Oğul, Burak; Simşek, Dağıstan; Ibrahim, Tarek F. Solution of rational difference equation. (English) Zbl 07302975 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 125-141 (2021). MSC: 39A10 39A30 PDF BibTeX XML Cite \textit{B. Oğul} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 125--141 (2021; Zbl 07302975) Full Text: Link
Georgiev, Svetlin G. Asymptotic behaviour of the solutions of a class of \((k+1)\)-order rational difference equations. (English) Zbl 07309242 Sarajevo J. Math. 16(29), No. 2, 237-244 (2020). MSC: 39A10 39A11 39A20 PDF BibTeX XML Cite \textit{S. G. Georgiev}, Sarajevo J. Math. 16(29), No. 2, 237--244 (2020; Zbl 07309242) Full Text: DOI
Sun, Ting; Wang, Jilu; Zheng, Chunxiong Fast evaluation of artificial boundary conditions for advection diffusion equations. (English) Zbl 07292989 SIAM J. Numer. Anal. 58, No. 6, 3530-3557 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M06 65N30 65M12 65N15 65D30 65Y20 44A10 PDF BibTeX XML Cite \textit{T. Sun} et al., SIAM J. Numer. Anal. 58, No. 6, 3530--3557 (2020; Zbl 07292989) Full Text: DOI
Huang, Xiao-Min; Wong, R. Uniform asymptotics and zeros of the associated Pollaczek polynomials. (English) Zbl 07288986 Stud. Appl. Math. 145, No. 4, 625-646 (2020). MSC: 33C45 26C10 30C10 PDF BibTeX XML Cite \textit{X.-M. Huang} and \textit{R. Wong}, Stud. Appl. Math. 145, No. 4, 625--646 (2020; Zbl 07288986) Full Text: DOI
Peng, Chang-Wen; Huang, Hua-Wei The growth of meromorphic solutions for \(q\)-difference Painlevé IV equation. (English) Zbl 1450.30048 J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020). MSC: 30D30 34M05 PDF BibTeX XML Cite \textit{C.-W. Peng} and \textit{H.-W. Huang}, J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020; Zbl 1450.30048) Full Text: DOI
Vo, Thieu N.; Zhang, Yi Rational solutions of first-order algebraic ordinary difference equations. (English) Zbl 1436.39001 Adv. Appl. Math. 117, Article ID 102018, 28 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 39A05 39A22 14H05 14H45 PDF BibTeX XML Cite \textit{T. N. Vo} and \textit{Y. Zhang}, Adv. Appl. Math. 117, Article ID 102018, 28 p. (2020; Zbl 1436.39001) Full Text: DOI
Sarumi, Ibrahim O.; Furati, Khaled M.; Khaliq, Abdul Q. M. Highly accurate global Padé approximations of generalized Mittag-Leffler function and its inverse. (English) Zbl 1440.65100 J. Sci. Comput. 82, No. 2, Paper No. 46, 27 p. (2020). MSC: 65M06 33E12 41A21 35C20 26A33 35R11 74F10 74K20 35Q74 PDF BibTeX XML Cite \textit{I. O. Sarumi} et al., J. Sci. Comput. 82, No. 2, Paper No. 46, 27 p. (2020; Zbl 1440.65100) Full Text: DOI
Xu, Hong Yan; Tu, Jin Existence of rational solutions for \(q\)-difference Painlevé equations. (English) Zbl 1437.39001 Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020). Reviewer: Jacques Sauloy (Toulouse) MSC: 39A13 39A12 30D35 34M55 37J65 PDF BibTeX XML Cite \textit{H. Y. Xu} and \textit{J. Tu}, Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020; Zbl 1437.39001) Full Text: Link
Folly-Gbetoula, Mensah; Mnguni, Nkosingiphile; Kara, A. H. A group theory approach towards some rational difference equations. (English) Zbl 07172798 J. Math. 2019, Article ID 1505619, 9 p. (2019). Reviewer: Josef Diblík (Brno) MSC: 39A05 39A13 39A22 70G65 PDF BibTeX XML Cite \textit{M. Folly-Gbetoula} et al., J. Math. 2019, Article ID 1505619, 9 p. (2019; Zbl 07172798) Full Text: DOI
Harizanov, Stanislav; Lazarov, Raytcho; Margenov, Svetozar; Marinov, Pencho; Pasciak, Joseph Comparison analysis of two numerical methods for fractional diffusion problems based on the best rational approximations of \(t^\gamma\) on \([0, 1]\). (English) Zbl 1429.65064 Apel, Thomas (ed.) et al., Advanced finite element methods with applications. Selected papers from the 30th Chemnitz finite element symposium, St. Wolfgang/Strobl, Austria, September 25–27, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 128, 165-185 (2019). MSC: 65F10 65F15 65D32 35R11 65N30 65N06 65K10 41A20 15A18 35J05 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Lect. Notes Comput. Sci. Eng. 128, 165--185 (2019; Zbl 1429.65064) Full Text: DOI
