Almusawa, Hassan Lie symmetry analysis and conservation laws of two-mode Cahn-Allen equation. (English) Zbl 07565368 J. Geom. Phys. 179, Article ID 104579, 13 p. (2022). MSC: 35B06 35L72 PDF BibTeX XML Cite \textit{H. Almusawa}, J. Geom. Phys. 179, Article ID 104579, 13 p. (2022; Zbl 07565368) Full Text: DOI OpenURL
Park, Sun-Hye General decay for a viscoelastic von Karman equation with delay and variable exponent nonlinearities. (English) Zbl 07556237 Bound. Value Probl. 2022, Paper No. 23, 29 p. (2022). MSC: 35B40 35L35 35L77 35R09 74D99 74K20 PDF BibTeX XML Cite \textit{S.-H. Park}, Bound. Value Probl. 2022, Paper No. 23, 29 p. (2022; Zbl 07556237) Full Text: DOI OpenURL
Dörich, Benjamin; Hochbruck, Marlis Exponential integrators for quasilinear wave-type equations. (English) Zbl 07554727 SIAM J. Numer. Anal. 60, No. 3, 1472-1493 (2022). Reviewer: Murli Gupta (Washington, D.C.) MSC: 65M06 65M12 65J15 65M15 35L05 35L90 35A01 35A02 35Q61 PDF BibTeX XML Cite \textit{B. Dörich} and \textit{M. Hochbruck}, SIAM J. Numer. Anal. 60, No. 3, 1472--1493 (2022; Zbl 07554727) Full Text: DOI OpenURL
Van de Moortel, Maxime Decay of weakly charged solutions for the spherically symmetric Maxwell-charged-scalar-field equations on a Reissner-Nordström exterior space-time. (English. French summary) Zbl 07548800 Ann. Sci. Éc. Norm. Supér. (4) 55, No. 2, 283-404 (2022). MSC: 83C05 83C57 83C75 35L05 35L72 PDF BibTeX XML Cite \textit{M. Van de Moortel}, Ann. Sci. Éc. Norm. Supér. (4) 55, No. 2, 283--404 (2022; Zbl 07548800) Full Text: DOI OpenURL
Irkıl, Nazlı; Pişkin, Erhan Global existence and decay of solutions for a higher-order Kirchhoff-type systems with logarithmic nonlinearities. (English) Zbl 07543543 Quaest. Math. 45, No. 4, 523-546 (2022). MSC: 35B40 35L57 35L77 35R09 PDF BibTeX XML Cite \textit{N. Irkıl} and \textit{E. Pişkin}, Quaest. Math. 45, No. 4, 523--546 (2022; Zbl 07543543) Full Text: DOI OpenURL
Ye, Yaojun; Zhu, Qianqian Existence and nonexistence of global solutions for logarithmic hyperbolic equation. (English) Zbl 1486.35082 Electron Res. Arch. 30, No. 3, 1035-1051 (2022). MSC: 35B44 35L20 35L72 PDF BibTeX XML Cite \textit{Y. Ye} and \textit{Q. Zhu}, Electron Res. Arch. 30, No. 3, 1035--1051 (2022; Zbl 1486.35082) Full Text: DOI OpenURL
Wang, Chunpeng Global smooth sonic-supersonic flows in a class of critical nozzles. (English) Zbl 07504987 SIAM J. Math. Anal. 54, No. 2, 1820-1859 (2022). MSC: 35Q31 35L80 76J20 PDF BibTeX XML Cite \textit{C. Wang}, SIAM J. Math. Anal. 54, No. 2, 1820--1859 (2022; Zbl 07504987) Full Text: DOI OpenURL
Kagei, Yoshiyuki; Takeda, Hiroshi Smoothing effect and large time behavior of solutions to nonlinear elastic wave equations with viscoelastic term. (English) Zbl 1486.35101 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112826, 36 p. (2022). MSC: 35B65 35B40 35L15 35L72 PDF BibTeX XML Cite \textit{Y. Kagei} and \textit{H. Takeda}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 219, Article ID 112826, 36 p. (2022; Zbl 1486.35101) Full Text: DOI OpenURL
Acosta, Sebastian; Uhlmann, Gunther; Zhai, Jian Nonlinear ultrasound imaging modeled by a Westervelt equation. (English) Zbl 1486.35458 SIAM J. Appl. Math. 82, No. 2, 408-426 (2022). Reviewer: Giovanni S. Alberti (Genova) MSC: 35R30 35L20 35L72 92C55 PDF BibTeX XML Cite \textit{S. Acosta} et al., SIAM J. Appl. Math. 82, No. 2, 408--426 (2022; Zbl 1486.35458) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Nikolić, Vanja Parabolic approximation of quasilinear wave equations with applications in nonlinear acoustics. (English) Zbl 1485.35296 SIAM J. Math. Anal. 54, No. 2, 1593-1622 (2022). MSC: 35L72 35L20 35B40 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{V. Nikolić}, SIAM J. Math. Anal. 54, No. 2, 1593--1622 (2022; Zbl 1485.35296) Full Text: DOI arXiv OpenURL
Dekkers, Adrien; Rozanova-Pierrat, Anna; Teplyaev, Alexander Mixed boundary valued problems for linear and nonlinear wave equations in domains with fractal boundaries. (English) Zbl 07488412 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 75, 44 p. (2022). MSC: 28A80 35L05 35L72 PDF BibTeX XML Cite \textit{A. Dekkers} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 75, 44 p. (2022; Zbl 07488412) Full Text: DOI arXiv OpenURL
Yang, Hui; Han, Yuzhu Lifespan of solutions to a hyperbolic type Kirchhoff equation with arbitrarily high initial energy. (English) Zbl 1483.35049 J. Math. Anal. Appl. 510, No. 2, Article ID 126023, 16 p. (2022). MSC: 35B44 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Han}, J. Math. Anal. Appl. 510, No. 2, Article ID 126023, 16 p. (2022; Zbl 1483.35049) Full Text: DOI OpenURL
