Text: DOI OpenURL
Anh Dao, Tuan Global existence of solutions for weakly coupled systems of semi-linear structurally damped \(\sigma \)-evolution models. (English) Zbl 07510766 Appl. Anal. 101, No. 4, 1396-1429 (2022). MSC: 35L56 35B33 35B40 35L72 35R11 35S05 PDF BibTeX XML Cite \textit{T. Anh Dao}, Appl. Anal. 101, No. 4, 1396--1429 (2022; Zbl 07510766) Full Text: DOI OpenURL
Casas, Eduardo; Mateos, Mariano Corrigendum to: “Critical cones for sufficient second order conditions in PDE constrained optimization”. (English) Zbl 07510405 SIAM J. Optim. 32, No. 1, 319-320 (2022). MSC: 35K59 49K20 35J61 49K30 49M25 PDF BibTeX XML Cite \textit{E. Casas} and \textit{M. Mateos}, SIAM J. Optim. 32, No. 1, 319--320 (2022; Zbl 07510405) Full Text: DOI OpenURL
Li, Na; He, Xiao-ming Positive solutions for a class of fractional \(p\)-Laplacian equation with critical Sobolev exponent and decaying potentials. (English) Zbl 07507383 Acta Math. Appl. Sin., Engl. Ser. 38, No. 2, 463-483 (2022). MSC: 35J92 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{N. Li} and \textit{X.-m. He}, Acta Math. Appl. Sin., Engl. Ser. 38, No. 2, 463--483 (2022; Zbl 07507383) Full Text: DOI OpenURL
Liu, Yongjian; Liu, Zhenhai; Wen, Ching-Feng; Yao, Jen-Chih Existence of solutions for non-coercive variational-hemivariational inequalities involving the nonlocal fractional p-Laplacian. (English) Zbl 07507023 Optimization 71, No. 3, 485-503 (2022). MSC: 35R11 35J87 35J92 47J20 49J40 PDF BibTeX XML Cite \textit{Y. Liu} et al., Optimization 71, No. 3, 485--503 (2022; Zbl 07507023) Full Text: DOI OpenURL
Zhen, Maoding; Zhang, Binlin; Han, Xiumei A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. (English) Zbl 07501080 Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 1927-1954 (2022). MSC: 35J62 35R11 35B33 35A01 35A15 PDF BibTeX XML Cite \textit{M. Zhen} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 4, 1927--1954 (2022; Zbl 07501080) Full Text: DOI OpenURL
Huaman, Dany Nina Stackelberg-Nash controllability for a quasi-linear parabolic equation in dimension 1D, 2D, or 3D. (English) Zbl 07501069 J. Dyn. Control Syst. 28, No. 2, 291-317 (2022). MSC: 35K59 35K20 93C20 93B05 PDF BibTeX XML Cite \textit{D. N. Huaman}, J. Dyn. Control Syst. 28, No. 2, 291--317 (2022; Zbl 07501069) Full Text: DOI OpenURL
Charkaoui, Abderrahim; Alaa, Nour Eddine Nonnegative weak solution for a periodic parabolic equation with bounded Radon measure. (English) Zbl 07501050 Rend. Circ. Mat. Palermo (2) 71, No. 1, 459-467 (2022). MSC: 35K59 35B10 35D30 35K20 35K57 34C25 PDF BibTeX XML Cite \textit{A. Charkaoui} and \textit{N. E. Alaa}, Rend. Circ. Mat. Palermo (2) 71, No. 1, 459--467 (2022; Zbl 07501050) Full Text: DOI OpenURL
Solonukha, O. V. On a nonlinear nonlocal parabolic problem. (English) Zbl 07500889 Russ. J. Math. Phys. 29, No. 1, 121-140 (2022). MSC: 35K92 35B65 35D30 47F05 PDF BibTeX XML Cite \textit{O. V. Solonukha}, Russ. J. Math. Phys. 29, No. 1, 121--140 (2022; Zbl 07500889) Full Text: DOI OpenURL
Jaime, Luisa G.; Arciniega, Gustavo A unified geometric description of the universe: from inflation to late-time acceleration without an inflaton nor a cosmological constant. (English) Zbl 07500052 Phys. Lett., B 827, Article ID 136939, 5 p. (2022). MSC: 83E05 53Z05 83D05 83F05 35J93 83C20 83C56 PDF BibTeX XML Cite \textit{L. G. Jaime} and \textit{G. Arciniega}, Phys. Lett., B 827, Article ID 136939, 5 p. (2022; Zbl 07500052) Full Text: DOI OpenURL
Emamizadeh, Behrouz; Liu, Yichen; Porru, Giovanni Overdetermined problems for \(p\)-Laplace and generalized Monge-Ampére equations. (English) Zbl 07499547 Complex Var. Elliptic Equ. 67, No. 4, 807-821 (2022). MSC: 35N25 35A23 35J92 35J96 47J20 52A40 PDF BibTeX XML Cite \textit{B. Emamizadeh} et al., Complex Var. Elliptic Equ. 67, No. 4, 807--821 (2022; Zbl 07499547) Full Text: DOI OpenURL
Nuñez-Chávez, Miguel R. Controllability under positive constraints for quasilinear parabolic PDEs. (English) Zbl 07499511 Math. Control Relat. Fields 12, No. 2, 327-341 (2022). MSC: 35K59 35K20 93C20 PDF BibTeX XML Cite \textit{M. R. Nuñez-Chávez}, Math. Control Relat. Fields 12, No. 2, 327--341 (2022; Zbl 07499511) Full Text: DOI OpenURL