Wang, Qiong; Long, Fang; Wang, Jun Some results on difference Riccati equations and delay differential equations. (Chinese. English summary) Zbl 1449.30049 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 832-838 (2019). MSC: 30D05 30D35 34M05 39B32 PDF BibTeX XML Cite \textit{Q. Wang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 832--838 (2019; Zbl 1449.30049)
Arar, Nouria Rational approximation of the head equation in unbounded domain. ([Rational approximation of the heat equation in unbounded domain].) (English) Zbl 1438.65281 Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 9-20 (2019). MSC: 65N30 35A35 35K20 PDF BibTeX XML Cite \textit{N. Arar}, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 9--20 (2019; Zbl 1438.65281) Full Text: DOI
Zahra, W. K.; Elkholy, S. M.; Fahmy, M. Rational spline-nonstandard finite difference scheme for the solution of time-fractional Swift-Hohenberg equation. (English) Zbl 1429.65205 Appl. Math. Comput. 343, 372-387 (2019). MSC: 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{W. K. Zahra} et al., Appl. Math. Comput. 343, 372--387 (2019; Zbl 1429.65205) Full Text: DOI
Kojima, Kentaro; Sato, Tsukasa; Takemura, Kouichi Polynomial solutions of \(q\)-Heun equation and ultradiscrete limit. (English) Zbl 1420.39006 J. Difference Equ. Appl. 25, No. 5, 647-664 (2019). Reviewer: P. K. Banerji (Jodhpur) MSC: 39A13 33C05 33C45 33D15 33D60 30C15 PDF BibTeX XML Cite \textit{K. Kojima} et al., J. Difference Equ. Appl. 25, No. 5, 647--664 (2019; Zbl 1420.39006) Full Text: DOI arXiv
Simşek, Dağıstan; Oğul, Burak; Imashkyzy, Meerim Solution of a rational difference equation. (English) Zbl 1411.39005 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 197-207 (2019). MSC: 39A10 PDF BibTeX XML Cite \textit{D. Simşek} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 197--207 (2019; Zbl 1411.39005) Full Text: Link
Zhao, Song-lin; Zhang, Da-jun Rational solutions to \(Q3_{\delta}\) in the Adler-Bobenko-Suris list and degenerations. (English) Zbl 1417.37242 J. Nonlinear Math. Phys. 26, No. 1, 107-132 (2019). MSC: 37K10 39A14 35Q51 35Q53 PDF BibTeX XML Cite \textit{S.-l. Zhao} and \textit{D.-j. Zhang}, J. Nonlinear Math. Phys. 26, No. 1, 107--132 (2019; Zbl 1417.37242) Full Text: DOI
Nam, Young Woo Hyers-Ulam stability of elliptic Möbius difference equation. (English) Zbl 1438.39024 Cogent Math. Stat. 5, Article ID 1492338, 9 p. (2018). MSC: 39A30 39A45 PDF BibTeX XML Cite \textit{Y. W. Nam}, Cogent Math. Stat. 5, Article ID 1492338, 9 p. (2018; Zbl 1438.39024) Full Text: DOI
Shareef, A.; Aloqeili, M. Neimark-Sacker bifurcation of a fourth order difference equation. (English) Zbl 1394.39014 Math. Methods Appl. Sci. 41, No. 13, 5190-5202 (2018). MSC: 39A28 39A30 PDF BibTeX XML Cite \textit{A. Shareef} and \textit{M. Aloqeili}, Math. Methods Appl. Sci. 41, No. 13, 5190--5202 (2018; Zbl 1394.39014) Full Text: DOI
Din, Qamar; Elsadany, A. A.; Ibrahim, Samia Bifurcation analysis and chaos control in a second-order rational difference equation. (English) Zbl 1401.39014 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 53-68 (2018). MSC: 39A28 39A30 39A33 65Q10 PDF BibTeX XML Cite \textit{Q. Din} et al., Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 53--68 (2018; Zbl 1401.39014) Full Text: DOI
Abo-Zeid, R. Forbidden sets and stability in some rational difference equations. (English) Zbl 1404.39013 J. Difference Equ. Appl. 24, No. 2, 220-239 (2018). Reviewer: Yuming Chen (Waterloo) MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, J. Difference Equ. Appl. 24, No. 2, 220--239 (2018; Zbl 1404.39013) Full Text: DOI
