×

Analysis of HIV models with two time delays. (English) Zbl 1447.92390

Summary: Time delays can affect the dynamics of HIV infection predicted by mathematical models. In this paper, we studied two mathematical models each with two time delays. In the first model with HIV latency, one delay is the time between viral entry into a cell and the establishment of HIV latency, and the other delay is the time between cell infection and viral production. We defined the basic reproductive number and showed the local and global stability of the steady states. Numerical simulations were performed to evaluate the influence of time delays on the dynamics. In the second model with HIV immune response, one delay is the time between cell infection and viral production, and the other delay is the time needed for the adaptive immune response to emerge to control viral replication. With two positive delays, we obtained the stability crossing curves for the model, which were shown to be a series of open-ended curves.

MSC:

92D30 Epidemiology
34K20 Stability theory of functional-differential equations
34D23 Global stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Adimy, F. Crauste, and S. Ruan, Periodic oscillations in leukopoiesis models with two delays, J. Theoret. Biol. 242 (2006), pp. 288-299. doi: 10.1016/j.jtbi.2006.02.020[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[2] N.M. Archin, N.K. Vaidya, J.D. Kuruc, A.L. Liberty, A. Wiegand, M.F. Kearney, M.S. Cohen, J.M. Coffin, R.J. Bosch, C.L. Gay, J.J. Eron, D.M. Margolis, and A.S. Perelson, Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection, Proc. Natl. Acad. Sci. USA 109 (2012), pp. 9523-9528. doi: 10.1073/pnas.1120248109[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[3] H.T. Banks, D.M. Bortz, and S.E. Holte, Incorporation of variability into the modeling of viral delays in HIV infection dynamics, Math. Biosci. 183 (2003), pp. 63-91. doi: 10.1016/S0025-5564(02)00218-3[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1011.92037
[4] J.N. Blankson, D. Persaud, and R.F. Siliciano, The challenge of viral reservoirs in HIV-1 infection, Annu. Rev. Med. 53 (2002), pp. 557-593. doi: 10.1146/annurev.med.53.082901.104024[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[5] M. Bofill, G. Janossy, C.A. Lee, D. MacDonald-Burns, A.N. Phillips, C. Sabin, A. Timms, M.A. Johnson, and P.B. Kernoff, Laboratory control values for CD4 and CD8 T lymphocytes: Implications for HIV-1 diagnosis, Clin. Exp. Immunol. 88 (1992), pp. 243-252. doi: 10.1111/j.1365-2249.1992.tb03068.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[6] N. Chomont, M. El-Far, P. Ancuta, L. Trautmann, F.A. Procopio, B. Yassine-Diab, G. Boucher, M.-R. Boulassel, G. Ghattas, J.M. Brenchley, T.W. Schacker, B.J. Hill, D.C. Douek, J.-P. Routy, E.K. Haddad, and R.-P. Sékaly, HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat. Med. 15 (2009), pp. 893-900. doi: 10.1038/nm.1972[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[7] T. -W. Chun, L. Stuyver, S.B. Mizell, L.A. Ehler, J.A.M. Mican, M. Baseler, A.L. Lloyd, M.A. Nowak, and A.S. Fauci, Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy, Proc. Natl. Acad. Sci. USA 94 (1997), pp. 13193-13197. doi: 10.1073/pnas.94.24.13193[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[8] M.S. Ciupe, B.L. Bivort, D.M. Bortz, and P.W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci. 200 (2006), pp. 1-27. doi: 10.1016/j.mbs.2005.12.006[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1086.92022
[9] K.L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol. 35 (1996), pp. 240-260. doi: 10.1007/s002850050051[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0865.92019
[10] S.M. Crowe, J.B. Carlin, K.I. Stewart, C.R. Lucas, and J.F. Hoy, Predictive value of CD4 lymphocyte numbers for the development of opportunistic infections and malignancies in HIV-infected persons, J. Acquir. Immune Defic. Syndr. 4 (1991), pp. 770-776. [PubMed], [Web of Science ®], [Google Scholar]
[11] R.V. Culshaw, S. Ruan, and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol. 46 (2003), pp. 425-444. doi: 10.1007/s00285-002-0191-5[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1023.92011
[12] N.M. Dixit and A.S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: Influence of pharmacokinetics and intracellular delay, J. Theoret. Biol. 226 (2004), pp. 95-109. doi: 10.1016/j.jtbi.2003.09.002[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1439.92108
[13] D. Finzi, M. Hermankova, T. Pierson, L.M. Carruth, C. Buck, R.E. Chaisson, T.C. Quinn, K. Chadwick, J. Margolick, R. Brookmeyer, J. Gallant, M. Markowitz, D.D. Ho, D.D. Richman, and R.F. Siliciano, Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy, Science 278 (1997), pp. 1295-1300. doi: 10.1126/science.278.5341.1295[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[14] J. Forde, J.M. Volpe, and S.M. Ciupe, Latently infected cell activation: A way to reduce the size of the HIV reservoir? Bull. Math. Biol. 74 (2012), pp. 1651-1672. doi: 10.1007/s11538-012-9729-x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1251.92020