Cavalcanti, Marcelo M. Existence and mathematical analysis of a coupled nonlinear system. (English) Zbl 07499496 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112830, 17 p. (2022). MSC: 35G55 35K59 35K90 35L90 35R09 PDF BibTeX XML Cite \textit{M. M. Cavalcanti}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112830, 17 p. (2022; Zbl 07499496) Full Text: DOI OpenURL
Górny, Wojciech Local and nonlocal \(1\)-Laplacian in Carnot groups. (English) Zbl 07498299 Ann. Fenn. Math. 47, No. 1, 427-456 (2022). MSC: 35R03 35J92 49J45 49K20 49Q05 PDF BibTeX XML Cite \textit{W. Górny}, Ann. Fenn. Math. 47, No. 1, 427--456 (2022; Zbl 07498299) Full Text: DOI OpenURL
Bernstein, Jacob; Wang, Lu Relative expander entropy in the presence of a two-sided obstacle and applications. (English) Zbl 07496431 Adv. Math. 399, Article ID 108284, 48 p. (2022). MSC: 53E10 53A10 35J93 35K93 PDF BibTeX XML Cite \textit{J. Bernstein} and \textit{L. Wang}, Adv. Math. 399, Article ID 108284, 48 p. (2022; Zbl 07496431) Full Text: DOI OpenURL
Gliklikh, Yuri; Shamarova, Evelina Burgers equation in the adhesion model. (English) Zbl 07495651 Appl. Anal. 101, No. 2, 471-478 (2022). MSC: 60H15 60H10 35K59 PDF BibTeX XML Cite \textit{Y. Gliklikh} and \textit{E. Shamarova}, Appl. Anal. 101, No. 2, 471--478 (2022; Zbl 07495651) Full Text: DOI OpenURL
Yang, Zhipeng Non-degeneracy of positive solutions for fractional Kirchhoff problems: high dimensional cases. (English) Zbl 07493870 J. Geom. Anal. 32, No. 4, Paper No. 139, 24 p. (2022). MSC: 35R11 35A15 35B09 35J62 35R09 47G20 PDF BibTeX XML Cite \textit{Z. Yang}, J. Geom. Anal. 32, No. 4, Paper No. 139, 24 p. (2022; Zbl 07493870) Full Text: DOI OpenURL
Ambrosio, Vincenzo A Kirchhoff type equation in \(\mathbb{R}^N\) Involving the fractional \((p, q)\)-Laplacian. (English) Zbl 07493866 J. Geom. Anal. 32, No. 4, Paper No. 135, 46 p. (2022). MSC: 35A15 35J62 35J92 35Q55 35R11 55M30 PDF BibTeX XML Cite \textit{V. Ambrosio}, J. Geom. Anal. 32, No. 4, Paper No. 135, 46 p. (2022; Zbl 07493866) Full Text: DOI OpenURL
Cao, Linfen; Fan, Linlin Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in \(\mathbb{R}^n\). (English) Zbl 07493056 Anal. Math. Phys. 12, No. 2, Paper No. 42, 15 p. (2022). MSC: 35R11 35B07 35J47 35J92 PDF BibTeX XML Cite \textit{L. Cao} and \textit{L. Fan}, Anal. Math. Phys. 12, No. 2, Paper No. 42, 15 p. (2022; Zbl 07493056) Full Text: DOI OpenURL
Caballero, R.; Marín-Rubio, P.; Valero, José Existence and characterization of attractors for a nonlocal reaction-diffusion equation with an energy functional. (English) Zbl 07491615 J. Dyn. Differ. Equations 34, No. 1, 443-480 (2022). MSC: 35B41 35B51 35K57 35K59 35R09 PDF BibTeX XML Cite \textit{R. Caballero} et al., J. Dyn. Differ. Equations 34, No. 1, 443--480 (2022; Zbl 07491615) Full Text: DOI OpenURL
Qiang, Tao; Xia, Chao Compact hypersurfaces of prescribed mean curvature with free boundary in a ball. (English) Zbl 07491597 Ann. Global Anal. Geom. 61, No. 3, 679-689 (2022). MSC: 53A10 35J62 35R01 PDF BibTeX XML Cite \textit{T. Qiang} and \textit{C. Xia}, Ann. Global Anal. Geom. 61, No. 3, 679--689 (2022; Zbl 07491597) Full Text: DOI OpenURL
Dolgikh, T. F.; Zhukov, M. Yu. Hodograph method for solving the overturned shallow water problem. (English. Russian original) Zbl 07491039 Comput. Math. Math. Phys. 62, No. 1, 106-116 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 113-123 (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{T. F. Dolgikh} and \textit{M. Yu. Zhukov}, Comput. Math. Math. Phys. 62, No. 1, 106--116 (2022; Zbl 07491039); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 113--123 (2022) Full Text: DOI OpenURL
Roidos, Nikolaos; Shao, Yuanzhen The fractional porous medium equation on manifolds with conical singularities. I. (English) Zbl 07490270 J. Evol. Equ. 22, No. 1, Paper No. 8, 39 p. (2022). MSC: 35R11 35K59 35K65 35R01 47D06 76S05 PDF BibTeX XML Cite \textit{N. Roidos} and \textit{Y. Shao}, J. Evol. Equ. 22, No. 1, Paper No. 8, 39 p. (2022; Zbl 07490270) Full Text: DOI arXiv OpenURL
Bui, Le Trong Thanh; Nguyen, Quoc-Hung Gradient weighted norm inequalities for very weak solutions of linear parabolic equations with BMO coefficients. (English) Zbl 07488533 Asymptotic Anal. 127, No. 4, 339-353 (2022). MSC: 35Qxx PDF BibTeX XML Cite \textit{L. T. T. Bui} and \textit{Q.-H. Nguyen}, Asymptotic Anal. 127, No. 4, 339--353 (2022; Zbl 07488533) Full Text: DOI arXiv OpenURL