Bajo, Ignacio Invariants for certain discrete dynamical systems given by rational mappings. (English) Zbl 1392.39007 Qual. Theory Dyn. Syst. 16, No. 3, 467-490 (2017). MSC: 39A20 37F10 37C05 PDF BibTeX XML Cite \textit{I. Bajo}, Qual. Theory Dyn. Syst. 16, No. 3, 467--490 (2017; Zbl 1392.39007) Full Text: DOI
Gümüş, Mehmet; Abo-Zeid, Raafat; Öcalan, Özkan Dynamical behavior of a third-order difference equation with arbitrary powers. (English) Zbl 1384.39007 Kyungpook Math. J. 57, No. 2, 251-263 (2017). Reviewer: Ioannis Dassios (Thrakomakedones) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{M. Gümüş} et al., Kyungpook Math. J. 57, No. 2, 251--263 (2017; Zbl 1384.39007) Full Text: DOI
Quan, Weizhen; Pan, Miaoqiao; Li, Xiaopei Periodicities of a system of difference equations. (English) Zbl 1381.39017 J. Funct. Spaces 2017, Article ID 2095805, 4 p. (2017). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{W. Quan} et al., J. Funct. Spaces 2017, Article ID 2095805, 4 p. (2017; Zbl 1381.39017) Full Text: DOI
Moaaz, Osama Comment on “New method to obtain periodic solutions of period two and three of a rational difference equation”. (English) Zbl 1375.39035 Nonlinear Dyn. 88, No. 2, 1043-1049 (2017). MSC: 39A23 PDF BibTeX XML Cite \textit{O. Moaaz}, Nonlinear Dyn. 88, No. 2, 1043--1049 (2017; Zbl 1375.39035) Full Text: DOI
Saleh, M.; Farhat, Aseel Global asymptotic stability of the higher order equation \(x_{n+1} = \frac{ax_{n}+bx_{n-k}}{A+Bx_{n-k}}\). (English) Zbl 1378.39009 J. Appl. Math. Comput. 55, No. 1-2, 135-148 (2017). Reviewer: Miloš Čanak (Beograd) MSC: 39A30 39A20 39A23 PDF BibTeX XML Cite \textit{M. Saleh} and \textit{A. Farhat}, J. Appl. Math. Comput. 55, No. 1--2, 135--148 (2017; Zbl 1378.39009) Full Text: DOI
Arreche, Carlos E. Computation of the difference-differential Galois group and differential relations among solutions for a second-order linear difference equation. (English) Zbl 1384.65091 Commun. Contemp. Math. 19, No. 6, Article ID 1650056, 42 p. (2017). Reviewer: Antonio Linero Bas (Murcia) MSC: 65Q10 39A10 39A06 12H10 12H05 20H20 65L80 PDF BibTeX XML Cite \textit{C. E. Arreche}, Commun. Contemp. Math. 19, No. 6, Article ID 1650056, 42 p. (2017; Zbl 1384.65091) Full Text: DOI arXiv
Yu, P. X.; Tian, Z. F.; Zhang, Hongjie A rational high-order compact difference method for the steady-state stream function-vorticity formulation of the Navier-Stokes equations. (English) Zbl 1370.76109 Comput. Math. Appl. 73, No. 7, 1461-1484 (2017). MSC: 76M20 76D05 65N06 PDF BibTeX XML Cite \textit{P. X. Yu} et al., Comput. Math. Appl. 73, No. 7, 1461--1484 (2017; Zbl 1370.76109) Full Text: DOI
Tollu, Durhasan T.; Yazlik, Yasin; Taskara, Necati Global behavior of solutions for a difference equation of third order. (English) Zbl 1369.39010 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 24, No. 4, 299-307 (2017). MSC: 39A23 11B39 39A10 PDF BibTeX XML Cite \textit{D. T. Tollu} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 24, No. 4, 299--307 (2017; Zbl 1369.39010) Full Text: Link
Han, Caihong; Li, Lve The periodic character of a class of difference equation. (English) Zbl 1377.39002 J. Difference Equ. Appl. 23, No. 1-2, 291-296 (2017). Reviewer: Pavel Rehak (Brno) MSC: 39A10 39A23 39A22 39A20 PDF BibTeX XML Cite \textit{C. Han} and \textit{L. Li}, J. Difference Equ. Appl. 23, No. 1--2, 291--296 (2017; Zbl 1377.39002) Full Text: DOI
Yakovleva, T. I. Well-posedness of the Cauchy problem for multidimensional difference equations in rational cones. (English. Russian original) Zbl 1369.39008 Sib. Math. J. 58, No. 2, 363-372 (2017); translation from Sib. Mat. Zh. 58, No. 2, 468-480 (2017). Reviewer: Thanin Sitthiwirattham (Bangkok) MSC: 39A12 39A10 39A30 34A12 PDF BibTeX XML Cite \textit{T. I. Yakovleva}, Sib. Math. J. 58, No. 2, 363--372 (2017; Zbl 1369.39008); translation from Sib. Mat. Zh. 58, No. 2, 468--480 (2017) Full Text: DOI