Vicente, A. Well-posedness and stability for Kirchhoff equation with non-porous acoustic boundary conditions. (English) Zbl 1483.35137 J. Differ. Equations 313, 314-335 (2022). MSC: 35L72 35L20 35B35 35B40 PDF BibTeX XML Cite \textit{A. Vicente}, J. Differ. Equations 313, 314--335 (2022; Zbl 1483.35137) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Rundell, William On an inverse problem of nonlinear imaging with fractional damping. (English) Zbl 1479.35951 Math. Comput. 91, No. 333, 245-276 (2022). MSC: 35R30 35R11 35L20 35L72 78A46 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Math. Comput. 91, No. 333, 245--276 (2022; Zbl 1479.35951) Full Text: DOI arXiv OpenURL
Sun, Yue; Yang, Zhijian Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel. (English) Zbl 1479.35118 Nonlinear Anal., Real World Appl. 64, Article ID 103432, 26 p. (2022). MSC: 35B40 35B41 35L20 35L72 35R09 74D10 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{Z. Yang}, Nonlinear Anal., Real World Appl. 64, Article ID 103432, 26 p. (2022; Zbl 1479.35118) Full Text: DOI OpenURL
Li, Qian A blow-up result for a system of coupled viscoelastic equations with arbitrary positive initial energy. (English) Zbl 1487.35123 Bound. Value Probl. 2021, Paper No. 61, 16 p. (2021). MSC: 35B44 35B40 35L53 35L72 35R09 PDF BibTeX XML Cite \textit{Q. Li}, Bound. Value Probl. 2021, Paper No. 61, 16 p. (2021; Zbl 1487.35123) Full Text: DOI OpenURL
Ngoc, Le Thi Phuong; Son, Le Huu Ky; Long, Nguyen Thanh Existence, blow-up and exponential decay estimates for the nonlinear Kirchhoff-Carrier wave equation in an annular with Robin-Dirichlet conditions. (English) Zbl 1485.35057 Kyungpook Math. J. 61, No. 4, 859-888 (2021). MSC: 35B40 35B44 35L20 35L72 35Q74 37B25 PDF BibTeX XML Cite \textit{L. T. P. Ngoc} et al., Kyungpook Math. J. 61, No. 4, 859--888 (2021; Zbl 1485.35057) Full Text: DOI OpenURL
Ha, Tae Gab; Park, Sun-Hye Existence and general decay for a viscoelastic equation with logarithmic nonlinearity. (English) Zbl 1483.35029 J. Korean Math. Soc. 58, No. 6, 1433-1448 (2021). MSC: 35B40 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{T. G. Ha} and \textit{S.-H. Park}, J. Korean Math. Soc. 58, No. 6, 1433--1448 (2021; Zbl 1483.35029) Full Text: DOI OpenURL
Dong, Guozhi; Hintermueller, Michael; Zhang, Ye A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging. (English) Zbl 1478.35150 SIAM J. Imaging Sci. 14, No. 2, 645-688 (2021). MSC: 35L72 35L80 49K20 49J52 65M12 PDF BibTeX XML Cite \textit{G. Dong} et al., SIAM J. Imaging Sci. 14, No. 2, 645--688 (2021; Zbl 1478.35150) Full Text: DOI arXiv OpenURL
Baev, A. V. Solution of inverse problems for wave equation with a nonlinear coefficient. (English. Russian original) Zbl 1477.35309 Comput. Math. Math. Phys. 61, No. 9, 1511-1520 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 9, 1536-1544 (2021). MSC: 35R30 35C07 35L72 PDF BibTeX XML Cite \textit{A. V. Baev}, Comput. Math. Math. Phys. 61, No. 9, 1511--1520 (2021; Zbl 1477.35309); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 9, 1536--1544 (2021) Full Text: DOI OpenURL
Coclite, G. M.; Maddalena, F.; Puglisi, G.; Romano, M.; Saccomandi, G. The Gardner equation in elastodynamics. (English) Zbl 1478.35141 SIAM J. Appl. Math. 81, No. 6, 2346-2361 (2021). MSC: 35L53 35L72 35C08 35Q53 74J35 74B20 PDF BibTeX XML Cite \textit{G. M. Coclite} et al., SIAM J. Appl. Math. 81, No. 6, 2346--2361 (2021; Zbl 1478.35141) Full Text: DOI OpenURL
Qi, Shijie Normalized solutions for the Kirchhoff equation on noncompact metric graphs. (English) Zbl 1484.05055 Nonlinearity 34, No. 10, 6963-7004 (2021). Reviewer: Guy Katriel (Haifa) MSC: 05C10 47J30 34A09 35R02 35L72 49J40 81Q35 PDF BibTeX XML Cite \textit{S. Qi}, Nonlinearity 34, No. 10, 6963--7004 (2021; Zbl 1484.05055) Full Text: DOI OpenURL
Uhlmann, Gunther; Zhai, Jian On an inverse boundary value problem for a nonlinear elastic wave equation. (English. French summary) Zbl 1476.35338 J. Math. Pures Appl. (9) 153, 114-136 (2021). Reviewer: Giovanni S. Alberti (Genova) MSC: 35R30 35L72 74B20 35L20 PDF BibTeX XML Cite \textit{G. Uhlmann} and \textit{J. Zhai}, J. Math. Pures Appl. (9) 153, 114--136 (2021; Zbl 1476.35338) Full Text: DOI arXiv OpenURL
Kaltenbacher, Barbara; Rundell, William On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements. (English) Zbl 1472.35453 Inverse Probl. Imaging 15, No. 5, 865-891 (2021). MSC: 35R30 35K58 35L20 35L72 76Q05 78A46 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Inverse Probl. Imaging 15, No. 5, 865--891 (2021; Zbl 1472.35453) Full Text: DOI arXiv OpenURL
Ouédraogo, Adama; Houede, Dofyniwassouani Alain; Ibrango, Idrissa Renormalized solutions for convection-diffusion problems involving a nonlocal operator. (English) Zbl 1471.35305 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 55, 27 p. (2021). MSC: 35R11 35L65 35K59 PDF BibTeX XML Cite \textit{A. Ouédraogo} et al., NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 5, Paper No. 55, 27 p. (2021; Zbl 1471.35305) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Nikolić, Vanja The inviscid limit of third-order linear and nonlinear acoustic equations. (English) Zbl 1475.35282 SIAM J. Appl. Math. 81, No. 4, 1461-1482 (2021). Reviewer: Roberta Bianchini (Roma) MSC: 35Q35 35L05 35L72 76Q05 76N15 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{V. Nikolić}, SIAM J. Appl. Math. 81, No. 4, 1461--1482 (2021; Zbl 1475.35282) Full Text: DOI arXiv OpenURL