Surnachev, M. D. Harnack’s inequality of weak type for the parabolic \(p (x)\)-Laplacian. (English. Russian original) Zbl 07488491 Math. Notes 111, No. 1, 161-165 (2022); translation from Mat. Zametki 111, No. 1, 149-153 (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35A23 35B45 35K20 35K59 35K92 PDF BibTeX XML Cite \textit{M. D. Surnachev}, Math. Notes 111, No. 1, 161--165 (2022; Zbl 07488491); translation from Mat. Zametki 111, No. 1, 149--153 (2022) Full Text: DOI OpenURL
Ghergu, Marius; Miyamoto, Yasuhito Radial single point rupture solutions for a general MEMS model. (English) Zbl 07488384 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 47, 29 p. (2022). MSC: 34A12 34B10 35J62 PDF BibTeX XML Cite \textit{M. Ghergu} and \textit{Y. Miyamoto}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 47, 29 p. (2022; Zbl 07488384) Full Text: DOI arXiv OpenURL
Matsumoto, Toshitaka; Oka, Hirokazu; Tanaka, Naoki Evolution equations governed by quasilinear operators satisfying Carathéodory’s conditions. (English) Zbl 07488318 Diss. Math. 571, 1-70 (2022). MSC: 34G20 47J35 65J08 PDF BibTeX XML Cite \textit{T. Matsumoto} et al., Diss. Math. 571, 1--70 (2022; Zbl 07488318) Full Text: DOI OpenURL
Alesemi, Meshari; Iqbal, Naveed; Abdo, Mohammed S. Novel investigation of fractional-order Cauchy-reaction diffusion equation involving Caputo-Fabrizio operator. (English) Zbl 07487573 J. Funct. Spaces 2022, Article ID 4284060, 14 p. (2022). MSC: 35R11 35A22 35K15 35K59 PDF BibTeX XML Cite \textit{M. Alesemi} et al., J. Funct. Spaces 2022, Article ID 4284060, 14 p. (2022; Zbl 07487573) Full Text: DOI OpenURL
Zhang, Xuping Pullback random attractors for fractional stochastic \(p\)-Laplacian equation with delay and multiplicative noise. (English) Zbl 07485791 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1695-1724 (2022). MSC: 35B41 35K20 35K92 35R60 37L30 PDF BibTeX XML Cite \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1695--1724 (2022; Zbl 07485791) Full Text: DOI OpenURL
Fu, Yongqiang; Zhang, Xiaoju Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. (English) Zbl 07485775 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1301-1322 (2022). MSC: 35R11 35B40 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{X. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1301--1322 (2022; Zbl 07485775) Full Text: DOI OpenURL
Di, Huafei; Song, Zefang Global existence and blow-up phenomenon for a quasilinear viscoelastic equation with strong damping and source terms. (English) Zbl 07485602 Opusc. Math. 42, No. 2, 119-155 (2022). MSC: 35B44 35L35 35L77 35R09 35R15 PDF BibTeX XML Cite \textit{H. Di} and \textit{Z. Song}, Opusc. Math. 42, No. 2, 119--155 (2022; Zbl 07485602) Full Text: DOI OpenURL
Zuo, Jiabin; Fiscella, Alessio; Bahrouni, Anouar Existence and multiplicity results for \(p (\cdot)\& q (\cdot)\) fractional Choquard problems with variable order. (English) Zbl 07484152 Complex Var. Elliptic Equ. 67, No. 2, 500-516 (2022). MSC: 35R11 35J20 35J25 35J92 35R09 47G20 35S15 PDF BibTeX XML Cite \textit{J. Zuo} et al., Complex Var. Elliptic Equ. 67, No. 2, 500--516 (2022; Zbl 07484152) Full Text: DOI OpenURL
Lewicka, Marta Non-local Tug-of-War with noise for the geometric fractional \(p\)-Laplacian. (English) Zbl 07483347 Adv. Differ. Equ. 27, No. 1-2, 31-76 (2022). MSC: 35R11 26A33 35J92 35Q91 91A23 PDF BibTeX XML Cite \textit{M. Lewicka}, Adv. Differ. Equ. 27, No. 1--2, 31--76 (2022; Zbl 07483347) Full Text: arXiv Link OpenURL
Hoppe, Fabian; Neitzel, Ira Optimal control of quasilinear parabolic PDEs with state-constraints. (English) Zbl 1483.49027 SIAM J. Control Optim. 60, No. 1, 330-354 (2022). MSC: 49K20 35K59 49K27 PDF BibTeX XML Cite \textit{F. Hoppe} and \textit{I. Neitzel}, SIAM J. Control Optim. 60, No. 1, 330--354 (2022; Zbl 1483.49027) Full Text: DOI OpenURL
Filippucci, Roberta; Ghergu, Marius Fujita type results for quasilinear parabolic inequalities with nonlocal terms. (English) Zbl 07481821 Discrete Contin. Dyn. Syst. 42, No. 4, 1817-1833 (2022). MSC: 35R45 35A23 35B33 35B53 35K59 PDF BibTeX XML Cite \textit{R. Filippucci} and \textit{M. Ghergu}, Discrete Contin. Dyn. Syst. 42, No. 4, 1817--1833 (2022; Zbl 07481821) Full Text: DOI arXiv OpenURL