Roques, Julien On the reduction modulo \(p\) of Mahler equations. (English) Zbl 1375.39003 Tohoku Math. J. (2) 69, No. 1, 55-65 (2017). Reviewer: Miloš Čanak (Beograd) MSC: 39A06 12H10 65Q20 39A45 39A13 PDF BibTeX XML Cite \textit{J. Roques}, Tohoku Math. J. (2) 69, No. 1, 55--65 (2017; Zbl 1375.39003) Full Text: DOI Euclid
Simsek, Dağıstan; Abdullayev, Fahreddin On the recursive sequence \( {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}} \). (English) Zbl 1365.39008 J. Math. Sci., New York 222, No. 6, 762-771 (2017) and Ukr. Mat. Visn. 13, No. 3, 376-387 (2016). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{D. Simsek} and \textit{F. Abdullayev}, J. Math. Sci., New York 222, No. 6, 762--771 (2017; Zbl 1365.39008) Full Text: DOI
Dekkar, Imane; Touafek, Nouressadat; Yazlik, Yasin Global stability of a third-order nonlinear system of difference equations with period-two coefficients. (English) Zbl 1370.39007 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 2, 325-347 (2017). Reviewer: Yuming Chen (Waterloo) MSC: 39A30 39A21 39A22 39A23 39A20 PDF BibTeX XML Cite \textit{I. Dekkar} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 2, 325--347 (2017; Zbl 1370.39007) Full Text: DOI
Ramani, A.; Grammaticos, B. Singularity analysis for difference Painlevé equations associated with the affine Weyl group \(E_8\). (English) Zbl 1359.39005 J. Phys. A, Math. Theor. 50, No. 5, Article ID 055204, 18 p. (2017). MSC: 39A12 34M55 39A20 PDF BibTeX XML Cite \textit{A. Ramani} and \textit{B. Grammaticos}, J. Phys. A, Math. Theor. 50, No. 5, Article ID 055204, 18 p. (2017; Zbl 1359.39005) Full Text: DOI
El-Dessoky, Mohamed M. On the difference equation \(x_{n+1}=ax_{n-1}+bx_{n-k}+\frac{cx_{n-s}}{dx_{n-s}-e}\). (English) Zbl 1372.39014 Math. Methods Appl. Sci. 40, No. 3, 535-545 (2017). Reviewer: Fei Xue (Hartford) MSC: 39A20 39A23 39A30 39A22 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, Math. Methods Appl. Sci. 40, No. 3, 535--545 (2017; Zbl 1372.39014) Full Text: DOI
Khatibzadeh, Hadi; Ibrahim, Tarek F. Asymptotic stability and oscillatory behavior of a difference equation. (English) Zbl 1390.39049 Electron. J. Math. Analysis Appl. 4, No. 2, 227-233 (2016). MSC: 39A30 39A10 39A21 PDF BibTeX XML Cite \textit{H. Khatibzadeh} and \textit{T. F. Ibrahim}, Electron. J. Math. Analysis Appl. 4, No. 2, 227--233 (2016; Zbl 1390.39049) Full Text: Link
Chen, Kehui Global behavior of a rational difference equation. (Chinese. English summary) Zbl 1374.39012 J. Sichuan Univ., Nat. Sci. Ed. 53, No. 6, 1190-1194 (2016). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{K. Chen}, J. Sichuan Univ., Nat. Sci. Ed. 53, No. 6, 1190--1194 (2016; Zbl 1374.39012)
Yalçinkaya, İbrahim; Tollu, Durhasan Turgut Global behavior of a second-order system of difference equation. (English) Zbl 1362.39003 Adv. Stud. Contemp. Math., Kyungshang 26, No. 4, 653-667 (2016). MSC: 39A10 PDF BibTeX XML Cite \textit{İ. Yalçinkaya} and \textit{D. T. Tollu}, Adv. Stud. Contemp. Math., Kyungshang 26, No. 4, 653--667 (2016; Zbl 1362.39003)
Uslu, K. Generalized period of non-linear difference equation system. (English) Zbl 1367.39004 Far East J. Appl. Math. 95, No. 6, 451-457 (2016). Reviewer: Abdullah Özbekler (Ankara) MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{K. Uslu}, Far East J. Appl. Math. 95, No. 6, 451--457 (2016; Zbl 1367.39004) Full Text: DOI Link
Wang, Xun-Yang; Li, Zhi Global asymptotic stability for two kinds of higher order recursive sequences. (English) Zbl 1382.39008 J. Difference Equ. Appl. 22, No. 10, 1542-1553 (2016). Reviewer: Ahmed Hegazi (Mansoura) MSC: 39A20 39A30 39A22 PDF BibTeX XML Cite \textit{X.-Y. Wang} and \textit{Z. Li}, J. Difference Equ. Appl. 22, No. 10, 1542--1553 (2016; Zbl 1382.39008) Full Text: DOI
Cavalli, F.; Naimzada, A. A multiscale time model with piecewise constant argument for a boundedly rational monopolist. (English) Zbl 1390.91135 J. Difference Equ. Appl. 22, No. 10, 1480-1489 (2016). MSC: 91B24 91A26 37N40 39A60 PDF BibTeX XML Cite \textit{F. Cavalli} and \textit{A. Naimzada}, J. Difference Equ. Appl. 22, No. 10, 1480--1489 (2016; Zbl 1390.91135) Full Text: DOI
