Khaliq, Abdul; Hassan, Sk. Sarif Analytical solution of a rational difference equation. (English) Zbl 07528832 Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 181-202 (2022). MSC: 34C99 39A10 39A11 39A99 PDF BibTeX XML Cite \textit{A. Khaliq} and \textit{Sk. S. Hassan}, Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 181--202 (2022; Zbl 07528832) Full Text: DOI OpenURL
Vabishchevich, Petr N. Factorized schemes for first and second order evolution equations with fractional powers of operators. (English) Zbl 07516755 Comput. Methods Appl. Math. 22, No. 2, 493-510 (2022). MSC: 65-XX 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Methods Appl. Math. 22, No. 2, 493--510 (2022; Zbl 07516755) Full Text: DOI OpenURL
Wang, Zheng; Huang, Zhi Gang On transcendental directions of entire solutions of linear differential equations. (English) Zbl 07512897 AIMS Math. 7, No. 1, 276-287 (2022). MSC: 34M10 30D35 37F10 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Z. G. Huang}, AIMS Math. 7, No. 1, 276--287 (2022; Zbl 07512897) Full Text: DOI OpenURL
Li, Xian-yi; Li, Wei Global asymptotical stability in a rational difference equation. (English) Zbl 1474.39049 Appl. Math., Ser. B (Engl. Ed.) 36, No. 1, 51-59 (2021). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{X.-y. Li} and \textit{W. Li}, Appl. Math., Ser. B (Engl. Ed.) 36, No. 1, 51--59 (2021; Zbl 1474.39049) Full Text: DOI OpenURL
Ishizaki, Katsuya; Korhonen, Risto; Li, Nan; Tohge, Kazuya A Stothers-Mason theorem with a difference radical. (English) Zbl 1473.30019 Math. Z. 298, No. 1-2, 671-696 (2021). Reviewer: Indrajit Lahiri (Kalyani) MSC: 30D35 30C10 39A10 PDF BibTeX XML Cite \textit{K. Ishizaki} et al., Math. Z. 298, No. 1--2, 671--696 (2021; Zbl 1473.30019) Full Text: DOI arXiv OpenURL
Vabishchevich, Petr N. Splitting schemes for non-stationary problems with a rational approximation for fractional powers of the operator. (English) Zbl 1475.65082 Appl. Numer. Math. 165, 414-430 (2021). MSC: 65M06 41A20 26A33 35R11 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Appl. Numer. Math. 165, 414--430 (2021; Zbl 1475.65082) Full Text: DOI arXiv OpenURL
Oğul, Burak; Simşek, Dağıstan; Ibrahim, Tarek F. Solution of rational difference equation. (English) Zbl 1456.39001 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 125-141 (2021). MSC: 39A10 39A30 PDF BibTeX XML Cite \textit{B. Oğul} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 125--141 (2021; Zbl 1456.39001) Full Text: Link OpenURL
Gordin, Vladimir A.; Shemendyuk, Aleksandr A. Discrete transparent boundary conditions for the equation of rod transverse vibrations. (English) Zbl 1481.74258 Appl. Math. Modelling 88, 550-572 (2020). MSC: 74H45 74K10 PDF BibTeX XML Cite \textit{V. A. Gordin} and \textit{A. A. Shemendyuk}, Appl. Math. Modelling 88, 550--572 (2020; Zbl 1481.74258) Full Text: DOI arXiv OpenURL
Kostrov, Yevgeniy; Kudlak, Zachary On a second-order rational difference equation with quadratic terms. II. (English) Zbl 1472.39028 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 279-296 (2020). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{Y. Kostrov} and \textit{Z. Kudlak}, Springer Proc. Math. Stat. 341, 279--296 (2020; Zbl 1472.39028) Full Text: DOI OpenURL
Bektešević, Jasmin; Destović, Fatih; Hadžiabdić, Vahidin; Mehuljić, Midhat The global dynamics of a quartic difference equation. (English) Zbl 07388431 Math. Montisnigri 47, 43-51 (2020). MSC: 39A45 39A30 39A23 37F10 PDF BibTeX XML Cite \textit{J. Bektešević} et al., Math. Montisnigri 47, 43--51 (2020; Zbl 07388431) Full Text: DOI OpenURL
Klevchuk, I. I. Investigation of difference equations with a rational right-hand sides. (Ukrainian. English summary) Zbl 1474.39046 Bukovyn. Mat. Zh. 8, No. 2, 71-82 (2020). MSC: 39A28 PDF BibTeX XML Cite \textit{I. I. Klevchuk}, Bukovyn. Mat. Zh. 8, No. 2, 71--82 (2020; Zbl 1474.39046) Full Text: DOI OpenURL
Gubbiotti, Giorgio; Joshi, Nalini; Tran, Dinh Thi; Viallet, Claude-Michel Complexity and integrability in 4D bi-rational maps with two invariants. (English) Zbl 1464.37067 Nijhoff, Frank (ed.) et al., Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9–13, 2018. Cham: Springer. Springer Proc. Math. Stat. 338, 17-36 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 37J70 39A36 14E05 PDF BibTeX XML Cite \textit{G. Gubbiotti} et al., Springer Proc. Math. Stat. 338, 17--36 (2020; Zbl 1464.37067) Full Text: DOI arXiv OpenURL
Georgiev, Svetlin G. Asymptotic behaviour of the solutions of a class of \((k+1)\)-order rational difference equations. (English) Zbl 1474.39025 Sarajevo J. Math. 16(29), No. 2, 237-244 (2020). MSC: 39A22 39A20 PDF BibTeX XML Cite \textit{S. G. Georgiev}, Sarajevo J. Math. 16(29), No. 2, 237--244 (2020; Zbl 1474.39025) Full Text: DOI OpenURL
