×

Found 1,452 Documents (Results 1–100)

100
MathJax

The Fargues-Fontaine curve and \(p\)-adic Hodge theory. (English) Zbl 07619877

Banerjee, Debargha (ed.) et al., Perfectoid spaces. Selected papers based on the presentations at the conference, Bengaluru, India, September 9–20, 2019. Singapore: Springer. Infosys Sci. Found. Ser., 245-347 (2022).
PDF BibTeX XML Cite
Full Text: DOI

An introduction to \(p\)-adic Hodge theory. (English) Zbl 07619875

Banerjee, Debargha (ed.) et al., Perfectoid spaces. Selected papers based on the presentations at the conference, Bengaluru, India, September 9–20, 2019. Singapore: Springer. Infosys Sci. Found. Ser., 69-219 (2022).
PDF BibTeX XML Cite
Full Text: DOI

Hopf algebras and Galois module theory. (English) Zbl 1489.16001

Mathematical Surveys and Monographs 260. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6516-2/pbk; 978-1-4704-6737-1/ebook). vii, 311 p. (2021).
PDF BibTeX XML Cite
Full Text: DOI

Extensions of valuations to the Henselization and completion of a local ring. (English) Zbl 1460.14008

Gładki, Paweł (ed.) et al., Algebra, logic and number theory. Proceedings of the 5th joint conferences, Będlewo, Poland, June 24–29, 2018. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Cent. Publ. 121, 37-43 (2020).
PDF BibTeX XML Cite
Full Text: DOI

Examples of character varieties in characteristic \(p\) and ramification. (English) Zbl 1475.57009

Collin, Olivier (ed.) et al., Characters in low-dimensional topology. A conference celebrating the work of Steven Boyer, Université du Québec à Montréal, Montréal, Québec, Canada, June 2–6, 2018. Providence, RI: American Mathematical Society (AMS); Montreal: Centre de Recherches Mathématiques (CRM). Contemp. Math. 760, 229-261 (2020).
MSC:  57K10 20C99 57M50
PDF BibTeX XML Cite
Full Text: DOI arXiv

Calculations in the generalized Lubin-Tate theory. (English. Russian original) Zbl 1471.11286

Vestn. St. Petersbg. Univ., Math. 53, No. 2, 131-135 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 2, 210-216 (2020).
MSC:  11S31 11S15 11S20
PDF BibTeX XML Cite
Full Text: DOI

Comparison of classifications of two-dimensional local type II fields. (English. Russian original) Zbl 1464.11124

Vestn. St. Petersbg. Univ., Math. 53, No. 4, 412-423 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 607-621 (2020).
MSC:  11S15 12J25
PDF BibTeX XML Cite
Full Text: DOI

Degree of irregularity and regular formal modules in local fields. (English. Russian original) Zbl 1462.11110

Vestn. St. Petersbg. Univ., Math. 53, No. 4, 398-403 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 588-596 (2020).
MSC:  11S31 11S15
PDF BibTeX XML Cite
Full Text: DOI

Arithmetic aspects of orbifold pairs. (English) Zbl 1458.11117

Nicole, Marc-Hubert (ed.), Arithmetic geometry of logarithmic pairs and hyperbolicity of moduli spaces. Hyperbolicity in Montréal. Based on three workshops, Montréal, Canada, 2018–2019. Cham: Springer. CRM Short Courses, 69-133 (2020).
PDF BibTeX XML Cite
Full Text: DOI

Introductory course on \(\ell\)-adic sheaves and their ramification theory on curves. (English) Zbl 1455.11156

Ebrahimi-Fard, K. (ed.) et al., Amplitudes, Hodge theory and ramification. From periods and motives to Feynman amplitudes. Lectures presented at the Clay Mathematics Institute 2014 summer school, “Periods and Motives: Feynman amplitudes in the 21st century”, Madrid, Spain, June 30 – July 25, 2014. Providence, RI: American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute. Clay Math. Proc. 21, 103-229 (2020).
PDF BibTeX XML Cite
Full Text: arXiv

Feynman integrals in mathematics and physics. (English) Zbl 1448.81325

Ebrahimi-Fard, K. (ed.) et al., Amplitudes, Hodge theory and ramification. From periods and motives to Feynman amplitudes. Lectures presented at the Clay Mathematics Institute 2014 summer school, “Periods and Motives: Feynman amplitudes in the 21st century”, Madrid, Spain, June 30 – July 25, 2014. Providence, RI: American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute. Clay Math. Proc. 21, 1-34 (2020).
PDF BibTeX XML Cite
Full Text: arXiv

Foreword. (English) Zbl 1452.14004

Ebrahimi-Fard, K. (ed.) et al., Amplitudes, Hodge theory and ramification. From periods and motives to Feynman amplitudes. Lectures presented at the Clay Mathematics Institute 2014 summer school, “Periods and Motives: Feynman amplitudes in the 21st century”, Madrid, Spain, June 30 – July 25, 2014. Providence, RI: American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute. Clay Math. Proc. 21, xi-xiv (2020).
MSC:  14C15 11S15
PDF BibTeX XML Cite

Amplitudes, Hodge theory and ramification. From periods and motives to Feynman amplitudes. Lectures presented at the Clay Mathematics Institute 2014 summer school, “Periods and Motives: Feynman amplitudes in the 21st century”, Madrid, Spain, June 30 – July 25, 2014. (English) Zbl 1446.81001

Clay Mathematics Proceedings 21. Providence, RI: American Mathematical Society (AMS); Cambridge, MA: Clay Mathematics Institute (ISBN 978-1-4704-4329-0/pbk). xiv, 229 p. (2020).
PDF BibTeX XML Cite

Filter Results by …

Document Type

Database

Reviewing State

all top 5

Author

all top 5

Serial

all top 5

Year of Publication

all top 3

Classification

all top 3

Software