Abo-Zeid, Raafat Behavior of solutions of a fourth order difference equation. (English) Zbl 1367.39002 Kyungpook Math. J. 56, No. 2, 507-516 (2016). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Kyungpook Math. J. 56, No. 2, 507--516 (2016; Zbl 1367.39002) Full Text: DOI
Balibrea, Francisco; Cascales, Antonio Li-Yorke chaos in perturbed rational difference equations. (English) Zbl 1355.39026 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 49-61 (2016). MSC: 39A33 39A20 92D25 PDF BibTeX XML Cite \textit{F. Balibrea} and \textit{A. Cascales}, in: Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23--27, 2012. Proceedings of the 18th international conference. Berlin: Springer. 49--61 (2016; Zbl 1355.39026) Full Text: DOI
Bula, Inese Periodic solutions of the second order quadratic rational difference equation \(x_{n+1}=\frac{\alpha }{(1+x_n)x_{n-1}} \). (English) Zbl 1355.39020 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 29-47 (2016). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{I. Bula}, in: Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23--27, 2012. Proceedings of the 18th international conference. Berlin: Springer. 29--47 (2016; Zbl 1355.39020) Full Text: DOI
Zhang, Lichun; Huang, Qingdao; Yang, Yueting; Cai, Shuyun Local stability of two periodic positive solutions of a second order rational nonlinear difference equation. (Chinese. English summary) Zbl 1363.39019 J. Jilin Univ., Sci. 54, No. 3, 451-456 (2016). MSC: 39A23 39A30 39A20 39A22 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Jilin Univ., Sci. 54, No. 3, 451--456 (2016; Zbl 1363.39019) Full Text: DOI
Elsayed, E. M. Expression and behavior of the solutions of some rational recursive sequences. (English) Zbl 1368.39008 Math. Methods Appl. Sci. 39, No. 18, 5682-5694 (2016). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 39A22 PDF BibTeX XML Cite \textit{E. M. Elsayed}, Math. Methods Appl. Sci. 39, No. 18, 5682--5694 (2016; Zbl 1368.39008) Full Text: DOI
Belhannache, Farida; Touafek, Nouressadat; Abo-Zeid, Raafat Dynamics of a third-order rational difference equation. (English) Zbl 1363.39012 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 59(107), No. 1, 13-22 (2016). MSC: 39A20 39A22 39A30 39A21 PDF BibTeX XML Cite \textit{F. Belhannache} et al., Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 59(107), No. 1, 13--22 (2016; Zbl 1363.39012)
Grammaticos, B.; Ramani, A. From trihomographic to elliptic Painlevé equations. (English) Zbl 1354.39005 J. Phys. A, Math. Theor. 49, No. 45, Article ID 45LT02, 10 p. (2016). MSC: 39A12 34M55 39A20 PDF BibTeX XML Cite \textit{B. Grammaticos} and \textit{A. Ramani}, J. Phys. A, Math. Theor. 49, No. 45, Article ID 45LT02, 10 p. (2016; Zbl 1354.39005) Full Text: DOI
Ibrahim, Tarek F. Behavior of some higher order nonlinear rational partial difference equations. (English) Zbl 1352.39007 J. Egypt. Math. Soc. 24, No. 4, 532-537 (2016). MSC: 39A20 39A14 PDF BibTeX XML Cite \textit{T. F. Ibrahim}, J. Egypt. Math. Soc. 24, No. 4, 532--537 (2016; Zbl 1352.39007) Full Text: DOI
Wen, Zhi-Tao Meromorphic solutions to difference Painlevé equations I and II. (English) Zbl 1351.39005 Electron. J. Differ. Equ. 2016, Paper No. 262, 18 p. (2016). MSC: 39A10 39A12 34M55 PDF BibTeX XML Cite \textit{Z.-T. Wen}, Electron. J. Differ. Equ. 2016, Paper No. 262, 18 p. (2016; Zbl 1351.39005) Full Text: EMIS
Wen, Xiao-Yong Controllable discrete rogue wave solutions of the Ablowitz-Ladik equation in optics. (English) Zbl 1345.35111 Commun. Theor. Phys. 66, No. 1, 29-34 (2016). MSC: 35Q60 39A14 35C99 PDF BibTeX XML Cite \textit{X.-Y. Wen}, Commun. Theor. Phys. 66, No. 1, 29--34 (2016; Zbl 1345.35111) Full Text: DOI