Sun, Ting; Wang, Jilu; Zheng, Chunxiong Fast evaluation of artificial boundary conditions for advection diffusion equations. (English) Zbl 1455.65141 SIAM J. Numer. Anal. 58, No. 6, 3530-3557 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N30 65M12 65N15 65D30 65Y20 44A10 PDF BibTeX XML Cite \textit{T. Sun} et al., SIAM J. Numer. Anal. 58, No. 6, 3530--3557 (2020; Zbl 1455.65141) Full Text: DOI OpenURL
Huang, Xiao-Min; Wong, R. Uniform asymptotics and zeros of the associated Pollaczek polynomials. (English) Zbl 1462.33003 Stud. Appl. Math. 145, No. 4, 625-646 (2020). Reviewer: Alexei Lukashov (Saratov) MSC: 33C45 26C10 30C10 PDF BibTeX XML Cite \textit{X.-M. Huang} and \textit{R. Wong}, Stud. Appl. Math. 145, No. 4, 625--646 (2020; Zbl 1462.33003) Full Text: DOI OpenURL
Doliwa, Adam; Kashaev, Rinat M. Non-commutative birational maps satisfying Zamolodchikov equation, and Desargues lattices. (English) Zbl 1470.37097 J. Math. Phys. 61, No. 9, 092704, 23 p. (2020). Reviewer: Marzia Mazzotta (Lecce) MSC: 37K60 39A36 14E05 16T25 81R12 PDF BibTeX XML Cite \textit{A. Doliwa} and \textit{R. M. Kashaev}, J. Math. Phys. 61, No. 9, 092704, 23 p. (2020; Zbl 1470.37097) Full Text: DOI arXiv OpenURL
Peng, Chang-Wen; Huang, Hua-Wei The growth of meromorphic solutions for \(q\)-difference Painlevé IV equation. (English) Zbl 1450.30048 J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020). MSC: 30D30 34M05 PDF BibTeX XML Cite \textit{C.-W. Peng} and \textit{H.-W. Huang}, J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020; Zbl 1450.30048) Full Text: DOI OpenURL
Vo, Thieu N.; Zhang, Yi Rational solutions of first-order algebraic ordinary difference equations. (English) Zbl 1436.39001 Adv. Appl. Math. 117, Article ID 102018, 28 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 39A05 39A22 14H05 14H45 PDF BibTeX XML Cite \textit{T. N. Vo} and \textit{Y. Zhang}, Adv. Appl. Math. 117, Article ID 102018, 28 p. (2020; Zbl 1436.39001) Full Text: DOI arXiv OpenURL
Sarumi, Ibrahim O.; Furati, Khaled M.; Khaliq, Abdul Q. M. Highly accurate global Padé approximations of generalized Mittag-Leffler function and its inverse. (English) Zbl 1440.65100 J. Sci. Comput. 82, No. 2, Paper No. 46, 27 p. (2020). MSC: 65M06 33E12 41A21 35C20 26A33 35R11 74F10 74K20 35Q74 PDF BibTeX XML Cite \textit{I. O. Sarumi} et al., J. Sci. Comput. 82, No. 2, Paper No. 46, 27 p. (2020; Zbl 1440.65100) Full Text: DOI arXiv OpenURL
Xu, Hong Yan; Tu, Jin Existence of rational solutions for \(q\)-difference Painlevé equations. (English) Zbl 1437.39001 Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020). Reviewer: Jacques Sauloy (Toulouse) MSC: 39A13 39A12 30D35 34M55 37J65 PDF BibTeX XML Cite \textit{H. Y. Xu} and \textit{J. Tu}, Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020; Zbl 1437.39001) Full Text: Link OpenURL
El-Metwally, Hamdy A.; Elabbasy, E.; Al-Kaff, M. On the dynamics of some recursive sequences. (English) Zbl 1480.39007 J. Fract. Calc. Appl. 10, No. 2, 176-190 (2019). MSC: 39A22 39A20 39A30 PDF BibTeX XML Cite \textit{H. A. El-Metwally} et al., J. Fract. Calc. Appl. 10, No. 2, 176--190 (2019; Zbl 1480.39007) Full Text: Link OpenURL
Folly-Gbetoula, Mensah; Mnguni, Nkosingiphile; Kara, A. H. A group theory approach towards some rational difference equations. (English) Zbl 1454.39003 J. Math. 2019, Article ID 1505619, 9 p. (2019). Reviewer: Josef Diblík (Brno) MSC: 39A05 39A13 39A22 70G65 PDF BibTeX XML Cite \textit{M. Folly-Gbetoula} et al., J. Math. 2019, Article ID 1505619, 9 p. (2019; Zbl 1454.39003) Full Text: DOI arXiv OpenURL
Harizanov, Stanislav; Lazarov, Raytcho; Margenov, Svetozar; Marinov, Pencho; Pasciak, Joseph Comparison analysis of two numerical methods for fractional diffusion problems based on the best rational approximations of \(t^\gamma\) on \([0, 1]\). (English) Zbl 1429.65064 Apel, Thomas (ed.) et al., Advanced finite element methods with applications. Selected papers from the 30th Chemnitz finite element symposium, St. Wolfgang/Strobl, Austria, September 25–27, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 128, 165-185 (2019). MSC: 65F10 65F15 65D32 35R11 65N30 65N06 65K10 41A20 15A18 35J05 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Lect. Notes Comput. Sci. Eng. 128, 165--185 (2019; Zbl 1429.65064) Full Text: DOI arXiv OpenURL
Wang, Qiong; Long, Fang; Wang, Jun Some results on difference Riccati equations and delay differential equations. (Chinese. English summary) Zbl 1449.30049 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 832-838 (2019). MSC: 30D05 30D35 34M05 39B32 PDF BibTeX XML Cite \textit{Q. Wang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 832--838 (2019; Zbl 1449.30049) OpenURL
