×

The transmission process: a combinatorial stochastic process for the evolution of transmission trees over networks. (English) Zbl 1348.92160

Summary: We derive a combinatorial stochastic process for the evolution of the transmission tree over the infected vertices of a host contact network in a susceptible-infected (SI) model of an epidemic. Models of transmission trees are crucial to understanding the evolution of pathogen populations. We provide an explicit description of the transmission process on the product state space of (rooted planar ranked labelled) binary transmission trees and labelled host contact networks with SI-tags as a discrete-state continuous-time Markov chain. We give the exact probability of any transmission tree when the host contact network is a complete, star or path network – three illustrative examples. We then develop a biparametric Beta-splitting model that directly generates transmission trees with exact probabilities as a function of the model parameters, but without explicitly modelling the underlying contact network, and show that for specific values of the parameters we can recover the exact probabilities for our three example networks through the Markov chain construction that explicitly models the underlying contact network. We use the maximum likelihood estimator (MLE) to consistently infer the two parameters driving the transmission process based on observations of the transmission trees and use the exact MLE to characterize equivalence classes over the space of contact networks with a single initial infection. An exploratory simulation study of the MLEs from transmission trees sampled from three other deterministic and four random families of classical contact networks is conducted to shed light on the relation between the MLEs of these families with some implications for statistical inference along with pointers to further extensions of our models. The insights developed here are also applicable to the simplest models of “meme” evolution in online social media networks through transmission events that can be distilled from observable actions such as “likes”, “mentions”, “retweets” and “+1s” along with any concomitant comments.

MSC:

92D30 Epidemiology
05C90 Applications of graph theory
05C05 Trees
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
91D30 Social networks; opinion dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Aldous, D. J., Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today, Stat. Sci., 16, 1, 23-34 (2001) · Zbl 1127.60313
[3] Aldous, D., Interacting particle systems as stochastic social dynamics, bernoulli, Bernoulli, 19, 4, 1122-1149 (2013) · Zbl 1278.60141
[5] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[6] Bollobás, B., Random Graphs (2001), Cambridge University Press: Cambridge University Press Cambridge, UK, (Cambridge Books Online) · Zbl 0979.05003
[7] Britton, T.; O’Neill, P., Bayesian inference for stochastic epidemics in populations with random social structure, Scand. J. Stat., 29, 3, 375-390 (2002) · Zbl 1036.62017
[9] Colless, D. H., Review of phylogeneticsthe theory and practice of phylogenetic systematics, Syst. Zool., 31, 100-104 (1982)
[10] Dawkins, R., The Selfish Gene (1976), Oxford University Press: Oxford University Press Oxford, UK
[12] Erdős, P.; Rényi, A., On random graphs. I, Publ. Math. Debr., 6, 290-297 (1959) · Zbl 0092.15705
[13] Flajolet, P.; Sedgewick, R., Analytic Combinatorics (2009), Cambridge University Press: Cambridge University Press New York, NY, USA · Zbl 1165.05001
[15] Frost, S. D.; Pybus, O. G.; Gog, J. R.; Viboud, C.; Bonhoeffer, S.; Bedford, T., Eight challenges in phylodynamic inference, Epidemics, 10, 88-92 (2015), (Challenges in Modelling Infectious Disease Dynamics)
[16] Gilbert, E. N., Random graphs, Ann. Math. Stat., 30, 4, 1141-1144 (1959) · Zbl 0168.40801
[17] Grenfell, B. T.; Pybus, O. G.; Gog, J. R.; Wood, J. L.; Daly, J. M.; Mumford, J. A.; Holmes, E. C., Unifying the epidemiological and evolutionary dynamics of pathogens, Science, 303, 5656, 327-332 (2004)
[18] Groendyke, C.; Welch, D.; Hunter, D. R., Bayesian inference for contact networks given epidemic data, Scand. J. Stat., 38, 3, 600-616 (2011) · Zbl 1246.62207
[19] Groendyke, C.; Welch, D.; Hunter, D. R., A network-based analysis of the 1861 hagelloch measles data, Biometrics, 68, 3, 755-765 (2012) · Zbl 1270.62136
[20] Haydon, D. T.; Chase-Topping, M.; Shaw, D. J.; Matthews, L.; Friar, J. K.; Wilesmith, J.; Woolhouse, M. E.J., The construction and analysis of epidemic trees with reference to the 2001 uk foot-and-mouth outbreak, Proc. R. Soc. Lond. B: Biol. Sci., 270, 1511, 121-127 (2003)
[22] Holme, P., Modern temporal network theorya \(colloquium^⁎\), Eur. Phys. J. B, 88, 9, 234 (2015)
[24] Hudson, R., Gene genealogies and the coalescent process, Oxford Surv. Evol. Biol., 7, 1-44 (1990)
[26] Kingman, J. F.C., The coalescent, Stoch. Process. Appl., 13, 235-248 (1982) · Zbl 0491.60076
[27] Leigh Brown, A. J.; Lycett, S. J.; Weinert, L.; Hughes, G. J.; Fearnhill, E.; Dunn, D. T., Transmission network parameters estimated from hiv sequences for a nationwide epidemic, J. Infect. Dis., 204, 9, 1463-1469 (2011)
[28] Leventhal, G. E.; Kouyos, R.; Stadler, T.; von Wyl, V.; Yerly, S.; Böni, J.; Cellerai, C.; Klimkait, T.; Günthard, H. F.; Bonhoeffer, S., Inferring epidemic contact structure from phylogenetic trees, PLoS Comput. Biol., 8, 3, e1002413 (2012)
[29] Lloyd-Smith, J. O.; Schreiber, S. J.; Kopp, P. E.; Getz, W., Superspreading and the effect of individual variation on disease emergence, Nature, 438, 7066, 355-359 (2005)
[30] Ludwig, D., Final size distribution for epidemics, Math. Biosci., 23, 1, 33-46 (1975) · Zbl 0318.92025
[31] McKenzie, A.; Steel, M., Distribution of cherries for two models of trees, Math. Biosci., 164, 81-92 (2000) · Zbl 0947.92021
[32] Notohara, M., The coalescent and the genealogical process in geographically structured population, J. Math. Biol., 29, 1, 59-75 (1990) · Zbl 0726.92014
[33] O’Dea, E. B.; Wilke, C. O., Contact heterogeneity and phylodynamicshow contact networks shape parasite evolutionary trees, Interdiscip. Perspect. Infect. Dis. (2011)
[34] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Mod. Phys., 87, 925-979 (2015)
[35] Pellis, L.; Ferguson, N. M.; Fraser, C., The relationship between real-time and discrete-generation models of epidemic spread, Math. Biosci., 216, 1, 63-70 (2008) · Zbl 1151.92029
[36] Rasmussen, D. A.; Volz, E. M.; Koelle, K., Phylodynamic inference for structured epidemiological models, PLoS Comput. Biol., 10, 4, e1003570 (2014)
[38] Romero-Severson, E.; Skar, H.; Bulla, I.; Albert, J.; Leitner, T., Timing and order of transmission events is not directly reflected in a pathogen phylogeny, Mol. Biol. Evol., 31, 9, 2472-2482 (2014)
[39] Sackin, M. J., “Good” and “bad” phenograms, Syst. Zool., 21, 225-226 (1975)
[42] Sainudiin, R.; Stadler, T.; Véber, A., Finding the best resolution for the Kingman-Tajima coalescenttheory and applications, J. Math. Biol., 70, 6, 1207-1247 (2015) · Zbl 1342.92144
[45] Steger, A.; Wormald, N. C., Generating random regular graphs quickly, Combin. Probab. Comput., 8, 4, 377-396 (1999) · Zbl 0935.05082
[46] Vaughan, T. G.; Kühnert, D.; Popinga, A.; Welch, D.; Drummond, A. J., Efficient Bayesian inference under the structured coalescent, Bioinformatics, 30, 16, 2272-2279 (2014)
[47] Wallinga, J.; Teunis, P., Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, Am. J. Epidemiol., 160, 509-516 (2004)
[48] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 6684, 409-410 (1998)
[49] Welch, D., Is network clustering detectable in transmission trees?, Viruses, 3, 6, 659-676 (2011)
[50] Ypma, R. J.F.; van Ballegooijen, W. M.; Wallinga, J., Relating phylogenetic trees to transmission trees of infectious disease outbreaks, Genetics, 195, 3, 1055-1062 (2013)
[51] Yule, G. U., A mathematical theory of evolutionbased on the conclusions of Dr. J.C. Willis, Philos. Trans. R. Soc. Lond. Ser. B, 213, 21-87 (1924)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.