Krieger, Joachim Stability properties of blow up solutions for critical wave maps. (English) Zbl 1469.35061 Giga, Yoshikazu (ed.) et al., The role of metrics in the theory of partial differential equations. Proceedings of the 11th Mathematical Society of Japan, Seasonal Institute (MSJ-SI), Nagoya University, Japan, July 2–13 2018. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 85, 259-268 (2021). MSC: 35B44 35L72 PDF BibTeX XML Cite \textit{J. Krieger}, Adv. Stud. Pure Math. 85, 259--268 (2021; Zbl 1469.35061) Full Text: DOI OpenURL
Delort, Jean-Marc Long time existence results for Hamiltonian nonlinear Klein-Gordon equations on some compact manifolds. (English) Zbl 1469.35153 Giga, Yoshikazu (ed.) et al., The role of metrics in the theory of partial differential equations. Proceedings of the 11th Mathematical Society of Japan, Seasonal Institute (MSJ-SI), Nagoya University, Japan, July 2–13 2018. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 85, 1-37 (2021). MSC: 35L72 35S50 37K45 58J45 PDF BibTeX XML Cite \textit{J.-M. Delort}, Adv. Stud. Pure Math. 85, 1--37 (2021; Zbl 1469.35153) Full Text: DOI OpenURL
Gao, Fang; Wang, Zenggui Nonlinear self-adjointness and conservation laws for the modified dissipative hyperbolic geometric flow equation. (English) Zbl 1484.35016 J. Geom. Phys. 167, Article ID 104304, 9 p. (2021). MSC: 35A30 35B06 35L60 35L72 PDF BibTeX XML Cite \textit{F. Gao} and \textit{Z. Wang}, J. Geom. Phys. 167, Article ID 104304, 9 p. (2021; Zbl 1484.35016) Full Text: DOI OpenURL
Huh, Hyungjin Remarks on the infinity wave equation. (English) Zbl 1465.35307 Bull. Korean Math. Soc. 58, No. 2, 451-459 (2021). MSC: 35L80 35L72 34A05 PDF BibTeX XML Cite \textit{H. Huh}, Bull. Korean Math. Soc. 58, No. 2, 451--459 (2021; Zbl 1465.35307) Full Text: DOI OpenURL
Savotchenko, S. E. The nonlinear wave and diffusion processes in media with a jump change in characteristics depending on the amplitude of the field distribution. (English) Zbl 1465.35383 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105785, 14 p. (2021). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35R05 35L72 35K59 35G05 PDF BibTeX XML Cite \textit{S. E. Savotchenko}, Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105785, 14 p. (2021; Zbl 1465.35383) Full Text: DOI OpenURL
Yoshikawa, Shuji; Kawashima, Shuichi Global existence for a semi-discrete scheme of some quasilinear hyperbolic balance laws. (English) Zbl 1459.35273 J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021). MSC: 35L45 35L60 39A12 35A35 65M06 PDF BibTeX XML Cite \textit{S. Yoshikawa} and \textit{S. Kawashima}, J. Math. Anal. Appl. 498, No. 1, Article ID 124929, 18 p. (2021; Zbl 1459.35273) Full Text: DOI OpenURL
Lee, Mi Jin; Kang, Jum-Ran Blow-up results for a quasilinear von Karman equation of memory type with acoustic boundary conditions. (English) Zbl 1453.35034 Appl. Math. Lett. 112, Article ID 106693, 7 p. (2021). MSC: 35B44 35L35 35L77 35R09 PDF BibTeX XML Cite \textit{M. J. Lee} and \textit{J.-R. Kang}, Appl. Math. Lett. 112, Article ID 106693, 7 p. (2021; Zbl 1453.35034) Full Text: DOI OpenURL
Pişkin, E. Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents. (English) Zbl 07569288 Int. J. Nonlinear Anal. Appl. 11, No. 1, 37-45 (2020). MSC: 35B44 35L72 PDF BibTeX XML Cite \textit{E. Pişkin}, Int. J. Nonlinear Anal. Appl. 11, No. 1, 37--45 (2020; Zbl 07569288) Full Text: DOI OpenURL
Yao, Xiaobin Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. (English) Zbl 1484.35424 AIMS Math. 5, No. 3, 2577-2607 (2020). MSC: 35R60 35Q74 35B41 35L77 37L55 74K20 74S60 PDF BibTeX XML Cite \textit{X. Yao}, AIMS Math. 5, No. 3, 2577--2607 (2020; Zbl 1484.35424) Full Text: DOI OpenURL
Samet, Bessem First and second critical exponents for an inhomogeneous damped wave equation with mixed nonlinearities. (English) Zbl 1484.35289 AIMS Math. 5, No. 6, 7055-7070 (2020). MSC: 35L72 35B33 35D30 35L15 PDF BibTeX XML Cite \textit{B. Samet}, AIMS Math. 5, No. 6, 7055--7070 (2020; Zbl 1484.35289) Full Text: DOI OpenURL
Yang, Hui; Fang, Shiyue; Liang, Fei; Li, Min A general stability result for second order stochastic quasilinear evolution equations with memory. (English) Zbl 1486.60086 Bound. Value Probl. 2020, Paper No. 62, 16 p. (2020). MSC: 60H15 35L05 35L70 PDF BibTeX XML Cite \textit{H. Yang} et al., Bound. Value Probl. 2020, Paper No. 62, 16 p. (2020; Zbl 1486.60086) Full Text: DOI OpenURL
Mai, Vo Thi Tuyet; Triet, Nguyen Anh; Ngoc, Le Thi Phuong; Long, Nguyen Thanh Existence, blow-up and exponential decay for a nonlinear Kirchhoff-Carrier-Love equation with Dirichlet conditions. (English) Zbl 1475.35057 Nonlinear Funct. Anal. Appl. 25, No. 4, 617-655 (2020). MSC: 35B40 35B44 35L20 35L72 35Q74 37B25 PDF BibTeX XML Cite \textit{V. T. T. Mai} et al., Nonlinear Funct. Anal. Appl. 25, No. 4, 617--655 (2020; Zbl 1475.35057) Full Text: Link OpenURL