Arar, Nouria Rational approximation of the head equation in unbounded domain. ([Rational approximation of the heat equation in unbounded domain].) (English) Zbl 1438.65281 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 9-20 (2019). MSC: 65N30 35A35 35K20 PDF BibTeX XML Cite \textit{N. Arar}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 9--20 (2019; Zbl 1438.65281) Full Text: DOI OpenURL
Zahra, W. K.; Elkholy, S. M.; Fahmy, M. Rational spline-nonstandard finite difference scheme for the solution of time-fractional Swift-Hohenberg equation. (English) Zbl 1429.65205 Appl. Math. Comput. 343, 372-387 (2019). MSC: 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{W. K. Zahra} et al., Appl. Math. Comput. 343, 372--387 (2019; Zbl 1429.65205) Full Text: DOI OpenURL
Kojima, Kentaro; Sato, Tsukasa; Takemura, Kouichi Polynomial solutions of \(q\)-Heun equation and ultradiscrete limit. (English) Zbl 1420.39006 J. Difference Equ. Appl. 25, No. 5, 647-664 (2019). Reviewer: P. K. Banerji (Jodhpur) MSC: 39A13 33C05 33C45 33D15 33D60 30C15 PDF BibTeX XML Cite \textit{K. Kojima} et al., J. Difference Equ. Appl. 25, No. 5, 647--664 (2019; Zbl 1420.39006) Full Text: DOI arXiv OpenURL
Simşek, Dağıstan; Oğul, Burak; Imashkyzy, Meerim Solution of a rational difference equation. (English) Zbl 1411.39005 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 197-207 (2019). MSC: 39A10 PDF BibTeX XML Cite \textit{D. Simşek} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 197--207 (2019; Zbl 1411.39005) Full Text: Link OpenURL
Zhao, Song-lin; Zhang, Da-jun Rational solutions to \(Q3_{\delta}\) in the Adler-Bobenko-Suris list and degenerations. (English) Zbl 1417.37242 J. Nonlinear Math. Phys. 26, No. 1, 107-132 (2019). MSC: 37K10 39A14 35Q51 35Q53 PDF BibTeX XML Cite \textit{S.-l. Zhao} and \textit{D.-j. Zhang}, J. Nonlinear Math. Phys. 26, No. 1, 107--132 (2019; Zbl 1417.37242) Full Text: DOI OpenURL
Boonklurb, Ratinan; Neammai, Julaluk; Sukkrasanti, Vasana; Tantasuparuk, Theeruth Necessary and sufficient conditions for existence of an equilibrium and a periodic of prime period 2 solution of a certain rational difference equation. (English) Zbl 1465.39005 Chamchuri J. Math. 10, 1-13 (2018). MSC: 39A23 39A30 PDF BibTeX XML Cite \textit{R. Boonklurb} et al., Chamchuri J. Math. 10, 1--13 (2018; Zbl 1465.39005) Full Text: Link OpenURL
Nam, Young Woo Hyers-Ulam stability of elliptic Möbius difference equation. (English) Zbl 1438.39024 Cogent Math. Stat. 5, Article ID 1492338, 9 p. (2018). MSC: 39A30 39A45 PDF BibTeX XML Cite \textit{Y. W. Nam}, Cogent Math. Stat. 5, Article ID 1492338, 9 p. (2018; Zbl 1438.39024) Full Text: DOI arXiv OpenURL
Shareef, A.; Aloqeili, M. Neimark-Sacker bifurcation of a fourth order difference equation. (English) Zbl 1394.39014 Math. Methods Appl. Sci. 41, No. 13, 5190-5202 (2018). MSC: 39A28 39A30 PDF BibTeX XML Cite \textit{A. Shareef} and \textit{M. Aloqeili}, Math. Methods Appl. Sci. 41, No. 13, 5190--5202 (2018; Zbl 1394.39014) Full Text: DOI OpenURL
Din, Qamar; Elsadany, A. A.; Ibrahim, Samia Bifurcation analysis and chaos control in a second-order rational difference equation. (English) Zbl 1401.39014 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 53-68 (2018). MSC: 39A28 39A30 39A33 65Q10 PDF BibTeX XML Cite \textit{Q. Din} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 53--68 (2018; Zbl 1401.39014) Full Text: DOI OpenURL
Abo-Zeid, R. Forbidden sets and stability in some rational difference equations. (English) Zbl 1404.39013 J. Difference Equ. Appl. 24, No. 2, 220-239 (2018). Reviewer: Yuming Chen (Waterloo) MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, J. Difference Equ. Appl. 24, No. 2, 220--239 (2018; Zbl 1404.39013) Full Text: DOI OpenURL
Simsek, Dagistan; Ogul, Burak; Abdullayev, Fahreddin Solutions of the rational difference equations \(x_{n + 1} = \frac{x_{n - 11}}{1 + x_{n - 2} x_{n - 5} x_{n - 8}} \). (English) Zbl 07489762 Kal’menov, Tynysbek (ed.) et al., International conference ‘Functional analysis in interdisciplinary applications’, FAIA2017, Astana, Kazakhstan, October 2–5, 2017. Proceedings. Melville, NY: American Institute of Physics (AIP). AIP Conf. Proc. 1880, 040003, 8 p. (2017). MSC: 39A20 PDF BibTeX XML Cite \textit{D. Simsek} et al., AIP Conf. Proc. 1880, 040003, 8 p. (2017; Zbl 07489762) Full Text: DOI OpenURL
Bugajev, Andrej; Čiegis, Raimondas; Kriauzienė, Rima; Leonavičienė, Teresė; Žilinskas, Julius On the accuracy of some absorbing boundary conditions for the Schrödinger equation. (English) Zbl 07440358 Math. Model. Anal. 22, No. 3, 408-423 (2017). MSC: 65M06 41A20 65N06 35Q41 PDF BibTeX XML Cite \textit{A. Bugajev} et al., Math. Model. Anal. 22, No. 3, 408--423 (2017; Zbl 07440358) Full Text: DOI OpenURL
