Vijayasankar, A.; Kumar, Sharadha; Gopalan, M. A. On non-homogeneous quinary quintic equation \((x^4-y^4)=125(z^2-w^2)p^3\). (English) Zbl 1499.11168 South East Asian J. Math. Math. Sci. 18, No. 1, 27-34 (2022). MSC: 11D41 PDF BibTeX XML Cite \textit{A. Vijayasankar} et al., South East Asian J. Math. Math. Sci. 18, No. 1, 27--34 (2022; Zbl 1499.11168) Full Text: Link
Choudhry, Ajai; Wróblewski, Jarosław Triads of integers with equal sums of squares and equal products and a related multigrade chain. (English) Zbl 1428.11055 Acta Arith. 178, No. 1, 87-100 (2017). MSC: 11D09 11D25 11D41 PDF BibTeX XML Cite \textit{A. Choudhry} and \textit{J. Wróblewski}, Acta Arith. 178, No. 1, 87--100 (2017; Zbl 1428.11055) Full Text: DOI
Gawron, Maciej; Ulas, Maciej On primitive integer solutions of the Diophantine equation \(t^2 = G(x, y, z)\) and related results. (English) Zbl 1372.11044 J. Number Theory 159, 101-122 (2016). MSC: 11D41 11D72 PDF BibTeX XML Cite \textit{M. Gawron} and \textit{M. Ulas}, J. Number Theory 159, 101--122 (2016; Zbl 1372.11044) Full Text: DOI arXiv
Izadi, Farzali; Shamsi Zargar, Arman On integer solutions of \(A^5 + B^3 = C^5 + D^3\). (English) Zbl 1366.11063 Notes Number Theory Discrete Math. 20, No. 5, 20-24 (2014). MSC: 11D41 11G05 PDF BibTeX XML Cite \textit{F. Izadi} and \textit{A. Shamsi Zargar}, Notes Number Theory Discrete Math. 20, No. 5, 20--24 (2014; Zbl 1366.11063) Full Text: Link
Choudhry, Ajai; Wróblewski, Jarosław A quintic Diophantine equation with applications to two Diophantine systems concerning fifth powers. (English) Zbl 1345.11023 Rocky Mt. J. Math. 43, No. 6, 1893-1899 (2013). MSC: 11D41 11D72 PDF BibTeX XML Cite \textit{A. Choudhry} and \textit{J. Wróblewski}, Rocky Mt. J. Math. 43, No. 6, 1893--1899 (2013; Zbl 1345.11023) Full Text: DOI Euclid
Ulas, Maciej Rational points on certain quintic hypersurfaces. (English) Zbl 1233.11035 Acta Arith. 138, No. 4, 347-356 (2009). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11D41 11D72 11G35 14G05 PDF BibTeX XML Cite \textit{M. Ulas}, Acta Arith. 138, No. 4, 347--356 (2009; Zbl 1233.11035) Full Text: DOI arXiv
Choudry, Ajai The system of simultaneous equations \(\sum^3_{i=1} x^k_i=\sum^3_{i=1} y^k_i\), \(k=1, 2\) and \(5\) has no non-trivial solutions in integers. (English) Zbl 1132.11320 Math. Stud. 70, No. 1-4, 85-88 (2001). MSC: 11D41 11D72 11D09 PDF BibTeX XML Cite \textit{A. Choudry}, Math. Stud. 70, No. 1--4, 85--88 (2001; Zbl 1132.11320)
Choudhry, Ajai On the solvability of quintic and sextic Diophantine equations of the type \(f(x,y)=f(u,v)\). (English) Zbl 1032.11010 J. Number Theory 88, No. 2, 225-240 (2001). Reviewer: Edward L.Cohen (Ottawa) MSC: 11D41 11D25 PDF BibTeX XML Cite \textit{A. Choudhry}, J. Number Theory 88, No. 2, 225--240 (2001; Zbl 1032.11010) Full Text: DOI
Choudhry, Ajai A Diophantine equation involving fifth powers. (English) Zbl 0977.11013 Enseign. Math., II. Sér. 44, No. 1-2, 53-55 (1998). Reviewer: Edward L.Cohen (Ottawa) MSC: 11D41 PDF BibTeX XML Cite \textit{A. Choudhry}, Enseign. Math. (2) 44, No. 1--2, 53--55 (1998; Zbl 0977.11013)
Heuberger, Clemens On a family of quintic Thue equations. (English) Zbl 0915.11017 J. Symb. Comput. 26, No. 2, 173-185 (1998). Reviewer: G.Lettl (Graz) MSC: 11D41 11Y50 68W30 11J86 PDF BibTeX XML Cite \textit{C. Heuberger}, J. Symb. Comput. 26, No. 2, 173--185 (1998; Zbl 0915.11017) Full Text: DOI Link
Choudhry, Ajai The diophantine equation \(X_1^5+X_2^5+2X_3^5=Y_1^5+Y_2^5+2Y_3^5\). (English) Zbl 0897.11008 Ganita 48, No. 2, 115-116 (1997). MSC: 11D41 11D72 PDF BibTeX XML Cite \textit{A. Choudhry}, Gaṇita 48, No. 2, 115--116 (1997; Zbl 0897.11008)
Choudhry, Ajai On equal sums of fifth powers. (English) Zbl 0899.11014 Indian J. Pure Appl. Math. 28, No. 11, 1443-1450 (1997). Reviewer: E.L.Cohen (Ottawa) MSC: 11D41 11D72 PDF BibTeX XML Cite \textit{A. Choudhry}, Indian J. Pure Appl. Math. 28, No. 11, 1443--1450 (1997; Zbl 0899.11014)