Hamad, Khaled; van der Kamp, Peter H. From discrete integrable equations to Laurent recurrences. (English) Zbl 1353.39013 J. Difference Equ. Appl. 22, No. 6, 789-816 (2016). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 39A20 39A12 37J35 PDF BibTeX XML Cite \textit{K. Hamad} and \textit{P. H. van der Kamp}, J. Difference Equ. Appl. 22, No. 6, 789--816 (2016; Zbl 1353.39013) Full Text: DOI
Borogovac, Muhamed Two applications of Brouwer’s fixed point theorem: in insurance and in biology models. (English) Zbl 1350.39005 J. Difference Equ. Appl. 22, No. 6, 727-744 (2016). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 39A20 47H10 65Q10 PDF BibTeX XML Cite \textit{M. Borogovac}, J. Difference Equ. Appl. 22, No. 6, 727--744 (2016; Zbl 1350.39005) Full Text: DOI arXiv
Ahmed, A. M.; Eshtewy, N. A. Attractivity of the recursive sequence \(x_{n + 1} = (A - B x_{n - 2}) /(C + D x_{n - 1})\). (English) Zbl 1342.39015 J. Egypt. Math. Soc. 24, No. 3, 392-395 (2016). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{A. M. Ahmed} and \textit{N. A. Eshtewy}, J. Egypt. Math. Soc. 24, No. 3, 392--395 (2016; Zbl 1342.39015) Full Text: DOI
Druskin, Vladimir; Guüttel, Stefan; Knizhnerman, Leonid Near-optimal perfectly matched layers for indefinite Helmholtz problems. (English) Zbl 1344.35009 SIAM Rev. 58, No. 1, 90-116 (2016). Reviewer: Andreas Kleefeld (Jülich) MSC: 35J05 65N06 65N55 30E10 65D25 PDF BibTeX XML Cite \textit{V. Druskin} et al., SIAM Rev. 58, No. 1, 90--116 (2016; Zbl 1344.35009) Full Text: DOI
El-Dessoky, M. M. Dynamics and behavior of the higher order rational difference equation. (English) Zbl 1346.39014 J. Comput. Anal. Appl. 21, No. 4, 743-760 (2016). Reviewer: Ondřej Došlý (Brno) MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, J. Comput. Anal. Appl. 21, No. 4, 743--760 (2016; Zbl 1346.39014)
Elsayed, E. M.; Alghamdi, Asma Dynamics and global stability of higher order nonlinear difference equation. (English) Zbl 1338.39022 J. Comput. Anal. Appl. 21, No. 3, 493-503 (2016). Reviewer: Sui Sun Cheng (Hsinchu) MSC: 39A20 39A30 39A23 39A22 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{A. Alghamdi}, J. Comput. Anal. Appl. 21, No. 3, 493--503 (2016; Zbl 1338.39022)
Stević, Stevo; Diblík, Josef; Iričanin, Bratislav; Šmarda, Zdeněk On a fifth-order difference equation. (English) Zbl 1339.39016 J. Comput. Anal. Appl. 20, No. 7, 1214-1227 (2016). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{S. Stević} et al., J. Comput. Anal. Appl. 20, No. 7, 1214--1227 (2016; Zbl 1339.39016)
Elabbasy, E. M.; Elsadany, A. A.; Ibrahim, Samia Qualitative behavior of rational difference equations of higher order. (English) Zbl 1371.39006 Malaya J. Mat. 3, No. 4, 530-539 (2015). MSC: 39A10 PDF BibTeX XML Cite \textit{E. M. Elabbasy} et al., Malaya J. Mat. 3, No. 4, 530--539 (2015; Zbl 1371.39006) Full Text: Link
Masuda, T. A \(q\)-analogue of the higher order Painlevé type equations with the affine Weyl group symmetry of type \(D\). (English) Zbl 1344.14014 Funkc. Ekvacioj, Ser. Int. 58, No. 3, 405-430 (2015). Reviewer: Vladimir P. Kostov (Nice) MSC: 14E07 34M55 14L30 20F55 39A13 PDF BibTeX XML Cite \textit{T. Masuda}, Funkc. Ekvacioj, Ser. Int. 58, No. 3, 405--430 (2015; Zbl 1344.14014) Full Text: DOI Link
Zhang, Lichun; Cai, Shuyun; Wei, Yuncai; Du, Zhongfu Local stability of two period solutions of second order rational difference equation. (Chinese. English summary) Zbl 1349.39018 J. Beihua Univ., Nat. Sci. 16, No. 6, 716-719 (2015). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Beihua Univ., Nat. Sci. 16, No. 6, 716--719 (2015; Zbl 1349.39018) Full Text: DOI
Din, Q. Asymptotic behavior of a second-order fuzzy rational difference equation. (English) Zbl 1338.39021 J. Discrete Math. 2015, Article ID 524931, 7 p. (2015). MSC: 39A20 26E50 39A22 39A30 PDF BibTeX XML Cite \textit{Q. Din}, J. Discrete Math. 2015, Article ID 524931, 7 p. (2015; Zbl 1338.39021) Full Text: DOI