Bajo, Ignacio Invariants for certain discrete dynamical systems given by rational mappings. (English) Zbl 1392.39007 Qual. Theory Dyn. Syst. 16, No. 3, 467-490 (2017). MSC: 39A20 37F10 37C05 PDF BibTeX XML Cite \textit{I. Bajo}, Qual. Theory Dyn. Syst. 16, No. 3, 467--490 (2017; Zbl 1392.39007) Full Text: DOI OpenURL
Gümüş, Mehmet; Abo-Zeid, Raafat; Öcalan, Özkan Dynamical behavior of a third-order difference equation with arbitrary powers. (English) Zbl 1384.39007 Kyungpook Math. J. 57, No. 2, 251-263 (2017). Reviewer: Ioannis Dassios (Thrakomakedones) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{M. Gümüş} et al., Kyungpook Math. J. 57, No. 2, 251--263 (2017; Zbl 1384.39007) Full Text: DOI OpenURL
Quan, Weizhen; Pan, Miaoqiao; Li, Xiaopei Periodicities of a system of difference equations. (English) Zbl 1381.39017 J. Funct. Spaces 2017, Article ID 2095805, 4 p. (2017). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{W. Quan} et al., J. Funct. Spaces 2017, Article ID 2095805, 4 p. (2017; Zbl 1381.39017) Full Text: DOI OpenURL
Moaaz, Osama Comment on “New method to obtain periodic solutions of period two and three of a rational difference equation”. (English) Zbl 1375.39035 Nonlinear Dyn. 88, No. 2, 1043-1049 (2017). MSC: 39A23 PDF BibTeX XML Cite \textit{O. Moaaz}, Nonlinear Dyn. 88, No. 2, 1043--1049 (2017; Zbl 1375.39035) Full Text: DOI OpenURL
Saleh, M.; Farhat, Aseel Global asymptotic stability of the higher order equation \(x_{n+1} = \frac{ax_{n}+bx_{n-k}}{A+Bx_{n-k}}\). (English) Zbl 1378.39009 J. Appl. Math. Comput. 55, No. 1-2, 135-148 (2017). Reviewer: Miloš Čanak (Beograd) MSC: 39A30 39A20 39A23 PDF BibTeX XML Cite \textit{M. Saleh} and \textit{A. Farhat}, J. Appl. Math. Comput. 55, No. 1--2, 135--148 (2017; Zbl 1378.39009) Full Text: DOI OpenURL
Arreche, Carlos E. Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation. (English) Zbl 1384.65091 Commun. Contemp. Math. 19, No. 6, Article ID 1650056, 42 p. (2017). Reviewer: Antonio Linero Bas (Murcia) MSC: 65Q10 39A10 39A06 12H10 12H05 20H20 65L80 PDF BibTeX XML Cite \textit{C. E. Arreche}, Commun. Contemp. Math. 19, No. 6, Article ID 1650056, 42 p. (2017; Zbl 1384.65091) Full Text: DOI arXiv OpenURL
Yu, P. X.; Tian, Z. F.; Zhang, Hongjie A rational high-order compact difference method for the steady-state stream function-vorticity formulation of the Navier-Stokes equations. (English) Zbl 1370.76109 Comput. Math. Appl. 73, No. 7, 1461-1484 (2017). MSC: 76M20 76D05 65N06 PDF BibTeX XML Cite \textit{P. X. Yu} et al., Comput. Math. Appl. 73, No. 7, 1461--1484 (2017; Zbl 1370.76109) Full Text: DOI OpenURL
Tollu, Durhasan T.; Yazlik, Yasin; Taskara, Necati Global behavior of solutions for a difference equation of third order. (English) Zbl 1369.39010 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 24, No. 4, 299-307 (2017). MSC: 39A23 11B39 39A10 PDF BibTeX XML Cite \textit{D. T. Tollu} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 24, No. 4, 299--307 (2017; Zbl 1369.39010) Full Text: Link OpenURL
Han, Caihong; Li, Lve The periodic character of a class of difference equation. (English) Zbl 1377.39002 J. Difference Equ. Appl. 23, No. 1-2, 291-296 (2017). Reviewer: Pavel Rehak (Brno) MSC: 39A10 39A23 39A22 39A20 PDF BibTeX XML Cite \textit{C. Han} and \textit{L. Li}, J. Difference Equ. Appl. 23, No. 1--2, 291--296 (2017; Zbl 1377.39002) Full Text: DOI OpenURL
Yakovleva, T. I. Well-posedness of the Cauchy problem for multidimensional difference equations in rational cones. (English. Russian original) Zbl 1369.39008 Sib. Math. J. 58, No. 2, 363-372 (2017); translation from Sib. Mat. Zh. 58, No. 2, 468-480 (2017). Reviewer: Thanin Sitthiwirattham (Bangkok) MSC: 39A12 39A10 39A30 34A12 PDF BibTeX XML Cite \textit{T. I. Yakovleva}, Sib. Math. J. 58, No. 2, 363--372 (2017; Zbl 1369.39008); translation from Sib. Mat. Zh. 58, No. 2, 468--480 (2017) Full Text: DOI OpenURL
Roques, Julien On the reduction modulo \(p\) of Mahler equations. (English) Zbl 1375.39003 Tohoku Math. J. (2) 69, No. 1, 55-65 (2017). Reviewer: Miloš Čanak (Beograd) MSC: 39A06 12H10 65Q20 39A45 39A13 PDF BibTeX XML Cite \textit{J. Roques}, Tohoku Math. J. (2) 69, No. 1, 55--65 (2017; Zbl 1375.39003) Full Text: DOI Euclid OpenURL
Simsek, Dağıstan; Abdullayev, Fahreddin On the recursive sequence \( {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}} \). (English) Zbl 1365.39008 J. Math. Sci., New York 222, No. 6, 762-771 (2017) and Ukr. Mat. Visn. 13, No. 3, 376-387 (2016). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{D. Simsek} and \textit{F. Abdullayev}, J. Math. Sci., New York 222, No. 6, 762--771 (2017; Zbl 1365.39008) Full Text: DOI OpenURL