Kozhanov, A. I.; Koshanov, B. D.; Smatova, G. D. On correct boundary value problems for nonclassical sixth order differential equations. (English) Zbl 07406148 Mat. Zh. 20, No. 1, 6-17 (2020). MSC: 35L77 35P99 PDF BibTeX XML Cite \textit{A. I. Kozhanov} et al., Mat. Zh. 20, No. 1, 6--17 (2020; Zbl 07406148) OpenURL
Li, Kang; Tan, Zhijun A two-grid algorithm of fully discrete Galerkin finite element methods for a nonlinear hyperbolic equation. (English) Zbl 1474.65356 Numer. Math., Theory Methods Appl. 13, No. 4, 1050-1067 (2020). MSC: 65M60 65M55 65M15 35L72 PDF BibTeX XML Cite \textit{K. Li} and \textit{Z. Tan}, Numer. Math., Theory Methods Appl. 13, No. 4, 1050--1067 (2020; Zbl 1474.65356) Full Text: DOI OpenURL
Ogbiyele, P. A.; Arawomo, P. O. Existence and blow up time estimate for a negative initial energy solution of a nonlinear Cauchy problem. (English) Zbl 1462.35096 Acta Appl. Math. 170, 443-458 (2020). MSC: 35B44 35L15 35L72 35A01 35B45 PDF BibTeX XML Cite \textit{P. A. Ogbiyele} and \textit{P. O. Arawomo}, Acta Appl. Math. 170, 443--458 (2020; Zbl 1462.35096) Full Text: DOI OpenURL
Grundland, A. M.; Hariton, A. J. Invariant solutions of a nonlinear wave equation with a small dissipation obtained via approximate symmetries. (English) Zbl 1462.35203 Ric. Mat. 69, No. 2, 509-532 (2020). MSC: 35L72 20F40 35B06 PDF BibTeX XML Cite \textit{A. M. Grundland} and \textit{A. J. Hariton}, Ric. Mat. 69, No. 2, 509--532 (2020; Zbl 1462.35203) Full Text: DOI arXiv OpenURL
Zhang, Yuanyuan Existence of global solutions for quasi-linear wave equations with viscous damped term. (Chinese. English summary) Zbl 1474.35443 J. Northwest Norm. Univ., Nat. Sci. 56, No. 5, 8-12 (2020). MSC: 35L05 35L72 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 5, 8--12 (2020; Zbl 1474.35443) Full Text: DOI OpenURL
García-Azpeitia, Carlos; Lessard, Jean-Philippe Free vibrations in a wave equation modeling MEMS. (English) Zbl 1477.35014 SIAM J. Appl. Dyn. Syst. 19, No. 4, 2749-2782 (2020). Reviewer: Alois Steindl (Wien) MSC: 35B10 35B32 37M20 37N15 74H45 35L72 35L20 PDF BibTeX XML Cite \textit{C. García-Azpeitia} and \textit{J.-P. Lessard}, SIAM J. Appl. Dyn. Syst. 19, No. 4, 2749--2782 (2020; Zbl 1477.35014) Full Text: DOI arXiv OpenURL
Aili, Mohammed; Khemmoudj, Ammar General decay of energy for a viscoelastic wave equation with a distributed delay term in the nonlinear internal dambing. (English) Zbl 1459.35032 Rend. Circ. Mat. Palermo (2) 69, No. 3, 861-881 (2020). MSC: 35B40 35L20 35L72 35R09 74D05 74F05 93D15 26A51 PDF BibTeX XML Cite \textit{M. Aili} and \textit{A. Khemmoudj}, Rend. Circ. Mat. Palermo (2) 69, No. 3, 861--881 (2020; Zbl 1459.35032) Full Text: DOI OpenURL
López, Rafael Gradient estimates for the constant mean curvature equation in hyperbolic space. (English) Zbl 1460.35159 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3216-3230 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35J62 35J25 35J93 PDF BibTeX XML Cite \textit{R. López}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3216--3230 (2020; Zbl 1460.35159) Full Text: DOI arXiv OpenURL
Gheraibia, Billel; Boumaza, Nouri General decay result of solutions for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term. (English) Zbl 1460.35037 Z. Angew. Math. Phys. 71, No. 6, Paper No. 198, 12 p. (2020). Reviewer: Igor Bock (Bratislava) MSC: 35B40 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{B. Gheraibia} and \textit{N. Boumaza}, Z. Angew. Math. Phys. 71, No. 6, Paper No. 198, 12 p. (2020; Zbl 1460.35037) Full Text: DOI OpenURL
Mohammadi, Mehrad; Azami, Shahroud Long time existence of hyperbolic Ricci-Bourguignon flow on Riemannian surfaces. (English) Zbl 1455.53101 J. Indones. Math. Soc. 26, No. 2, 202-212 (2020). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 53E20 53E30 58J45 58J47 30F99 PDF BibTeX XML Cite \textit{M. Mohammadi} and \textit{S. Azami}, J. Indones. Math. Soc. 26, No. 2, 202--212 (2020; Zbl 1455.53101) Full Text: DOI OpenURL
Marchesani, Stefano; Olla, Stefano On the existence of \(L^2\)-valued thermodynamic entropy solutions for a hyperbolic system with boundary conditions. (English) Zbl 1448.35330 Commun. Partial Differ. Equations 45, No. 9, 1072-1087 (2020). MSC: 35L60 35L65 35D40 35L50 PDF BibTeX XML Cite \textit{S. Marchesani} and \textit{S. Olla}, Commun. Partial Differ. Equations 45, No. 9, 1072--1087 (2020; Zbl 1448.35330) Full Text: DOI arXiv OpenURL
Luk, Jonathan; Speck, Jared The hidden null structure of the compressible Euler equations and a prelude to applications. (English) Zbl 1441.35190 J. Hyperbolic Differ. Equ. 17, No. 1, 1-60 (2020). MSC: 35Q31 35L05 35L10 35L15 35L67 35L72 76N10 PDF BibTeX XML Cite \textit{J. Luk} and \textit{J. Speck}, J. Hyperbolic Differ. Equ. 17, No. 1, 1--60 (2020; Zbl 1441.35190) Full Text: DOI arXiv OpenURL