[15] Z. Grossman, M. Polis, M.B. Feinberg, Z. Grossman, I. Levi, S. Jankelevich, R. Yarchoan, J. Boon, F. de Wolf, J.M.A. Lange, J. Goudsmit, D.S. Dimitrov, and W.E. Paul, Ongoing HIV dissemination during HAART, Nat. Med. 5 (1999), pp. 1099-1104. doi: 10.1038/13410[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[16] K. Gu, S. -I. Niculescu, and J. Chen, On stability crossing curves for general systems with two delays, J. Math. Anal. Appl. 311 (2005), pp. 231-253. doi: 10.1016/j.jmaa.2005.02.034[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1087.34052
[17] J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993. [Crossref], [Google Scholar] · Zbl 0787.34002
[18] A.V. Herz, S. Bonhoeffer, R.M. Anderson, R.M. May, and M.A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA. 93 (1996), pp. 7247-7251. doi: 10.1073/pnas.93.14.7247[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[19] J. Li and Y. Kuang, Analysis of a model of the glucose-insulin regulatory system with two delays, SIAM J. Appl. Math. 67 (2007), pp. 757-776. doi: 10.1137/050634001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1115.92015
[20] B. Li and S. Liu, A delayed HIV-1 model with multiple target cells and general nonlinear incidence rate, J. Biol. Syst. 21 (2013). doi: 10.1142/S0218339013400123. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1342.92249
[21] D. Li and W. Ma, Asymptotic properties of a HIV-1 infection model with time delay, J. Math. Anal. Appl. 335 (2007), pp. 683-691. doi: 10.1016/j.jmaa.2007.02.006[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1130.34052
[22] M.Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol. 72 (2010), pp. 1492-1505. doi: 10.1007/s11538-010-9503-x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1198.92034
[23] M.Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math. 70 (2010), pp. 2434-2448. doi: 10.1137/090779322[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1209.92037
[24] J. Li, Y. Kuang, and C.C. Mason, Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two time delays, J. Theoret. Biol. 242 (2006), pp. 722-735. doi: 10.1016/j.jtbi.2006.04.002[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[25] S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Math. Biosci. Eng. 7 (2010), pp. 675-685. doi: 10.3934/mbe.2010.7.675[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1260.92065
[26] M. Markowitz, M. Louie, A. Hurley, E. Sun, M. Di Mascio, A.S. Perelson, and D.D. Ho, A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo, J. Virol. 77 (2003), pp. 5037-5038. doi: 10.1128/JVI.77.8.5037-5038.2003[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[27] J.E. Mittler, B. Sulzer, A.U. Neumann, and A.S. Perelson, Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. Biosci. 152 (1998), pp. 143-163. doi: 10.1016/S0025-5564(98)10027-5[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0946.92011
[28] P.W. Nelson and A.S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci. 179 (2002), pp. 73-94. doi: 10.1016/S0025-5564(02)00099-8[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0992.92035
[29] P.W. Nelson, J.D. Murray, and A.S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci. 163 (2000), pp. 201-215. doi: 10.1016/S0025-5564(99)00055-3[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0942.92017
[30] S. -I. Niculescu, P. Kim, K. Gu, P. Lee, and D. Levy, Stability crossing boundaries of delay systems modeling immune dynamics in leukemia, Discrete Contin. Dyn. Syst. Ser. B 13 (2009), pp. 129-156. doi: 10.3934/dcdsb.2010.13.129[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1195.34128
[31] M.A. Nowak and R.M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000. [Google Scholar] · Zbl 1101.92028
[32] S. Pankavich, The effects of latent infection on the dynamics of HIV, Differential Equations Dynam. Systems (2015). doi: 10.1007/s12591-014-0234-6. [Crossref], [Web of Science ®], [Google Scholar]
[33] K.A. Pawelek, S. Liu, F. Pahlevani, and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci. 235 (2012), pp. 98-109. doi: 10.1016/j.mbs.2011.11.002[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1241.92042
[34] A.S. Perelson, Modelling viral and immune system dynamics, Nat. Rev. Immunol. 2 (2002), pp. 28-36. doi: 10.1038/nri700[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[35] A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41 (1999), pp. 3-44. doi: 10.1137/S0036144598335107[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1078.92502
[36] A.S. Perelson and R.M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biol. 11 (2013), pp. 1-10. doi: 10.1186/1741-7007-11-96[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[37] A.S. Perelson, D.E. Kirschner, and R.J. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci. 114 (1993), pp. 81-125. doi: 10.1016/0025-5564(93)90043-A[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0796.92016