Dekkar, Imane; Touafek, Nouressadat; Yazlik, Yasin Global stability of a third-order nonlinear system of difference equations with period-two coefficients. (English) Zbl 1370.39007 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 2, 325-347 (2017). Reviewer: Yuming Chen (Waterloo) MSC: 39A30 39A21 39A22 39A23 39A20 PDF BibTeX XML Cite \textit{I. Dekkar} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 2, 325--347 (2017; Zbl 1370.39007) Full Text: DOI OpenURL
Ramani, A.; Grammaticos, B. Singularity analysis for difference Painlevé equations associated with the affine Weyl group \(E_8\). (English) Zbl 1359.39005 J. Phys. A, Math. Theor. 50, No. 5, Article ID 055204, 18 p. (2017). MSC: 39A12 34M55 39A20 PDF BibTeX XML Cite \textit{A. Ramani} and \textit{B. Grammaticos}, J. Phys. A, Math. Theor. 50, No. 5, Article ID 055204, 18 p. (2017; Zbl 1359.39005) Full Text: DOI OpenURL
El-Dessoky, Mohamed M. On the difference equation \(x_{n+1}=ax_{n-1}+bx_{n-k}+\frac{cx_{n-s}}{dx_{n-s}-e}\). (English) Zbl 1372.39014 Math. Methods Appl. Sci. 40, No. 3, 535-545 (2017). Reviewer: Fei Xue (Hartford) MSC: 39A20 39A23 39A30 39A22 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, Math. Methods Appl. Sci. 40, No. 3, 535--545 (2017; Zbl 1372.39014) Full Text: DOI OpenURL
Khatibzadeh, Hadi; Ibrahim, Tarek F. Asymptotic stability and oscillatory behavior of a difference equation. (English) Zbl 1390.39049 Electron. J. Math. Anal. Appl. 4, No. 2, 227-233 (2016). MSC: 39A30 39A10 39A21 PDF BibTeX XML Cite \textit{H. Khatibzadeh} and \textit{T. F. Ibrahim}, Electron. J. Math. Anal. Appl. 4, No. 2, 227--233 (2016; Zbl 1390.39049) Full Text: Link OpenURL
Chen, Kehui Global behavior of a rational difference equation. (Chinese. English summary) Zbl 1374.39012 J. Sichuan Univ., Nat. Sci. Ed. 53, No. 6, 1190-1194 (2016). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{K. Chen}, J. Sichuan Univ., Nat. Sci. Ed. 53, No. 6, 1190--1194 (2016; Zbl 1374.39012) OpenURL
Yalçinkaya, İbrahim; Tollu, Durhasan Turgut Global behavior of a second-order system of difference equation. (English) Zbl 1362.39003 Adv. Stud. Contemp. Math., Kyungshang 26, No. 4, 653-667 (2016). MSC: 39A10 PDF BibTeX XML Cite \textit{İ. Yalçinkaya} and \textit{D. T. Tollu}, Adv. Stud. Contemp. Math., Kyungshang 26, No. 4, 653--667 (2016; Zbl 1362.39003) OpenURL
Uslu, K. Generalized period of non-linear difference equation system. (English) Zbl 1367.39004 Far East J. Appl. Math. 95, No. 6, 451-457 (2016). Reviewer: Abdullah Özbekler (Ankara) MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{K. Uslu}, Far East J. Appl. Math. 95, No. 6, 451--457 (2016; Zbl 1367.39004) Full Text: DOI Link OpenURL
Wang, Xun-Yang; Li, Zhi Global asymptotic stability for two kinds of higher order recursive sequences. (English) Zbl 1382.39008 J. Difference Equ. Appl. 22, No. 10, 1542-1553 (2016). Reviewer: Ahmed Hegazi (Mansoura) MSC: 39A20 39A30 39A22 PDF BibTeX XML Cite \textit{X.-Y. Wang} and \textit{Z. Li}, J. Difference Equ. Appl. 22, No. 10, 1542--1553 (2016; Zbl 1382.39008) Full Text: DOI OpenURL
Cavalli, F.; Naimzada, A. A multiscale time model with piecewise constant argument for a boundedly rational monopolist. (English) Zbl 1390.91135 J. Difference Equ. Appl. 22, No. 10, 1480-1489 (2016). MSC: 91B24 91A26 37N40 39A60 PDF BibTeX XML Cite \textit{F. Cavalli} and \textit{A. Naimzada}, J. Difference Equ. Appl. 22, No. 10, 1480--1489 (2016; Zbl 1390.91135) Full Text: DOI Link OpenURL
Abo-Zeid, Raafat Behavior of solutions of a fourth order difference equation. (English) Zbl 1367.39002 Kyungpook Math. J. 56, No. 2, 507-516 (2016). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Kyungpook Math. J. 56, No. 2, 507--516 (2016; Zbl 1367.39002) Full Text: DOI OpenURL
Balibrea, Francisco; Cascales, Antonio Li-Yorke chaos in perturbed rational difference equations. (English) Zbl 1355.39026 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 49-61 (2016). MSC: 39A33 39A20 92D25 PDF BibTeX XML Cite \textit{F. Balibrea} and \textit{A. Cascales}, Springer Proc. Math. Stat. 180, 49--61 (2016; Zbl 1355.39026) Full Text: DOI OpenURL
Bula, Inese Periodic solutions of the second order quadratic rational difference equation \(x_{n+1}=\frac{\alpha }{(1+x_n)x_{n-1}} \). (English) Zbl 1355.39020 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 29-47 (2016). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{I. Bula}, Springer Proc. Math. Stat. 180, 29--47 (2016; Zbl 1355.39020) Full Text: DOI OpenURL
Zhang, Lichun; Huang, Qingdao; Yang, Yueting; Cai, Shuyun Local stability of two periodic positive solutions of a second order rational nonlinear difference equation. (Chinese. English summary) Zbl 1363.39019 J. Jilin Univ., Sci. 54, No. 3, 451-456 (2016). MSC: 39A23 39A30 39A20 39A22 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Jilin Univ., Sci. 54, No. 3, 451--456 (2016; Zbl 1363.39019) Full Text: DOI OpenURL