Song, Ruili; Wang, Shubin Local existence and global nonexistence theorems for a viscous damped quasi-linear wave equations. (English) Zbl 1449.35309 Math. Appl. 33, No. 1, 91-99 (2020). MSC: 35L71 35L05 35B44 PDF BibTeX XML Cite \textit{R. Song} and \textit{S. Wang}, Math. Appl. 33, No. 1, 91--99 (2020; Zbl 1449.35309) OpenURL
Boumaza, Nouri; Gheraibia, Billel General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term. (English) Zbl 1439.35053 J. Math. Anal. Appl. 489, No. 2, Article ID 124185, 18 p. (2020). MSC: 35B40 35B44 35L72 35L20 35R09 PDF BibTeX XML Cite \textit{N. Boumaza} and \textit{B. Gheraibia}, J. Math. Anal. Appl. 489, No. 2, Article ID 124185, 18 p. (2020; Zbl 1439.35053) Full Text: DOI OpenURL
Mutlubaş, N. Duruk Corrigendum to: “Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude”. (English) Zbl 1437.35587 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111712, 3 p. (2020). MSC: 35Q35 35L77 76B15 35A01 35A02 PDF BibTeX XML Cite \textit{N. D. Mutlubaş}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111712, 3 p. (2020; Zbl 1437.35587) Full Text: DOI OpenURL
Duan, Wenhui; Hu, Yanbo; Wang, Guodong Singularity and existence for a multidimensional variational wave equation arising from nematic liquid crystals. (English) Zbl 1435.35257 J. Math. Anal. Appl. 487, No. 2, Article ID 124026, 13 p. (2020). MSC: 35L72 35A15 35A20 76A15 PDF BibTeX XML Cite \textit{W. Duan} et al., J. Math. Anal. Appl. 487, No. 2, Article ID 124026, 13 p. (2020; Zbl 1435.35257) Full Text: DOI OpenURL
Goritsky, A. Yu.; Gargyants, L. V. Nonuniqueness of unbounded solutions of the Cauchy problem for scalar conservation laws. (English. Russian original) Zbl 1435.35007 J. Math. Sci., New York 244, No. 2, 183-197 (2020); translation from Tr. Semin. Im. I. G. Petrovskogo 32, 111-113 (2019). MSC: 35A02 35L03 35L65 35L67 PDF BibTeX XML Cite \textit{A. Yu. Goritsky} and \textit{L. V. Gargyants}, J. Math. Sci., New York 244, No. 2, 183--197 (2020; Zbl 1435.35007); translation from Tr. Semin. Im. I. G. Petrovskogo 32, 111--113 (2019) Full Text: DOI OpenURL
Fan, Jishan; Ozawa, Tohru Cauchy problem and vanishing dispersion limit for Schrödinger-improved Boussinesq equations. (English) Zbl 1433.35361 J. Math. Anal. Appl. 485, No. 2, Article ID 123857, 7 p. (2020). MSC: 35Q55 35B30 35L72 PDF BibTeX XML Cite \textit{J. Fan} and \textit{T. Ozawa}, J. Math. Anal. Appl. 485, No. 2, Article ID 123857, 7 p. (2020; Zbl 1433.35361) Full Text: DOI OpenURL
Duruk Mutlubaş, N. Erratum to: “On the Cauchy problem for a model equation for shallow water waves of moderate amplitude”. (English) Zbl 1471.76015 Nonlinear Anal., Real World Appl. 53, Article ID 103073, 3 p. (2020). MSC: 76B03 76B15 PDF BibTeX XML Cite \textit{N. Duruk Mutlubaş}, Nonlinear Anal., Real World Appl. 53, Article ID 103073, 3 p. (2020; Zbl 1471.76015) Full Text: DOI OpenURL
Chen, Geng Optimal density lower bound on nonisentropic gas dynamics. (English) Zbl 1457.76130 J. Differ. Equations 268, No. 7, 4017-4028 (2020). Reviewer: Dimitar A. Kolev (Sofia) MSC: 76N10 35Q51 35L65 80A17 PDF BibTeX XML Cite \textit{G. Chen}, J. Differ. Equations 268, No. 7, 4017--4028 (2020; Zbl 1457.76130) Full Text: DOI arXiv OpenURL
Li, Fushan; Xi, Shuai; Xu, Ke; Xue, Xiaomin Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II. (English) Zbl 1461.35157 J. Appl. Anal. Comput. 9, No. 6, 2318-2332 (2019). MSC: 35L72 35L20 35B44 35R09 74D10 PDF BibTeX XML Cite \textit{F. Li} et al., J. Appl. Anal. Comput. 9, No. 6, 2318--2332 (2019; Zbl 1461.35157) Full Text: DOI OpenURL
Biswas, Animikh; Seidman, Thomas I. Periodic longitudinal motions of a viscoelastic rod. (English) Zbl 1458.35024 Pure Appl. Funct. Anal. 4, No. 4, 671-683 (2019). MSC: 35B10 35Q74 74K10 PDF BibTeX XML Cite \textit{A. Biswas} and \textit{T. I. Seidman}, Pure Appl. Funct. Anal. 4, No. 4, 671--683 (2019; Zbl 1458.35024) Full Text: Link OpenURL
Dilmi, Mohamed; Dilmi, Mourad; Benseridi, Hamid Asymptotic behavior for the elasticity system with a nonlinear dissipative term. (English) Zbl 1445.35253 Rend. Ist. Mat. Univ. Trieste 51, 41-60 (2019). MSC: 35L72 35Q74 35B40 35B45 49J40 74B20 PDF BibTeX XML Cite \textit{M. Dilmi} et al., Rend. Ist. Mat. Univ. Trieste 51, 41--60 (2019; Zbl 1445.35253) Full Text: DOI OpenURL
Rottmann-Matthes, Jens An IMEX-RK scheme for capturing similarity solutions in the multidimensional Burgers’s equation. (English) Zbl 1483.65147 IMA J. Numer. Anal. 39, No. 1, 342-373 (2019). MSC: 65M20 65L06 35C06 35K59 35Q53 PDF BibTeX XML Cite \textit{J. Rottmann-Matthes}, IMA J. Numer. Anal. 39, No. 1, 342--373 (2019; Zbl 1483.65147) Full Text: DOI arXiv OpenURL
Kubo, Hideo Modification of the vector-field method related to quadratically perturbed wave equations in two space dimensions. (English) Zbl 1451.35093 Kato, Keiichi (ed.) et al., Asymptotic analysis for nonlinear dispersive and wave equations. Proceedings of the international conference on asymptotic analysis for nonlinear dispersive and wave equations, Osaka University, Osaka, Japan, September 6–9, 2014. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 81, 139-172 (2019). Reviewer: Chengbo Wang (Hangzhou) MSC: 35L72 35B40 35B45 PDF BibTeX XML Cite \textit{H. Kubo}, Adv. Stud. Pure Math. 81, 139--172 (2019; Zbl 1451.35093) Full Text: DOI Euclid OpenURL