Ambrosio, Vincenzo A strong maximum principle for the fractional \(( p , q )\)-Laplacian operator. (English) Zbl 07478996 Appl. Math. Lett. 126, Article ID 107813, 10 p. (2022). MSC: 35B50 35J92 35R11 PDF BibTeX XML Cite \textit{V. Ambrosio}, Appl. Math. Lett. 126, Article ID 107813, 10 p. (2022; Zbl 07478996) Full Text: DOI OpenURL
Yang, Hui; Han, Yuzhu Lifespan of solutions to a hyperbolic type Kirchhoff equation with arbitrarily high initial energy. (English) Zbl 1483.35049 J. Math. Anal. Appl. 510, No. 2, Article ID 126023, 16 p. (2022). MSC: 35B44 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Han}, J. Math. Anal. Appl. 510, No. 2, Article ID 126023, 16 p. (2022; Zbl 1483.35049) Full Text: DOI OpenURL
Zhang, Yuming Paul Free boundary regularity of the porous medium equation with nonlocal drifts in dimension one. (English) Zbl 07474266 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 41, 35 p. (2022). Reviewer: Mariana Vega Smit (Bellingham) MSC: 35R35 35B65 35K15 35K65 35K59 45K05 PDF BibTeX XML Cite \textit{Y. P. Zhang}, Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 41, 35 p. (2022; Zbl 07474266) Full Text: DOI arXiv OpenURL
Aouaoui, Sami; Jlel, Rahma Singular weighted sharp Trudinger-Moser inequalities defined on \(\mathbb{R}^N\) and applications to elliptic nonlinear equations. (English) Zbl 1482.35016 Discrete Contin. Dyn. Syst. 42, No. 2, 781-813 (2022). MSC: 35A23 26D15 35A21 35B33 35D30 35J20 35J62 35J75 PDF BibTeX XML Cite \textit{S. Aouaoui} and \textit{R. Jlel}, Discrete Contin. Dyn. Syst. 42, No. 2, 781--813 (2022; Zbl 1482.35016) Full Text: DOI OpenURL
Mugnai, Dimitri; Perera, Kanishka; Lippi, Edoardo Proietti A priori estimates for the fractional \(p\)-Laplacian with nonlocal Neumann boundary conditions and applications. (English) Zbl 1481.35384 Commun. Pure Appl. Anal. 21, No. 1, 275-292 (2022). MSC: 35R11 35J25 35J92 58E05 35A15 PDF BibTeX XML Cite \textit{D. Mugnai} et al., Commun. Pure Appl. Anal. 21, No. 1, 275--292 (2022; Zbl 1481.35384) Full Text: DOI OpenURL
Lai, Ru-Yu; Lin, Yi-Hsuan Inverse problems for fractional semilinear elliptic equations. (English) Zbl 1481.35212 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112699, 21 p. (2022). MSC: 35J62 35R11 35R30 PDF BibTeX XML Cite \textit{R.-Y. Lai} and \textit{Y.-H. Lin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 216, Article ID 112699, 21 p. (2022; Zbl 1481.35212) Full Text: DOI arXiv OpenURL
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana; Soria, Fernando On the KPZ equation with fractional diffusion: global regularity and existence results. (English) Zbl 1481.35258 J. Differ. Equations 312, 65-147 (2022). MSC: 35K59 35B51 35B65 35K20 35R11 47G20 47J35 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., J. Differ. Equations 312, 65--147 (2022; Zbl 1481.35258) Full Text: DOI arXiv OpenURL
Kumar, Sunil; Kumar, Shashikant; Sumit A posteriori error estimation for quasilinear singularly perturbed problems with integral boundary condition. (English) Zbl 1480.65186 Numer. Algorithms 89, No. 2, 791-809 (2022). MSC: 65L11 65R20 PDF BibTeX XML Cite \textit{S. Kumar} et al., Numer. Algorithms 89, No. 2, 791--809 (2022; Zbl 1480.65186) Full Text: DOI OpenURL
Baldi, Pietro; Haus, Emanuele Longer lifespan for many solutions of the Kirchhoff equation. (English) Zbl 07453677 SIAM J. Math. Anal. 54, No. 1, 306-342 (2022). MSC: 35L72 35L20 35R09 35Q74 37K45 70K45 70K65 PDF BibTeX XML Cite \textit{P. Baldi} and \textit{E. Haus}, SIAM J. Math. Anal. 54, No. 1, 306--342 (2022; Zbl 07453677) Full Text: DOI arXiv OpenURL
Fărcăşeanu, Maria; Mihăilescu, Mihai On the monotonicity of the best constant of Morrey’s inequality in convex domains. (English) Zbl 1483.35007 Proc. Am. Math. Soc. 150, No. 2, 651-660 (2022). Reviewer: Meng Qu (Wuhu) MSC: 35A23 35J25 35J92 35P30 47J10 49R05 49J40 58C40 PDF BibTeX XML Cite \textit{M. Fărcăşeanu} and \textit{M. Mihăilescu}, Proc. Am. Math. Soc. 150, No. 2, 651--660 (2022; Zbl 1483.35007) Full Text: DOI OpenURL
Deng, Shengbing; Xiong, Sihui Existence of ground state solutions for fractional Kirchhoff Choquard problems with critical Trudinger-Moser nonlinearity. (English) Zbl 07453283 Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022). MSC: 35J62 35J92 35R11 PDF BibTeX XML Cite \textit{S. Deng} and \textit{S. Xiong}, Comput. Appl. Math. 41, No. 1, Paper No. 21, 18 p. (2022; Zbl 07453283) Full Text: DOI OpenURL