Prasolov, Viktor; Solovyev, Yuri Elliptic functions and elliptic integrals. Transl. from the orig. Russian manuscript by D. Leites. (English) Zbl 0946.11001 Translations of Mathematical Monographs. 170. Providence, RI: American Mathematical Society (AMS). x, 185 p. (1997). Reviewer: Werner Kleinert (Berlin) MSC: 11-01 14-01 33-01 11G05 14H52 33E05 PDF BibTeX XML Cite \textit{V. Prasolov} and \textit{Y. Solovyev}, Elliptic functions and elliptic integrals. Transl. from the orig. Russian manuscript by D. Leites. Providence, RI: American Mathematical Society (1997; Zbl 0946.11001)
Mignotte, Maurice; de Weger, Benjamin M. M. On the diophantine equations \(x^ 2+ 74= y^ 5\) and \(x^ 2+ 86= y^ 5\). (English) Zbl 0847.11011 Glasg. Math. J. 38, No. 1, 77-85 (1996). Reviewer: N.Tzanakis (Iraklion) MSC: 11D41 PDF BibTeX XML Cite \textit{M. Mignotte} and \textit{B. M. M. de Weger}, Glasg. Math. J. 38, No. 1, 77--85 (1996; Zbl 0847.11011) Full Text: DOI
Terjanian, Guy Sur une question de V. A. Lebesgue. (On a question of V. A. Lebesgue). (French) Zbl 0616.10013 Ann. Inst. Fourier 37, No. 3, 19-37 (1987). MSC: 11D41 11D25 PDF BibTeX XML Cite \textit{G. Terjanian}, Ann. Inst. Fourier 37, No. 3, 19--37 (1987; Zbl 0616.10013) Full Text: DOI Numdam EuDML
Baica, Malvina Diophantine equations and identities. (English) Zbl 0587.10008 Int. J. Math. Math. Sci. 8, 755-777 (1985). Reviewer: A.Pethö MSC: 11D25 11D41 11B37 11R27 11A63 PDF BibTeX XML Cite \textit{M. Baica}, Int. J. Math. Math. Sci. 8, 755--777 (1985; Zbl 0587.10008) Full Text: DOI EuDML
Estes, D.; Guralnick, R.; Schacher, M.; Straus, E. Equations in prime powers. (English) Zbl 0581.20009 Pac. J. Math. 118, 359-367 (1985). Reviewer: B.Richter MSC: 20D05 20D20 11D41 20D40 PDF BibTeX XML Cite \textit{D. Estes} et al., Pac. J. Math. 118, 359--367 (1985; Zbl 0581.20009) Full Text: DOI
Cook, R. J. Pairs of additive equations. III: Quintic equations. (English) Zbl 0497.10036 Proc. Edinb. Math. Soc., II. Ser. 26, 191-211 (1983). MSC: 11P55 11D72 11D41 PDF BibTeX XML Cite \textit{R. J. Cook}, Proc. Edinb. Math. Soc., II. Ser. 26, 191--211 (1983; Zbl 0497.10036) Full Text: DOI
Hayashi, H. S. The number of solutions of certain quintic congruences. (English) Zbl 0151.03403 Duke Math. J. 33, 747-756 (1966). Reviewer: A. Schinzel MSC: 11D79 11D41 PDF BibTeX XML Cite \textit{H. S. Hayashi}, Duke Math. J. 33, 747--756 (1966; Zbl 0151.03403) Full Text: DOI
Nagell, Trygve Sur l’équation \(x^5 + y^5 = z^5\). (French) Zbl 0088.03702 Ark. Mat. 3, 511-514 (1958). Reviewer: E. S. Selmer MSC: 11D41 PDF BibTeX XML Cite \textit{T. Nagell}, Ark. Mat. 3, 511--514 (1958; Zbl 0088.03702)
Häggmark, Per On a class of quintic Diophantine equations in two unknowns. (Diss.). (English) Zbl 0048.27401 Uppsala: Almqvist & Wiksells Boktryckeri AB. 91 p. (1952). Reviewer: W. Ljunggren MSC: 11D41 PDF BibTeX XML
Xiroudakis, G.; Fassoulakis, K. Über den großen Fermatschen Satz. (Greek) Zbl 0025.25101 Bull. Soc. Math. Grèce 20, 57-65 (1940). Reviewer: Erich Bessel-Hagen (Bonn) MSC: 11D25 11D41 PDF BibTeX XML Cite \textit{G. Xiroudakis} and \textit{K. Fassoulakis}, Bull. Soc. Math. Grèce 20, 57--65 (1940; Zbl 0025.25101)
Bell, E. T. Representations in certain pure forms of degrees higher than the second. (English) Zbl 0017.10301 Am. J. Math. 59, 585-598 (1937). Reviewer: D. B. Lehmer MSC: 11D85 11D25 11D41 11E76 PDF BibTeX XML Cite \textit{E. T. Bell}, Am. J. Math. 59, 585--598 (1937; Zbl 0017.10301) Full Text: DOI
Nagel, T. Sur l’impossibilité de l’équation indéterminée \[ \frac{x^5-y^5}{x-y} =5z^2. \]. (Norwegian) JFM 47.0121.01 Norsk Mat. Tidsskr. 2, 51-57 (1920). Reviewer: Neder, Prof. (Tübingen) MSC: 11D41 PDF BibTeX XML Cite \textit{T. Nagel}, Norsk Mat. Tidsskr. 2, 51--57 (1920; JFM 47.0121.01)
Werebrüssow, A. S. On the equation \(x^5+y^5=A z^5\). (Über die Gleichung \(x^5+y^5=A z^5\).) (Russian) JFM 36.0277.04 Mosk. Math. Samml. 25, 466-473 (1905). Reviewer: Sintzow, Prof. (Charkow) MSC: 11D41 PDF BibTeX XML