Marian, Daniela; Ciplea, Sorina Anamaria; Lungu, Nicolaie Ulam-Hyers stability of a parabolic partial differential equation. (English) Zbl 1429.35027 Demonstr. Math. 52, 475-481 (2019). MSC: 35B35 35L70 39B82 35K59 PDF BibTeX XML Cite \textit{D. Marian} et al., Demonstr. Math. 52, 475--481 (2019; Zbl 1429.35027) Full Text: DOI OpenURL
Pişkin, Erhan; Ekinci, Fatma General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms. (English) Zbl 1437.35089 Math. Methods Appl. Sci. 42, No. 16, 5468-5488 (2019). Reviewer: Igor Bock (Bratislava) MSC: 35B40 35B44 35L53 35L72 35R09 PDF BibTeX XML Cite \textit{E. Pişkin} and \textit{F. Ekinci}, Math. Methods Appl. Sci. 42, No. 16, 5468--5488 (2019; Zbl 1437.35089) Full Text: DOI OpenURL
Pellicer, M.; Said-Houari, B. Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound. (English) Zbl 1425.35120 Appl. Math. Optim. 80, No. 2, 447-478 (2019). MSC: 35L77 35B30 35B40 35L82 35L55 74D05 93D15 93D20 PDF BibTeX XML Cite \textit{M. Pellicer} and \textit{B. Said-Houari}, Appl. Math. Optim. 80, No. 2, 447--478 (2019; Zbl 1425.35120) Full Text: DOI arXiv OpenURL
Wong, Willie Wai Yeung Timelike minimal submanifolds of Minkowski spaces. (English) Zbl 1428.53075 Ji, Lizhen (ed.) et al., Proceedings of the seventh international congress of Chinese mathematicians, ICCM 2016, Beijing, China, August 2016. Volume II. Somerville, MA: International Press; Beijing: Higher Education Press. Adv. Lect. Math. (ALM) 44, 301-314 (2019). MSC: 53C42 35L72 35B07 35B44 35B65 PDF BibTeX XML Cite \textit{W. W. Y. Wong}, Adv. Lect. Math. (ALM) 44, 301--314 (2019; Zbl 1428.53075) OpenURL
Denisov, A. M. Existence of a solution of the inverse coefficient problem for a quasilinear hyperbolic equation. (English. Russian original) Zbl 1423.35439 Comput. Math. Math. Phys. 59, No. 4, 550-558 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 587-596 (2019). MSC: 35R30 35L20 35L72 47J05 PDF BibTeX XML Cite \textit{A. M. Denisov}, Comput. Math. Math. Phys. 59, No. 4, 550--558 (2019; Zbl 1423.35439); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 4, 587--596 (2019) Full Text: DOI OpenURL
Speck, Jared Multidimensional nonlinear geometric optics for transport operators with applications to stable shock formation. (English) Zbl 1426.35159 Pure Appl. Anal. 1, No. 3, 447-514 (2019). MSC: 35L67 35L45 35B44 35L60 PDF BibTeX XML Cite \textit{J. Speck}, Pure Appl. Anal. 1, No. 3, 447--514 (2019; Zbl 1426.35159) Full Text: DOI arXiv OpenURL
Liu, Jian-Gen; Yang, Xiao-Jun; Feng, Yi-Ying On integrability of the time fractional nonlinear heat conduction equation. (English) Zbl 1439.35540 J. Geom. Phys. 144, 190-198 (2019). MSC: 35R11 22E70 35K59 35L65 35Q51 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., J. Geom. Phys. 144, 190--198 (2019; Zbl 1439.35540) Full Text: DOI OpenURL
Kass, Nicholas J.; Rammaha, Mohammad A. On wave equations of the \(p\)-Laplacian type with supercritical nonlinearities. (English) Zbl 1428.35234 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 183, 70-101 (2019). MSC: 35L72 35L05 35L20 58J45 PDF BibTeX XML Cite \textit{N. J. Kass} and \textit{M. A. Rammaha}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 183, 70--101 (2019; Zbl 1428.35234) Full Text: DOI arXiv OpenURL
Dang, Jian; Hu, Qingying; Zhang, Hongwei Global nonexistence for a nonlinear viscoelastic equation with nonlinear damping and velocity-dependent material density. (English) Zbl 1415.35179 J. Funct. Spaces 2019, Article ID 8306790, 7 p. (2019). MSC: 35L35 35L77 35B44 74D10 35R09 PDF BibTeX XML Cite \textit{J. Dang} et al., J. Funct. Spaces 2019, Article ID 8306790, 7 p. (2019; Zbl 1415.35179) Full Text: DOI OpenURL
Jang, Hyun Chul Asymptotically hyperbolic 3-metric with Ricci flow foliation. (English) Zbl 1407.53077 Ann. Henri Poincaré 20, No. 3, 797-811 (2019). Reviewer: Akira Asada (Takarazuka) MSC: 53C50 83C20 35K59 PDF BibTeX XML Cite \textit{H. C. Jang}, Ann. Henri Poincaré 20, No. 3, 797--811 (2019; Zbl 1407.53077) Full Text: DOI arXiv OpenURL
Liu, Chein-Shan; Qiu, Lin; Wang, Fajie Nonlinear wave inverse source problem solved by a method of \(m\)-order homogenization functions. (English) Zbl 1406.35485 Appl. Math. Lett. 91, 90-96 (2019). MSC: 35R30 35L20 35L72 PDF BibTeX XML Cite \textit{C.-S. Liu} et al., Appl. Math. Lett. 91, 90--96 (2019; Zbl 1406.35485) Full Text: DOI OpenURL
Novruzov, Emil; Yazar, Betul On blow-up criteria for a class of nonlinear dispersive wave equations with dissipation. (English) Zbl 1406.35067 Monatsh. Math. 188, No. 1, 163-181 (2019). MSC: 35B44 37K10 74K10 35L77 35L30 PDF BibTeX XML Cite \textit{E. Novruzov} and \textit{B. Yazar}, Monatsh. Math. 188, No. 1, 163--181 (2019; Zbl 1406.35067) Full Text: DOI OpenURL