Liu, lintao; Chen, Haibo; Yang, Jie Positive solutions for fractional Kirchhoff type problem with steep potential well. (English) Zbl 1481.35213 Bull. Malays. Math. Sci. Soc. (2) 45, No. 1, 549-573 (2022). MSC: 35J62 35R11 35A01 35B40 PDF BibTeX XML Cite \textit{l. Liu} et al., Bull. Malays. Math. Sci. Soc. (2) 45, No. 1, 549--573 (2022; Zbl 1481.35213) Full Text: DOI OpenURL
Liu, Jian-Guo; Zhang, Zhaoyun Existence of global weak solutions of \(p\)-Navier-Stokes equations. (English) Zbl 07452639 Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 469-486 (2022). MSC: 35Qxx 35K92 76D03 47J30 PDF BibTeX XML Cite \textit{J.-G. Liu} and \textit{Z. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 1, 469--486 (2022; Zbl 07452639) Full Text: DOI OpenURL
Meglioli, Giulia; Monticelli, Dario D.; Punzo, Fabio Nonexistence of solutions to quasilinear parabolic equations with a potential in bounded domains. (English) Zbl 1480.35004 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 23, 37 p. (2022). MSC: 35A01 35D30 35K20 35K92 35R45 PDF BibTeX XML Cite \textit{G. Meglioli} et al., Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 23, 37 p. (2022; Zbl 1480.35004) Full Text: DOI arXiv OpenURL
Guerra, Ignacio A semilinear problem with a gradient term in the nonlinearity. (English) Zbl 07451261 Discrete Contin. Dyn. Syst. 42, No. 1, 137-162 (2022). Reviewer: Fatma Hıra (Atakum) MSC: 34B09 34B08 35J62 34C23 PDF BibTeX XML Cite \textit{I. Guerra}, Discrete Contin. Dyn. Syst. 42, No. 1, 137--162 (2022; Zbl 07451261) Full Text: DOI OpenURL
El-Houari, H.; Chadli, L. S.; Moussa, H. Existence of a solution to a nonlocal Schrödinger system problem in fractional modular spaces. (English) Zbl 1481.35206 Adv. Oper. Theory 7, No. 1, Paper No. 6, 30 p. (2022). MSC: 35J62 35R11 35A01 35J50 PDF BibTeX XML Cite \textit{H. El-Houari} et al., Adv. Oper. Theory 7, No. 1, Paper No. 6, 30 p. (2022; Zbl 1481.35206) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Rundell, William On an inverse problem of nonlinear imaging with fractional damping. (English) Zbl 1479.35951 Math. Comput. 91, No. 333, 245-276 (2022). MSC: 35R30 35R11 35L20 35L72 78A46 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Math. Comput. 91, No. 333, 245--276 (2022; Zbl 1479.35951) Full Text: DOI arXiv OpenURL
Sun, Yue; Yang, Zhijian Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel. (English) Zbl 1479.35118 Nonlinear Anal., Real World Appl. 64, Article ID 103432, 26 p. (2022). MSC: 35B40 35B41 35L20 35L72 35R09 74D10 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{Z. Yang}, Nonlinear Anal., Real World Appl. 64, Article ID 103432, 26 p. (2022; Zbl 1479.35118) Full Text: DOI OpenURL
Fang, Yuzhou; Shang, Bin; Zhang, Chao Regularity theory for mixed local and nonlocal parabolic \(p\)-Laplace equations. (English) Zbl 1479.35160 J. Geom. Anal. 32, No. 1, Paper No. 22, 33 p. (2022). MSC: 35B45 35B65 35D30 35K20 35K92 35R09 35R11 PDF BibTeX XML Cite \textit{Y. Fang} et al., J. Geom. Anal. 32, No. 1, Paper No. 22, 33 p. (2022; Zbl 1479.35160) Full Text: DOI arXiv OpenURL
Sang, Yanbin; Liang, Sihua Fractional Kirchhoff-Choquard equation involving Schrödinger term and upper critical exponent. (English) Zbl 1480.35229 J. Geom. Anal. 32, No. 1, Paper No. 5, 47 p. (2022). MSC: 35J62 35R11 35A01 35J20 PDF BibTeX XML Cite \textit{Y. Sang} and \textit{S. Liang}, J. Geom. Anal. 32, No. 1, Paper No. 5, 47 p. (2022; Zbl 1480.35229) Full Text: DOI OpenURL
Aryeni, T.; Deng, Q.; Ginting, V. On the application of stable generalized finite element method for quasilinear elliptic two-point BVP. (English) Zbl 07444778 J. Sci. Comput. 90, No. 1, Paper No. 33, 38 p. (2022). MSC: 65Nxx 74Sxx 76Mxx PDF BibTeX XML Cite \textit{T. Aryeni} et al., J. Sci. Comput. 90, No. 1, Paper No. 33, 38 p. (2022; Zbl 07444778) Full Text: DOI arXiv OpenURL
Yu, Mingzhu; Shi, Hongxia Local uniqueness of multi-bump solutions for singularly perturbed Kirchhoff problems. (English) Zbl 1479.35056 Appl. Math. Lett. 124, Article ID 107684, 8 p. (2022). MSC: 35B25 35A02 35J62 35R09 PDF BibTeX XML Cite \textit{M. Yu} and \textit{H. Shi}, Appl. Math. Lett. 124, Article ID 107684, 8 p. (2022; Zbl 1479.35056) Full Text: DOI OpenURL
