Chajda, Ivan; Hošková, Šárka A characterization of cone preserving mappings of quasiordered sets. (English) Zbl 1095.08001 Miskolc Math. Notes 6, No. 2, 147-152 (2005). Summary: A cone of a quasiordered set \((A,Q)\) is any \(U_Q(a)=\{x\in A : \langle a,x\rangle \in Q\}\). A mapping \(f: A\to B\) is a cone preserving mapping of \((A,Q)\) into \((B,Q')\) if \(f(U_Q(a))=U_{Q'}(f(a))\) for each \(a\in A\). We characterize these mappings by using certain relational inclusions. The result can be applied for the construction of a quotient quasiorder hypergroup. Cited in 2 Documents MSC: 08A02 Relational systems, laws of composition 08A30 Subalgebras, congruence relations 20N20 Hypergroups Keywords:quasiorder; quasiorder hypergroup; factorization of quasiordered set; quotient hypergroup PDF BibTeX XML Cite \textit{I. Chajda} and \textit{Š. Hošková}, Miskolc Math. Notes 6, No. 2, 147--152 (2005; Zbl 1095.08001)