Elsayed, E. M. Expression and behavior of the solutions of some rational recursive sequences. (English) Zbl 1368.39008 Math. Methods Appl. Sci. 39, No. 18, 5682-5694 (2016). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 39A22 PDF BibTeX XML Cite \textit{E. M. Elsayed}, Math. Methods Appl. Sci. 39, No. 18, 5682--5694 (2016; Zbl 1368.39008) Full Text: DOI OpenURL
Belhannache, Farida; Touafek, Nouressadat; Abo-Zeid, Raafat Dynamics of a third-order rational difference equation. (English) Zbl 1363.39012 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 59(107), No. 1, 13-22 (2016). MSC: 39A20 39A22 39A30 39A21 PDF BibTeX XML Cite \textit{F. Belhannache} et al., Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 59(107), No. 1, 13--22 (2016; Zbl 1363.39012) OpenURL
Grammaticos, B.; Ramani, A. From trihomographic to elliptic Painlevé equations. (English) Zbl 1354.39005 J. Phys. A, Math. Theor. 49, No. 45, Article ID 45LT02, 10 p. (2016). MSC: 39A12 34M55 39A20 PDF BibTeX XML Cite \textit{B. Grammaticos} and \textit{A. Ramani}, J. Phys. A, Math. Theor. 49, No. 45, Article ID 45LT02, 10 p. (2016; Zbl 1354.39005) Full Text: DOI OpenURL
Ibrahim, Tarek F. Behavior of some higher order nonlinear rational partial difference equations. (English) Zbl 1352.39007 J. Egypt. Math. Soc. 24, No. 4, 532-537 (2016). MSC: 39A20 39A14 PDF BibTeX XML Cite \textit{T. F. Ibrahim}, J. Egypt. Math. Soc. 24, No. 4, 532--537 (2016; Zbl 1352.39007) Full Text: DOI OpenURL
Wen, Zhi-Tao Meromorphic solutions to difference Painlevé equations I and II. (English) Zbl 1351.39005 Electron. J. Differ. Equ. 2016, Paper No. 262, 18 p. (2016). MSC: 39A10 39A12 34M55 PDF BibTeX XML Cite \textit{Z.-T. Wen}, Electron. J. Differ. Equ. 2016, Paper No. 262, 18 p. (2016; Zbl 1351.39005) Full Text: EMIS OpenURL
Wen, Xiao-Yong Controllable discrete rogue wave solutions of the Ablowitz-Ladik equation in optics. (English) Zbl 1345.35111 Commun. Theor. Phys. 66, No. 1, 29-34 (2016). MSC: 35Q60 39A14 35C99 PDF BibTeX XML Cite \textit{X.-Y. Wen}, Commun. Theor. Phys. 66, No. 1, 29--34 (2016; Zbl 1345.35111) Full Text: DOI OpenURL
Hamad, Khaled; van der Kamp, Peter H. From discrete integrable equations to Laurent recurrences. (English) Zbl 1353.39013 J. Difference Equ. Appl. 22, No. 6, 789-816 (2016). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 39A20 39A12 37J35 PDF BibTeX XML Cite \textit{K. Hamad} and \textit{P. H. van der Kamp}, J. Difference Equ. Appl. 22, No. 6, 789--816 (2016; Zbl 1353.39013) Full Text: DOI OpenURL
Borogovac, Muhamed Two applications of Brouwer’s fixed point theorem: in insurance and in biology models. (English) Zbl 1350.39005 J. Difference Equ. Appl. 22, No. 6, 727-744 (2016). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 39A20 47H10 65Q10 PDF BibTeX XML Cite \textit{M. Borogovac}, J. Difference Equ. Appl. 22, No. 6, 727--744 (2016; Zbl 1350.39005) Full Text: DOI arXiv OpenURL
Ahmed, A. M.; Eshtewy, N. A. Attractivity of the recursive sequence \(x_{n + 1} = (A - B x_{n - 2}) /(C + D x_{n - 1})\). (English) Zbl 1342.39015 J. Egypt. Math. Soc. 24, No. 3, 392-395 (2016). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{A. M. Ahmed} and \textit{N. A. Eshtewy}, J. Egypt. Math. Soc. 24, No. 3, 392--395 (2016; Zbl 1342.39015) Full Text: DOI OpenURL
Druskin, Vladimir; Guüttel, Stefan; Knizhnerman, Leonid Near-optimal perfectly matched layers for indefinite Helmholtz problems. (English) Zbl 1344.35009 SIAM Rev. 58, No. 1, 90-116 (2016). Reviewer: Andreas Kleefeld (Jülich) MSC: 35J05 65N06 65N55 30E10 65D25 PDF BibTeX XML Cite \textit{V. Druskin} et al., SIAM Rev. 58, No. 1, 90--116 (2016; Zbl 1344.35009) Full Text: DOI arXiv Link OpenURL
El-Dessoky, M. M. Dynamics and behavior of the higher order rational difference equation. (English) Zbl 1346.39014 J. Comput. Anal. Appl. 21, No. 4, 743-760 (2016). Reviewer: Ondřej Došlý (Brno) MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, J. Comput. Anal. Appl. 21, No. 4, 743--760 (2016; Zbl 1346.39014) OpenURL
Elsayed, E. M.; Alghamdi, Asma Dynamics and global stability of higher order nonlinear difference equation. (English) Zbl 1338.39022 J. Comput. Anal. Appl. 21, No. 3, 493-503 (2016). Reviewer: Sui Sun Cheng (Hsinchu) MSC: 39A20 39A30 39A23 39A22 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{A. Alghamdi}, J. Comput. Anal. Appl. 21, No. 3, 493--503 (2016; Zbl 1338.39022) OpenURL
Stević, Stevo; Diblík, Josef; Iričanin, Bratislav; Šmarda, Zdeněk On a fifth-order difference equation. (English) Zbl 1339.39016 J. Comput. Anal. Appl. 20, No. 7, 1214-1227 (2016). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{S. Stević} et al., J. Comput. Anal. Appl. 20, No. 7, 1214--1227 (2016; Zbl 1339.39016) OpenURL