Yazlik, Y.; Tollu, D. T.; Taskara, N. On the solutions of a max-type difference equation system. (English) Zbl 1335.39019 Math. Methods Appl. Sci. 38, No. 17, 4388-4410 (2015). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{Y. Yazlik} et al., Math. Methods Appl. Sci. 38, No. 17, 4388--4410 (2015; Zbl 1335.39019) Full Text: DOI
Zhao, Houyu Small divisors problem in dynamical systems and analytic invariant curves for an iterative equation related to a rational difference equation. (English) Zbl 1336.39015 Lith. Math. J. 55, No. 4, 573-582 (2015). Reviewer: Victor V. Goryainov (Moscow) MSC: 39B12 39A20 PDF BibTeX XML Cite \textit{H. Zhao}, Lith. Math. J. 55, No. 4, 573--582 (2015; Zbl 1336.39015) Full Text: DOI
Zhang, Yongling The global asymptotic stability of a higher-order difference equation. (Chinese. English summary) Zbl 1340.39030 J. Yunnan Minzu Univ., Nat. Sci. 24, No. 1, 37-42 (2015). MSC: 39A30 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{Y. Zhang}, J. Yunnan Minzu Univ., Nat. Sci. 24, No. 1, 37--42 (2015; Zbl 1340.39030) Full Text: DOI
Deng, Guifeng; Geng, Fengjie Global stability and bifurcations of perturbed Gumowski-Mira difference equation. (English) Zbl 1330.39018 J. Difference Equ. Appl. 21, No. 9, 774-790 (2015). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 39A30 39A20 39A28 39A23 PDF BibTeX XML Cite \textit{G. Deng} and \textit{F. Geng}, J. Difference Equ. Appl. 21, No. 9, 774--790 (2015; Zbl 1330.39018) Full Text: DOI
Garić-Demirović, M.; Kulenović, M. R. S.; Nurkanović, M. Basins of attraction of certain homogeneous second order quadratic fractional difference equation. (English) Zbl 1335.39018 J. Concr. Appl. Math. 13, No. 1-2, 35-50 (2015). Reviewer: Yuming Chen (Waterloo) MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{M. Garić-Demirović} et al., J. Concr. Appl. Math. 13, No. 1--2, 35--50 (2015; Zbl 1335.39018)
Elsayed, E. M.; El-Metwally, H. Global behavior and periodicity of some difference equations. (English) Zbl 1328.39015 J. Comput. Anal. Appl. 19, No. 2, 298-309 (2015). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{H. El-Metwally}, J. Comput. Anal. Appl. 19, No. 2, 298--309 (2015; Zbl 1328.39015)
Elsayed, E. M.; Mahmoud, S. R.; Ali, A. T. The dynamics and the solutions of some rational difference equations. (English) Zbl 1328.39016 J. Comput. Anal. Appl. 18, No. 3, 430-439 (2015). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A30 PDF BibTeX XML Cite \textit{E. M. Elsayed} et al., J. Comput. Anal. Appl. 18, No. 3, 430--439 (2015; Zbl 1328.39016)
Abo-Zeid, Raafat Global behavior of the difference equation \(x_{n+1}=\frac {ax_{n-3}}{b+cx_{n-1}x_{n-3}}\). (English) Zbl 1363.39011 Arch. Math., Brno 51, No. 2, 77-85 (2015). Reviewer: Pavel Rehak (Brno) MSC: 39A20 39A23 39A30 39A21 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Arch. Math., Brno 51, No. 2, 77--85 (2015; Zbl 1363.39011) Full Text: DOI
Liu, Guangfeng; Sun, Na Trajectory structure rule in a fourth order nonlinear difference equation. (English) Zbl 1328.39017 Indian J. Math. 57, No. 2, 165-179 (2015). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A21 39A23 39A30 PDF BibTeX XML Cite \textit{G. Liu} and \textit{N. Sun}, Indian J. Math. 57, No. 2, 165--179 (2015; Zbl 1328.39017)
Al-Ghassani, A.; Halburd, R. G. Height growth of solutions and a discrete Painlevé equation. (English) Zbl 1334.39010 Nonlinearity 28, No. 7, 2379-2396 (2015). Reviewer: Petr Zemanek (Brno) MSC: 39A12 39A20 37J35 34M55 PDF BibTeX XML Cite \textit{A. Al-Ghassani} and \textit{R. G. Halburd}, Nonlinearity 28, No. 7, 2379--2396 (2015; Zbl 1334.39010) Full Text: DOI arXiv
Abo-Zeid, R. Global behavior of a rational difference equation with quadratic term. (English) Zbl 1349.39014 Math. Morav. 18, No. 1, 81-88 (2014). MSC: 39A20 39A21 39A23 39A30 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Morav. 18, No. 1, 81--88 (2014; Zbl 1349.39014)