Yang, Jiaqi; Liu, Changchun; Mei, Ming Global solutions for bistable degenerate reaction-diffusion equation with time-delay and nonlocal effect. (English) Zbl 1479.35542 Appl. Math. Lett. 125, Article ID 107726, 8 p. (2022). MSC: 35K65 35B40 35K15 35K57 35K59 35R09 PDF BibTeX XML Cite \textit{J. Yang} et al., Appl. Math. Lett. 125, Article ID 107726, 8 p. (2022; Zbl 1479.35542) Full Text: DOI OpenURL
de Albuquerque, José Carlos; Silva, Kaye; de Sousa, Steffânio Moreno Existence of solutions for a class of fractional coupled Choquard-type systems with potential vanishing at infinity. (English) Zbl 1480.35211 J. Math. Anal. Appl. 507, No. 2, Article ID 125848, 19 p. (2022). MSC: 35J62 35R11 35A01 35J50 PDF BibTeX XML Cite \textit{J. C. de Albuquerque} et al., J. Math. Anal. Appl. 507, No. 2, Article ID 125848, 19 p. (2022; Zbl 1480.35211) Full Text: DOI OpenURL
Zhou, Cong; Sun, Chunyou Global attractor for a wave model with nonlocal nonlinear damping. (English) Zbl 1479.35135 J. Math. Anal. Appl. 507, No. 2, Article ID 125818, 21 p. (2022). MSC: 35B41 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{C. Zhou} and \textit{C. Sun}, J. Math. Anal. Appl. 507, No. 2, Article ID 125818, 21 p. (2022; Zbl 1479.35135) Full Text: DOI OpenURL
Moreira, Estefani M.; Valero, José Structure of the attractor for a non-local Chafee-Infante problem. (English) Zbl 1479.35132 J. Math. Anal. Appl. 507, No. 2, Article ID 125801, 25 p. (2022). MSC: 35B41 35K20 35K59 35R09 PDF BibTeX XML Cite \textit{E. M. Moreira} and \textit{J. Valero}, J. Math. Anal. Appl. 507, No. 2, Article ID 125801, 25 p. (2022; Zbl 1479.35132) Full Text: DOI arXiv OpenURL
Misiats, Oleksandr; Stanzhytskyi, Oleksandr; Topaloglu, Ihsan On global existence and blowup of solutions of stochastic Keller-Segel type equation. (English) Zbl 1479.35146 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 3, 29 p. (2022). MSC: 35B44 35K15 35K59 35R60 60H30 65M75 92C17 PDF BibTeX XML Cite \textit{O. Misiats} et al., NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 3, 29 p. (2022; Zbl 1479.35146) Full Text: DOI arXiv OpenURL
Cardaliaguet, Pierre; Dirr, Nicolas; Souganidis, Panagiotis E. Scaling limits and stochastic homogenization for some nonlinear parabolic equations. (English) Zbl 1479.35058 J. Differ. Equations 307, 389-443 (2022). MSC: 35B27 35K15 35K59 35R60 PDF BibTeX XML Cite \textit{P. Cardaliaguet} et al., J. Differ. Equations 307, 389--443 (2022; Zbl 1479.35058) Full Text: DOI arXiv OpenURL
Dai, Xiaoqiang; Han, Jiangbo; Lin, Qiang; Tian, Xueteng Anomalous pseudo-parabolic Kirchhoff-type dynamical model. (English) Zbl 1479.35544 Adv. Nonlinear Anal. 11, 503-534 (2022). MSC: 35K70 35B40 35B44 35K20 35K59 35R11 PDF BibTeX XML Cite \textit{X. Dai} et al., Adv. Nonlinear Anal. 11, 503--534 (2022; Zbl 1479.35544) Full Text: DOI OpenURL
Liu, Changchun; Mei, Ming; Yang, Jiaqi Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation. (English) Zbl 1478.35039 J. Differ. Equations 306, 60-100 (2022). MSC: 35B40 35C07 35K15 35K65 35K59 35R09 35R10 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Differ. Equations 306, 60--100 (2022; Zbl 1478.35039) Full Text: DOI OpenURL
De Luca, L.; Kubin, A.; Ponsiglione, M. The core-radius approach to supercritical fractional perimeters, curvatures and geometric flows. (English) Zbl 1476.35091 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112585, 48 p. (2022). MSC: 35D40 49J45 35K93 35R11 35Q74 35B40 PDF BibTeX XML Cite \textit{L. De Luca} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112585, 48 p. (2022; Zbl 1476.35091) Full Text: DOI OpenURL
Vázquez, Juan Luis Growing solutions of the fractional \(p\)-Laplacian equation in the fast diffusion range. (English) Zbl 1476.35320 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112575, 35 p. (2022). MSC: 35R11 35B45 35C06 35K92 PDF BibTeX XML Cite \textit{J. L. Vázquez}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112575, 35 p. (2022; Zbl 1476.35320) Full Text: DOI arXiv OpenURL
Han, Jeongmin Time-dependent tug-of-war games and normalized parabolic \(p\)-Laplace equations. (English) Zbl 1477.35277 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112542, 23 p. (2022). MSC: 35Q91 35K92 35K20 35B40 35B65 35A01 35A02 91A15 35D40 49L20 PDF BibTeX XML Cite \textit{J. Han}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112542, 23 p. (2022; Zbl 1477.35277) Full Text: DOI arXiv OpenURL