Li, Ze; Zhao, Lifeng Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. (English) Zbl 1405.58008 Discrete Contin. Dyn. Syst. 39, No. 1, 607-638 (2019). MSC: 58J35 35K59 PDF BibTeX XML Cite \textit{Z. Li} and \textit{L. Zhao}, Discrete Contin. Dyn. Syst. 39, No. 1, 607--638 (2019; Zbl 1405.58008) Full Text: DOI arXiv OpenURL
Mohanty, R. K.; Khurana, Gunjan A new fast algorithm based on half-step discretization for 3D quasilinear hyperbolic partial differential equations. (English) Zbl 1404.65099 Int. J. Comput. Methods 16, No. 1, Article ID 1850090, 34 p. (2019). MSC: 65M06 65M12 35L20 35L15 PDF BibTeX XML Cite \textit{R. K. Mohanty} and \textit{G. Khurana}, Int. J. Comput. Methods 16, No. 1, Article ID 1850090, 34 p. (2019; Zbl 1404.65099) Full Text: DOI OpenURL
Kang, Yong Han; Park, Jong Yeoul; Kim, Daewook A global nonexistence of solutions for a quasilinear viscoelastic wave equation with acoustic boundary conditions. (English) Zbl 07509595 Bound. Value Probl. 2018, Paper No. 139, 19 p. (2018). MSC: 35L70 35B40 76Exx PDF BibTeX XML Cite \textit{Y. H. Kang} et al., Bound. Value Probl. 2018, Paper No. 139, 19 p. (2018; Zbl 07509595) Full Text: DOI OpenURL
Messaoudi, Salim A.; Al-Smail, Jamal H.; Talahmeh, Ala A. Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. (English) Zbl 1442.35268 Comput. Math. Appl. 76, No. 8, 1863-1875 (2018). MSC: 35L72 35B40 35L20 PDF BibTeX XML Cite \textit{S. A. Messaoudi} et al., Comput. Math. Appl. 76, No. 8, 1863--1875 (2018; Zbl 1442.35268) Full Text: DOI OpenURL
Zhuravlev, Viktor M. Multidimensional nonlinear Klein-Gordon equations and rivertons. (English. Russian original) Zbl 1428.35549 Theor. Math. Phys. 197, No. 3, 1701-1713 (2018); translation from Teor. Mat. Fiz. 197, No. 3, 356-370 (2018). MSC: 35Q55 81Q05 81R20 35L72 35J05 35F50 PDF BibTeX XML Cite \textit{V. M. Zhuravlev}, Theor. Math. Phys. 197, No. 3, 1701--1713 (2018; Zbl 1428.35549); translation from Teor. Mat. Fiz. 197, No. 3, 356--370 (2018) Full Text: DOI OpenURL
Kim, Sangil; Park, Jong-Yeoul; Kang, Yong Han Stochastic quasilinear viscoelastic wave equation with degenerate damping and source terms. (English) Zbl 1420.35399 Comput. Math. Appl. 75, No. 11, 3987-3994 (2018). MSC: 35Q74 35B44 35L35 35R60 74D05 35A01 PDF BibTeX XML Cite \textit{S. Kim} et al., Comput. Math. Appl. 75, No. 11, 3987--3994 (2018; Zbl 1420.35399) Full Text: DOI OpenURL
Li, Tatsien; Wang, Yue Exact boundary controllability on a planar tree-like network of vibrating strings with dynamical boundary conditions. (English) Zbl 1424.35241 J. Math. Study 51, No. 3, 227-252 (2018). MSC: 35L05 35L72 93B05 PDF BibTeX XML Cite \textit{T. Li} and \textit{Y. Wang}, J. Math. Study 51, No. 3, 227--252 (2018; Zbl 1424.35241) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Thalhammer, Mechthild Fundamental models in nonlinear acoustics. I: Analytical comparison. (English) Zbl 1421.35226 Math. Models Methods Appl. Sci. 28, No. 12, 2403-2455 (2018). MSC: 35L72 35L77 76Q05 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{M. Thalhammer}, Math. Models Methods Appl. Sci. 28, No. 12, 2403--2455 (2018; Zbl 1421.35226) Full Text: DOI arXiv OpenURL
Oussaeif, Taki-Eddine; Bouziani, Abdelfatah Solvability of nonlinear Goursat type problem for hyperbolic equation with integral condition. (English) Zbl 1424.35255 Khayyam J. Math. 4, No. 2, 198-213 (2018). MSC: 35L72 35L20 35D30 35B45 35A01 35A02 PDF BibTeX XML Cite \textit{T.-E. Oussaeif} and \textit{A. Bouziani}, Khayyam J. Math. 4, No. 2, 198--213 (2018; Zbl 1424.35255) Full Text: DOI OpenURL
Zhang, Yanfang; Tong, Lining Existence and uniqueness of BV solution for a quasilinear hyperbolic equation with nonnegative nonlinear source. (Chinese. English summary) Zbl 1424.35256 Commun. Appl. Math. Comput. 32, No. 2, 343-364 (2018). MSC: 35L72 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{L. Tong}, Commun. Appl. Math. Comput. 32, No. 2, 343--364 (2018; Zbl 1424.35256) Full Text: DOI OpenURL
Liu, Yingbo Small data solutions of 3-D quasilinear wave equations. (Chinese. English summary) Zbl 1424.35242 Chin. Ann. Math., Ser. A 39, No. 2, 127-144 (2018). MSC: 35L05 35L72 PDF BibTeX XML Cite \textit{Y. Liu}, Chin. Ann. Math., Ser. A 39, No. 2, 127--144 (2018; Zbl 1424.35242) Full Text: DOI OpenURL
Lindblad, Hans; Tohaneanu, Mihai Global existence for quasilinear wave equations close to Schwarzschild. (English) Zbl 1411.35209 Commun. Partial Differ. Equations 43, No. 6, 893-944 (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35L72 35L15 35B40 35Q75 PDF BibTeX XML Cite \textit{H. Lindblad} and \textit{M. Tohaneanu}, Commun. Partial Differ. Equations 43, No. 6, 893--944 (2018; Zbl 1411.35209) Full Text: DOI arXiv OpenURL
Kuznetsov, Ivan Kinetic and entropy solutions of quasilinear impulsive hyperbolic equations. (English) Zbl 1405.35113 Math. Model. Nat. Phenom. 13, No. 2, Paper No. 20, 7 p. (2018). MSC: 35L65 35L50 35L60 PDF BibTeX XML Cite \textit{I. Kuznetsov}, Math. Model. Nat. Phenom. 13, No. 2, Paper No. 20, 7 p. (2018; Zbl 1405.35113) Full Text: DOI OpenURL