Elabbasy, E. M.; Elsadany, A. A.; Ibrahim, Samia Qualitative behavior of rational difference equations of higher order. (English) Zbl 1371.39006 Malaya J. Mat. 3, No. 4, 530-539 (2015). MSC: 39A10 PDF BibTeX XML Cite \textit{E. M. Elabbasy} et al., Malaya J. Mat. 3, No. 4, 530--539 (2015; Zbl 1371.39006) Full Text: Link OpenURL
Masuda, T. A \(q\)-analogue of the higher order Painlevé type equations with the affine Weyl group symmetry of type \(D\). (English) Zbl 1344.14014 Funkc. Ekvacioj, Ser. Int. 58, No. 3, 405-430 (2015). Reviewer: Vladimir P. Kostov (Nice) MSC: 14E07 34M55 14L30 20F55 39A13 PDF BibTeX XML Cite \textit{T. Masuda}, Funkc. Ekvacioj, Ser. Int. 58, No. 3, 405--430 (2015; Zbl 1344.14014) Full Text: DOI OpenURL
Zhang, Lichun; Cai, Shuyun; Wei, Yuncai; Du, Zhongfu Local stability of two period solutions of second order rational difference equation. (Chinese. English summary) Zbl 1349.39018 J. Beihua Univ., Nat. Sci. 16, No. 6, 716-719 (2015). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Beihua Univ., Nat. Sci. 16, No. 6, 716--719 (2015; Zbl 1349.39018) OpenURL
Din, Q. Asymptotic behavior of a second-order fuzzy rational difference equation. (English) Zbl 1338.39021 J. Discrete Math. 2015, Article ID 524931, 7 p. (2015). MSC: 39A20 26E50 39A22 39A30 PDF BibTeX XML Cite \textit{Q. Din}, J. Discrete Math. 2015, Article ID 524931, 7 p. (2015; Zbl 1338.39021) Full Text: DOI OpenURL
Yazlik, Y.; Tollu, D. T.; Taskara, N. On the solutions of a max-type difference equation system. (English) Zbl 1335.39019 Math. Methods Appl. Sci. 38, No. 17, 4388-4410 (2015). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{Y. Yazlik} et al., Math. Methods Appl. Sci. 38, No. 17, 4388--4410 (2015; Zbl 1335.39019) Full Text: DOI OpenURL
Zhao, Houyu Small divisors problem in dynamical systems and analytic invariant curves for an iterative equation related to a rational difference equation. (English) Zbl 1336.39015 Lith. Math. J. 55, No. 4, 573-582 (2015). Reviewer: Victor V. Goryainov (Moscow) MSC: 39B12 39A20 PDF BibTeX XML Cite \textit{H. Zhao}, Lith. Math. J. 55, No. 4, 573--582 (2015; Zbl 1336.39015) Full Text: DOI OpenURL
Zhang, Yongling The global asymptotic stability of a higher-order difference equation. (Chinese. English summary) Zbl 1340.39030 J. Yunnan Minzu Univ., Nat. Sci. 24, No. 1, 37-42 (2015). MSC: 39A30 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Yunnan Minzu Univ., Nat. Sci. 24, No. 1, 37--42 (2015; Zbl 1340.39030) Full Text: DOI OpenURL
Deng, Guifeng; Geng, Fengjie Global stability and bifurcations of perturbed Gumowski-Mira difference equation. (English) Zbl 1330.39018 J. Difference Equ. Appl. 21, No. 9, 774-790 (2015). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 39A30 39A20 39A28 39A23 PDF BibTeX XML Cite \textit{G. Deng} and \textit{F. Geng}, J. Difference Equ. Appl. 21, No. 9, 774--790 (2015; Zbl 1330.39018) Full Text: DOI OpenURL
Garić-Demirović, M.; Kulenović, M. R. S.; Nurkanović, M. Basins of attraction of certain homogeneous second order quadratic fractional difference equation. (English) Zbl 1335.39018 J. Concr. Appl. Math. 13, No. 1-2, 35-50 (2015). Reviewer: Yuming Chen (Waterloo) MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{M. Garić-Demirović} et al., J. Concr. Appl. Math. 13, No. 1--2, 35--50 (2015; Zbl 1335.39018) OpenURL
Elsayed, E. M.; El-Metwally, H. Global behavior and periodicity of some difference equations. (English) Zbl 1328.39015 J. Comput. Anal. Appl. 19, No. 2, 298-309 (2015). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{H. El-Metwally}, J. Comput. Anal. Appl. 19, No. 2, 298--309 (2015; Zbl 1328.39015) OpenURL
Elsayed, E. M.; Mahmoud, S. R.; Ali, A. T. The dynamics and the solutions of some rational difference equations. (English) Zbl 1328.39016 J. Comput. Anal. Appl. 18, No. 3, 430-439 (2015). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A30 PDF BibTeX XML Cite \textit{E. M. Elsayed} et al., J. Comput. Anal. Appl. 18, No. 3, 430--439 (2015; Zbl 1328.39016) OpenURL
Abo-Zeid, Raafat Global behavior of the difference equation \(x_{n+1}=\frac {ax_{n-3}}{b+cx_{n-1}x_{n-3}}\). (English) Zbl 1363.39011 Arch. Math., Brno 51, No. 2, 77-85 (2015). Reviewer: Pavel Rehak (Brno) MSC: 39A20 39A23 39A30 39A21 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Arch. Math., Brno 51, No. 2, 77--85 (2015; Zbl 1363.39011) Full Text: DOI OpenURL
Liu, Guangfeng; Sun, Na Trajectory structure rule in a fourth order nonlinear difference equation. (English) Zbl 1328.39017 Indian J. Math. 57, No. 2, 165-179 (2015). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A21 39A23 39A30 PDF BibTeX XML Cite \textit{G. Liu} and \textit{N. Sun}, Indian J. Math. 57, No. 2, 165--179 (2015; Zbl 1328.39017) OpenURL