Son, Byungjae; Wang, Peiyong Positive radial solutions to classes of \(p\)-Laplacian systems on the exterior of a ball with nonlinear boundary conditions. (English) Zbl 07418792 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112540, 19 p. (2022). Reviewer: Xueyan Liu (New Orleans) MSC: 34B16 34B18 34B09 35J66 35J75 35J92 47N20 PDF BibTeX XML Cite \textit{B. Son} and \textit{P. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112540, 19 p. (2022; Zbl 07418792) Full Text: DOI OpenURL
Niebel, Lukas Kinetic maximal \(L_\mu^p(L^p)\)-regularity for the fractional Kolmogorov equation with variable density. (English) Zbl 1476.35067 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112517, 21 p. (2022). MSC: 35B45 35B65 35K59 35K65 35R11 45K05 PDF BibTeX XML Cite \textit{L. Niebel}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 214, Article ID 112517, 21 p. (2022; Zbl 1476.35067) Full Text: DOI arXiv OpenURL
Wang, Lili; Lan, Yuzhen; Lei, Peidong Local null controllability of a free-boundary problem for the quasi-linear 1D parabolic equation. (English) Zbl 1478.93067 J. Math. Anal. Appl. 506, No. 2, Article ID 125676, 26 p. (2022). Reviewer: Yuanyuan Ke (Beijing) MSC: 93B05 93C20 35R35 35K59 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Math. Anal. Appl. 506, No. 2, Article ID 125676, 26 p. (2022; Zbl 1478.93067) Full Text: DOI OpenURL
Nguyen, Van Thin Multiplicity and concentration of solutions to a fractional \((p,p_1)\)-Laplace problem with exponential growth. (English) Zbl 1479.35276 J. Math. Anal. Appl. 506, No. 2, Article ID 125667, 46 p. (2022). MSC: 35J10 35J92 35R11 35A01 35A15 PDF BibTeX XML Cite \textit{V. T. Nguyen}, J. Math. Anal. Appl. 506, No. 2, Article ID 125667, 46 p. (2022; Zbl 1479.35276) Full Text: DOI OpenURL
Yaghoobi, Farajollah Mohammadi; Shamshiri, Jamileh Existence of solution for a class of fractional problems with sign-changing functions. (English) Zbl 07523971 J. Math. Ext. 15, No. 5, Paper No. 6, 15 p. (2021). MSC: 35R11 35B38 35B38 35D30 35J20 35J25 35J92 PDF BibTeX XML Cite \textit{F. M. Yaghoobi} and \textit{J. Shamshiri}, J. Math. Ext. 15, No. 5, Paper No. 6, 15 p. (2021; Zbl 07523971) Full Text: DOI OpenURL
Kopylova, Vera G.; Frolenkov, Igor V. On the solvability of the identification problem for a source function in a quasilinear parabolic system of equations in bounded and unbounded domains. (English) Zbl 07510971 J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 483-491 (2021). MSC: 35-XX 35Rxx 34-XX PDF BibTeX XML Cite \textit{V. G. Kopylova} and \textit{I. V. Frolenkov}, J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 483--491 (2021; Zbl 07510971) Full Text: DOI MNR OpenURL
Gao, Hongliang; Xu, Jing Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation. (English) Zbl 07509925 Bound. Value Probl. 2021, Paper No. 81, 10 p. (2021). MSC: 35J93 34B18 PDF BibTeX XML Cite \textit{H. Gao} and \textit{J. Xu}, Bound. Value Probl. 2021, Paper No. 81, 10 p. (2021; Zbl 07509925) Full Text: DOI OpenURL
Li, Qian A blow-up result for a system of coupled viscoelastic equations with arbitrary positive initial energy. (English) Zbl 07509905 Bound. Value Probl. 2021, Paper No. 61, 16 p. (2021). MSC: 35B44 35B40 35L53 35L72 35R09 PDF BibTeX XML Cite \textit{Q. Li}, Bound. Value Probl. 2021, Paper No. 61, 16 p. (2021; Zbl 07509905) Full Text: DOI OpenURL
Yu, Shengbin; Chen, Jianqing Uniqueness and concentration for a fractional Kirchhoff problem with strong singularity. (English) Zbl 07509874 Bound. Value Probl. 2021, Paper No. 30, 18 p. (2021). MSC: 35R11 35A02 35A15 35B09 35J62 35J75 PDF BibTeX XML Cite \textit{S. Yu} and \textit{J. Chen}, Bound. Value Probl. 2021, Paper No. 30, 18 p. (2021; Zbl 07509874) Full Text: DOI OpenURL
Heidari, S.; Razani, A. Multiple solutions for a class of nonlocal quasilinear elliptic systems in Orlicz-Sobolev spaces. (English) Zbl 07509866 Bound. Value Probl. 2021, Paper No. 22, 15 p. (2021). MSC: 35J35 35D30 35J92 34B16 PDF BibTeX XML Cite \textit{S. Heidari} and \textit{A. Razani}, Bound. Value Probl. 2021, Paper No. 22, 15 p. (2021; Zbl 07509866) Full Text: DOI OpenURL
Qi, Ailing; Hu, Die; Xiang, Mingqi Long-time behavior of solutions for a fractional diffusion problem. (English) Zbl 07509854 Bound. Value Probl. 2021, Paper No. 10, 15 p. (2021). MSC: 35B41 35K20 35K59 35R09 35R11 47G20 PDF BibTeX XML Cite \textit{A. Qi} et al., Bound. Value Probl. 2021, Paper No. 10, 15 p. (2021; Zbl 07509854) Full Text: DOI OpenURL