Kim, Sangil; Park, Jong-Yeoul; Kang, Yong Han Stochastic quasilinear viscoelastic wave equation with nonlinear damping and source terms. (English) Zbl 1403.60055 Bound. Value Probl. 2018, Paper No. 14, 15 p. (2018). MSC: 60H15 35L05 35L70 PDF BibTeX XML Cite \textit{S. Kim} et al., Bound. Value Probl. 2018, Paper No. 14, 15 p. (2018; Zbl 1403.60055) Full Text: DOI OpenURL
Nakao, Mitsuhiro Global existence to the initial-boundary value problem for a system of nonlinear diffusion and wave equations. II. (English) Zbl 1403.35143 Kyushu J. Math. 72, No. 2, 287-306 (2018). MSC: 35K92 35L71 35M13 35M30 PDF BibTeX XML Cite \textit{M. Nakao}, Kyushu J. Math. 72, No. 2, 287--306 (2018; Zbl 1403.35143) Full Text: DOI OpenURL
Bortot, C. A.; Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Piccione, P. Exponential asymptotic stability for the Klein Gordon equation on non-compact Riemannian manifolds. (English) Zbl 1404.58039 Appl. Math. Optim. 78, No. 2, 219-265 (2018). MSC: 58J45 35B30 35R01 35C20 35B40 35L72 PDF BibTeX XML Cite \textit{C. A. Bortot} et al., Appl. Math. Optim. 78, No. 2, 219--265 (2018; Zbl 1404.58039) Full Text: DOI OpenURL
Szeftel, Jérémie Parametrix for wave equations on a rough background. III: Space-time regularity of the phase. (English) Zbl 1444.35010 Astérisque 401. Paris: Société Mathématique de France (SMF) (ISBN 978-2-85629-882-4/pbk). viii, 322 p. (2018). MSC: 35-02 35Q76 58J45 35A17 35B65 35L72 83C05 PDF BibTeX XML Cite \textit{J. Szeftel}, Parametrix for wave equations on a rough background. III: Space-time regularity of the phase. Paris: Société Mathématique de France (SMF) (2018; Zbl 1444.35010) Full Text: arXiv OpenURL
Riečanová, I.; Handlovičová, A. Study of the numerical solution to the wave equation. (English) Zbl 1424.65147 Acta Math. Univ. Comen., New Ser. 87, No. 2, 317-332 (2018). MSC: 65M08 65M12 35L72 PDF BibTeX XML Cite \textit{I. Riečanová} and \textit{A. Handlovičová}, Acta Math. Univ. Comen., New Ser. 87, No. 2, 317--332 (2018; Zbl 1424.65147) OpenURL
Kass, Nicholas J.; Rammaha, Mohammad A. Local and global existence of solutions to a strongly damped wave equation of the \(p\)-Laplacian type. (English) Zbl 1394.35263 Commun. Pure Appl. Anal. 17, No. 4, 1449-1478 (2018). MSC: 35L05 35L20 35L72 58J45 PDF BibTeX XML Cite \textit{N. J. Kass} and \textit{M. A. Rammaha}, Commun. Pure Appl. Anal. 17, No. 4, 1449--1478 (2018; Zbl 1394.35263) Full Text: DOI arXiv OpenURL
Speck, Jared Shock formation for 2\(D\) quasilinear wave systems featuring multiple speeds: blowup for the fastest wave, with non-trivial interactions up to the singularity. (English) Zbl 1400.35182 Ann. PDE 4, No. 1, Paper No. 6, 131 p. (2018). Reviewer: Dongbing Zha (Shanghai) MSC: 35L67 35L52 35L72 PDF BibTeX XML Cite \textit{J. Speck}, Ann. PDE 4, No. 1, Paper No. 6, 131 p. (2018; Zbl 1400.35182) Full Text: DOI arXiv OpenURL
Álvarez-Caudevilla, Pablo; Evans, Jonathan D.; Galaktionov, Victor A. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. (English) Zbl 1403.35058 Discrete Contin. Dyn. Syst. 38, No. 8, 3913-3938 (2018). MSC: 35B44 41A60 35C20 35G20 35C06 35L77 PDF BibTeX XML Cite \textit{P. Álvarez-Caudevilla} et al., Discrete Contin. Dyn. Syst. 38, No. 8, 3913--3938 (2018; Zbl 1403.35058) Full Text: DOI OpenURL
Peyravi, Amir; Tahamtani, Faramarz Upper and lower bounds of blowup time to a strongly damped wave equation of Kirchhoff type with memory term and nonlinear dissipations. (English) Zbl 1400.35039 Mediterr. J. Math. 15, No. 3, Paper No. 117, 16 p. (2018). MSC: 35B44 35L20 45K05 35L72 74D10 PDF BibTeX XML Cite \textit{A. Peyravi} and \textit{F. Tahamtani}, Mediterr. J. Math. 15, No. 3, Paper No. 117, 16 p. (2018; Zbl 1400.35039) Full Text: DOI OpenURL
Ghisi, Marina; Gobbino, Massimo; Haraux, Alain An infinite dimensional Duffing-like evolution equation with linear dissipation and an asymptotically small source term. (English) Zbl 1394.35291 Nonlinear Anal., Real World Appl. 43, 167-191 (2018). MSC: 35L90 35L77 35B40 74K10 PDF BibTeX XML Cite \textit{M. Ghisi} et al., Nonlinear Anal., Real World Appl. 43, 167--191 (2018; Zbl 1394.35291) Full Text: DOI arXiv OpenURL
Liu, Yingbo; Witt, Ingo Small data solutions of 2-D quasilinear wave equations under null conditions. (English) Zbl 1399.35258 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 1, 125-150 (2018). MSC: 35L05 35L72 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{I. Witt}, Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 1, 125--150 (2018; Zbl 1399.35258) Full Text: DOI OpenURL
Cheng, Bin; Qu, Peng; Xie, Chunjing Singularity formation and global existence of classical solutions for one-dimensional rotating shallow water system. (English) Zbl 1392.35221 SIAM J. Math. Anal. 50, No. 3, 2486-2508 (2018). MSC: 35Q35 35L40 35L67 35L72 35Q86 76U05 35A09 86A05 PDF BibTeX XML Cite \textit{B. Cheng} et al., SIAM J. Math. Anal. 50, No. 3, 2486--2508 (2018; Zbl 1392.35221) Full Text: DOI arXiv OpenURL