Al-Ghassani, A.; Halburd, R. G. Height growth of solutions and a discrete Painlevé equation. (English) Zbl 1334.39010 Nonlinearity 28, No. 7, 2379-2396 (2015). Reviewer: Petr Zemanek (Brno) MSC: 39A12 39A20 37J35 34M55 PDF BibTeX XML Cite \textit{A. Al-Ghassani} and \textit{R. G. Halburd}, Nonlinearity 28, No. 7, 2379--2396 (2015; Zbl 1334.39010) Full Text: DOI arXiv OpenURL
Chen, Baoqin; Li, Sheng Admissible solutions of the Schwarzian type difference equation. (English) Zbl 1473.39013 Abstr. Appl. Anal. 2014, Article ID 306360, 5 p. (2014). MSC: 39A20 PDF BibTeX XML Cite \textit{B. Chen} and \textit{S. Li}, Abstr. Appl. Anal. 2014, Article ID 306360, 5 p. (2014; Zbl 1473.39013) Full Text: DOI OpenURL
Abo-Zeid, R. Global behavior of a rational difference equation with quadratic term. (English) Zbl 1349.39014 Math. Morav. 18, No. 1, 81-88 (2014). MSC: 39A20 39A21 39A23 39A30 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Morav. 18, No. 1, 81--88 (2014; Zbl 1349.39014) OpenURL
Zhao, Fei; Cai, Zhiquan; Ge, Yongbin A rational high-order compact difference scheme for the 1D unsteady convection-diffusion equation. (Chinese. English summary) Zbl 1340.65182 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 38, No. 4, 413-418 (2014). MSC: 65M06 65M15 65M12 35K20 PDF BibTeX XML Cite \textit{F. Zhao} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 38, No. 4, 413--418 (2014; Zbl 1340.65182) OpenURL
Stević, Stevo; Diblík, Josef; Iričanin, Bratislav; Šmarda, Zdeněk Solvability of nonlinear difference equations of fourth order. (English) Zbl 1314.39013 Electron. J. Differ. Equ. 2014, Paper No. 264, 14 p. (2014). MSC: 39A20 PDF BibTeX XML Cite \textit{S. Stević} et al., Electron. J. Differ. Equ. 2014, Paper No. 264, 14 p. (2014; Zbl 1314.39013) Full Text: EMIS OpenURL
Cima, Anna; Zafar, Sundus Integrability and algebraic entropy of \(k\)-periodic non-autonomous Lyness recurrences. (English) Zbl 1348.37102 J. Math. Anal. Appl. 413, No. 1, 20-34 (2014). MSC: 37K10 39A10 14E05 54C70 65Q30 PDF BibTeX XML Cite \textit{A. Cima} and \textit{S. Zafar}, J. Math. Anal. Appl. 413, No. 1, 20--34 (2014; Zbl 1348.37102) Full Text: DOI OpenURL
Zhang, D. C.; Li, X. B.; Wang, L. Y.; Cui, S. W. On the rational recursive sequence \(x_n=\frac{x_{n-2}+c}{a+bx_{n-1}x_{n-2}}\). (English) Zbl 1317.39016 Far East J. Appl. Math. 88, No. 3, 229-237 (2014). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 39A20 39A22 39A30 PDF BibTeX XML Cite \textit{D. C. Zhang} et al., Far East J. Appl. Math. 88, No. 3, 229--237 (2014; Zbl 1317.39016) Full Text: Link OpenURL
Abo-Zeid, R. Global behavior of a higher order difference equation. (English) Zbl 1349.39013 Math. Slovaca 64, No. 4, 931-940 (2014). MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Slovaca 64, No. 4, 931--940 (2014; Zbl 1349.39013) Full Text: DOI OpenURL
Öcalan, Özkan Global dynamics of a non-autonomous rational difference equation. (English) Zbl 1311.39019 J. Appl. Math. Inform. 32, No. 5-6, 843-848 (2014). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 39A30 39A22 PDF BibTeX XML Cite \textit{Ö. Öcalan}, J. Appl. Math. Inform. 32, No. 5--6, 843--848 (2014; Zbl 1311.39019) Full Text: DOI OpenURL
Öcalan, Özkan; Öğünmez, Hasan; Gümüş, Mehmet Global behavior test for a nonlinear difference equation with a period-two coefficient. (English) Zbl 1302.39020 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 3-4, 307-316 (2014). MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{Ö. Öcalan} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 3--4, 307--316 (2014; Zbl 1302.39020) Full Text: Link OpenURL
Jia, Xiumei; Li, Yongjun; Xue, Zichen Global asymptotic stability of a second order difference equation. (Chinese. English summary) Zbl 1313.39025 J. Northwest Norm. Univ., Nat. Sci. 50, No. 1, 11-14, 19 (2014). MSC: 39A30 39A23 39A20 PDF BibTeX XML Cite \textit{X. Jia} et al., J. Northwest Norm. Univ., Nat. Sci. 50, No. 1, 11--14, 19 (2014; Zbl 1313.39025) OpenURL
Abo-Zeid, Raafat Global behavior of a third order rational difference equation. (English) Zbl 1340.39014 Math. Bohem. 139, No. 1, 25-37 (2014). Reviewer: Anatoli F. Ivanov (Lehman) MSC: 39A20 39A21 39A23 39A30 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Bohem. 139, No. 1, 25--37 (2014; Zbl 1340.39014) Full Text: Link OpenURL
Doliwa, Adam Non-commutative rational Yang-Baxter maps. (English) Zbl 1306.37073 Lett. Math. Phys. 104, No. 3, 299-309 (2014). Reviewer: Nenad Manojlović (Faro) MSC: 37K10 37K60 16T25 39A14 14E07 PDF BibTeX XML Cite \textit{A. Doliwa}, Lett. Math. Phys. 104, No. 3, 299--309 (2014; Zbl 1306.37073) Full Text: DOI arXiv OpenURL