Stegliński, Robert Lyapunov-type inequalities for partial differential equations with \(p\)-Laplacian. (English) Zbl 07509460 Forum Math. 33, No. 2, 465-476 (2021). MSC: 35J92 35J20 PDF BibTeX XML Cite \textit{R. Stegliński}, Forum Math. 33, No. 2, 465--476 (2021; Zbl 07509460) Full Text: DOI OpenURL
Admasu, Wase Esmelalem; Galakhov, Evgeny Igorevich; Salieva, Olga Alexeevna Nonexistence of nontrivial weak solutions of some nonlinear inequalities with integer power of the Laplacian. (English) Zbl 07501924 Eurasian Math. J. 12, No. 3, 9-18 (2021). MSC: 35J30 35J62 35R45 PDF BibTeX XML Cite \textit{W. E. Admasu} et al., Eurasian Math. J. 12, No. 3, 9--18 (2021; Zbl 07501924) Full Text: DOI MNR OpenURL
Wang, Yu-Zhao Perelman type entropy formulae and differential Harnack estimates for weighted doubly nonlinear diffusion equations under curvature dimension condition. (English) Zbl 07499627 Bull. Korean Math. Soc. 58, No. 6, 1539-1561 (2021). MSC: 58J35 35K92 35K55 PDF BibTeX XML Cite \textit{Y.-Z. Wang}, Bull. Korean Math. Soc. 58, No. 6, 1539--1561 (2021; Zbl 07499627) Full Text: DOI OpenURL
Barbu, Tudor Mixed noise removal framework using a nonlinear fourth-order PDE-based model. (English) Zbl 07498423 Appl. Math. Optim. 84, Suppl. 2, 1865-1876 (2021). MSC: 35K35 35K59 60G35 65L12 65M06 68U10 68P30 94A08 PDF BibTeX XML Cite \textit{T. Barbu}, Appl. Math. Optim. 84, 1865--1876 (2021; Zbl 07498423) Full Text: DOI OpenURL
Barrios, Begoña; Medina, Maria Equivalence of weak and viscosity solutions in fractional non-homogeneous problems. (English) Zbl 07498359 Math. Ann. 381, No. 3-4, 1979-2012 (2021). MSC: 35R11 35D30 35D40 35J25 35J92 PDF BibTeX XML Cite \textit{B. Barrios} and \textit{M. Medina}, Math. Ann. 381, No. 3--4, 1979--2012 (2021; Zbl 07498359) Full Text: DOI OpenURL
Kon’kov, A. A. Comparison theorems for elliptic inequalities with lower-order derivatives that take into account the geometry of the domain. (English. Russian original) Zbl 07492939 Dokl. Math. 104, No. 2, 250-253 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 500, 35-39 (2021). MSC: 35B51 35J25 35J62 35R45 PDF BibTeX XML Cite \textit{A. A. Kon'kov}, Dokl. Math. 104, No. 2, 250--253 (2021; Zbl 07492939); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 500, 35--39 (2021) Full Text: DOI OpenURL
Naito, Manabu; Usami, Hiroyuki Singular strongly increasing solutions of higher-order quasilinear ordinary differential equations. (English. Georgian summary) Zbl 1482.34102 Mem. Differ. Equ. Math. Phys. 84, 99-112 (2021). MSC: 34C11 PDF BibTeX XML Cite \textit{M. Naito} and \textit{H. Usami}, Mem. Differ. Equ. Math. Phys. 84, 99--112 (2021; Zbl 1482.34102) Full Text: Link OpenURL
Choucha, Abdelbaki; Boulaaras, Salah; Ouchenane, Djamel General decay rate for a viscoelastic wave equation with distributed delay and Balakrishnan-Taylor damping. (English) Zbl 07485673 Open Math. 19, 1120-1133 (2021). MSC: 35B40 35L20 35L72 35R09 93D20 PDF BibTeX XML Cite \textit{A. Choucha} et al., Open Math. 19, 1120--1133 (2021; Zbl 07485673) Full Text: DOI OpenURL
Dareiotis, K.; Gerencsér, M.; Gess, B. Porous media equations with multiplicative space-time white noise. (English) Zbl 07481288 Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 4, 2354-2371 (2021). MSC: 60H15 35K59 35K65 60H40 PDF BibTeX XML Cite \textit{K. Dareiotis} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 4, 2354--2371 (2021; Zbl 07481288) Full Text: DOI arXiv OpenURL
Funaki, Tadahisa; Hoshino, Masato; Sethuraman, Sunder; Xie, Bin Asymptotics of PDE in random environment by paracontrolled calculus. (English) Zbl 07481264 Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 3, 1702-1735 (2021). MSC: 60H15 35R60 35S50 60H40 PDF BibTeX XML Cite \textit{T. Funaki} et al., Ann. Inst. Henri Poincaré, Probab. Stat. 57, No. 3, 1702--1735 (2021; Zbl 07481264) Full Text: DOI arXiv OpenURL
Karami, Fahd; Meskine, Driss; Sadik, Khadija Nonlocal total variation system for the restoration of textured images. (English) Zbl 07479091 Int. J. Comput. Math. 98, No. 9, 1749-1768 (2021). MSC: 35R09 35K92 35K57 68R01 68U10 PDF BibTeX XML Cite \textit{F. Karami} et al., Int. J. Comput. Math. 98, No. 9, 1749--1768 (2021; Zbl 07479091) Full Text: DOI OpenURL