[38] A.S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz, and D.D. Ho, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature 387 (1997), pp. 188-191. doi: 10.1038/387188a0[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[39] B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J.E. Mittler, M. Markowitz, J.P. Moore, A.S. Perelson, and D.D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet 354 (1999), pp. 1782-1785. doi: 10.1016/S0140-6736(99)02035-8[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[40] B. Ramratnam, R. Ribeiro, T. He, C. Chung, V. Simon, J. Vanderhoeven, A. Hurley, L. Zhang, A.S. Perelson, D.D. Ho, and M. Markowitz, Intensification of antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and decreases, but does not eliminate, ongoing virus replication, J. Acquir. Immune Defic. Syndr. 35 (2004), pp. 33-37. doi: 10.1097/00126334-200401010-00004[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[41] L. Rong and A.S. Perelson, Modeling Latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol. 5 (2009), p. e1000533. doi: 10.1371/journal.pcbi.1000533[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[42] L. Rong and A.S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci. 217 (2009), pp. 77-87. doi: 10.1016/j.mbs.2008.10.006[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1158.92028
[43] L. Rong and A.S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theoret. Biol. 260 (2009), pp. 308-331. doi: 10.1016/j.jtbi.2009.06.011[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1402.92409
[44] L. Rong, Z. Feng, and A.S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol. 69 (2007), pp. 2027-2060. doi: 10.1007/s11538-007-9203-3[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1298.92053
[45] L. Rong, Z. Feng, and A.S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math. 67 (2007), pp. 731-756. doi: 10.1137/060663945[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1121.92043
[46] S. Ruan and J. Wei, Periodic solutions of planar systems with two delays, Proc. R. Soc. Edinb. Ser. A 129 (1999), pp. 1017-1032. doi: 10.1017/S0308210500031061[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0946.34062
[47] S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. 10 (2003), pp. 863-874. [Web of Science ®], [Google Scholar] · Zbl 1068.34072
[48] D. Sanchez-Taltavull and T. Alarcon, Stochastic modelling of viral blips in HIV-1-infected patients: Effects of inhomogeneous density fluctuations, J. Theoret. Biol. 371 (2015), pp. 79-89. doi: 10.1016/j.jtbi.2015.02.001[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1339.92042
[49] X. Song, S. Wang, and J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl. 373 (2011), pp. 345-355. doi: 10.1016/j.jmaa.2010.04.010[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1208.34128
[50] S. Wang and L. Rong, Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy, J. Theoret. Biol. 360 (2014), pp. 137-148. doi: 10.1016/j.jtbi.2014.06.042[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1343.92285
[51] S. Wang, X. Song, and Z. Ge, Dynamics analysis of a delayed viral infection model with immune impairment, Appl. Math. Model. 35 (2011), pp. 4877-4885. doi: 10.1016/j.apm.2011.03.043[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1228.34085
[52] X. Wang, Y. Tao, and X. Song, A delayed HIV-1 infection model with Beddington-DeAngelis functional response, Nonlinear Dyn. 62 (2010), pp. 67-72. doi: 10.1007/s11071-010-9699-1[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1209.34102
[53] X. Wang, S. Liu, and L. Rong, Permanence and extinction of a non-autonomous HIV-1 model with time delays, Discrete Contin. Dyn. Syst. Ser. B 19 (2014), pp. 1783-1800. doi: 10.3934/dcdsb.2014.19.1783[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1311.34168
[54] Y. Wang, Y. Zhou, J. Wu, and J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model, Math. Biosci. 219 (2009), pp. 104-112. doi: 10.1016/j.mbs.2009.03.003[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1168.92031
[55] D. Wodarz, Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology, Springer, New York, 2007. [Crossref], [Google Scholar] · Zbl 1125.92032
[56] J.K. Wong, M. Hezareh, H.F. Günthard, D.V. Havlir, C.C. Ignacio, C.A. Spina, and D.D. Richman, Recovery of replication-competent HIV despite prolonged suppression of plasma viremia, Science 278 (1997), pp. 1291-1295. doi: 10.1126/science.278.5341.1291[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[57] H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B 12 (2009), pp. 511-524. doi: 10.3934/dcdsb.2009.12.511[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1169.92033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.