Zhao, Fei; Cai, Zhiquan; Ge, Yongbin A rational high-order compact difference scheme for the 1D unsteady convection-diffusion equation. (Chinese. English summary) Zbl 1340.65182 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 38, No. 4, 413-418 (2014). MSC: 65M06 65M15 65M12 35K20 PDF BibTeX XML Cite \textit{F. Zhao} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 38, No. 4, 413--418 (2014; Zbl 1340.65182)
Stević, Stevo; Diblík, Josef; Iričanin, Bratislav; Šmarda, Zdeněk Solvability of nonlinear difference equations of fourth order. (English) Zbl 1314.39013 Electron. J. Differ. Equ. 2014, Paper No. 264, 14 p. (2014). MSC: 39A20 PDF BibTeX XML Cite \textit{S. Stević} et al., Electron. J. Differ. Equ. 2014, Paper No. 264, 14 p. (2014; Zbl 1314.39013) Full Text: EMIS
Cima, Anna; Zafar, Sundus Integrability and algebraic entropy of \(k\)-periodic non-autonomous Lyness recurrences. (English) Zbl 1348.37102 J. Math. Anal. Appl. 413, No. 1, 20-34 (2014). MSC: 37K10 39A10 14E05 54C70 65Q30 PDF BibTeX XML Cite \textit{A. Cima} and \textit{S. Zafar}, J. Math. Anal. Appl. 413, No. 1, 20--34 (2014; Zbl 1348.37102) Full Text: DOI
Zhang, D. C.; Li, X. B.; Wang, L. Y.; Cui, S. W. On the rational recursive sequence \(x_n=\frac{x_{n-2}+c}{a+bx_{n-1}x_{n-2}}\). (English) Zbl 1317.39016 Far East J. Appl. Math. 88, No. 3, 229-237 (2014). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 39A20 39A22 39A30 PDF BibTeX XML Cite \textit{D. C. Zhang} et al., Far East J. Appl. Math. 88, No. 3, 229--237 (2014; Zbl 1317.39016) Full Text: Link
Abo-Zeid, R. Global behavior of a higher order difference equation. (English) Zbl 1349.39013 Math. Slovaca 64, No. 4, 931-940 (2014). MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Slovaca 64, No. 4, 931--940 (2014; Zbl 1349.39013) Full Text: DOI
Öcalan, Özkan Global dynamics of a non-autonomous rational difference equation. (English) Zbl 1311.39019 J. Appl. Math. Inform. 32, No. 5-6, 843-848 (2014). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 39A30 39A22 PDF BibTeX XML Cite \textit{Ö. Öcalan}, J. Appl. Math. Inform. 32, No. 5--6, 843--848 (2014; Zbl 1311.39019) Full Text: DOI
Öcalan, Özkan; Öğünmez, Hasan; Gümüş, Mehmet Global behavior test for a nonlinear difference equation with a period-two coefficient. (English) Zbl 1302.39020 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 3-4, 307-316 (2014). MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{Ö. Öcalan} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 21, No. 3--4, 307--316 (2014; Zbl 1302.39020) Full Text: Link
Jia, Xiumei; Li, Yongjun; Xue, Zichen Global asymptotic stability of a second order difference equation. (Chinese. English summary) Zbl 1313.39025 J. Northwest Norm. Univ., Nat. Sci. 50, No. 1, 11-14, 19 (2014). MSC: 39A30 39A23 39A20 PDF BibTeX XML Cite \textit{X. Jia} et al., J. Northwest Norm. Univ., Nat. Sci. 50, No. 1, 11--14, 19 (2014; Zbl 1313.39025)
Abo-Zeid, Raafat Global behavior of a third order rational difference equation. (English) Zbl 1340.39014 Math. Bohem. 139, No. 1, 25-37 (2014). Reviewer: Anatoli F. Ivanov (Lehman) MSC: 39A20 39A21 39A23 39A30 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Bohem. 139, No. 1, 25--37 (2014; Zbl 1340.39014) Full Text: Link
Doliwa, Adam Non-commutative rational Yang-Baxter maps. (English) Zbl 1306.37073 Lett. Math. Phys. 104, No. 3, 299-309 (2014). Reviewer: Nenad Manojlović (Faro) MSC: 37K10 37K60 16T25 39A14 14E07 PDF BibTeX XML Cite \textit{A. Doliwa}, Lett. Math. Phys. 104, No. 3, 299--309 (2014; Zbl 1306.37073) Full Text: DOI arXiv
Zhang, D. C.; Wang, L. Y.; Li, X. B.; Cui, S. W. The separable difference equation \(x_{n+1}=\frac{b_{n}x_{n}}{x_{n-1}}\). (English) Zbl 1304.39011 Far East J. Appl. Math. 86, No. 3, 263-268 (2014). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{D. C. Zhang} et al., Far East J. Appl. Math. 86, No. 3, 263--268 (2014; Zbl 1304.39011) Full Text: Link
Fischler, Stéphane; Rivoal, Tanguy On the values of \(G\)-functions. (English) Zbl 1304.11070 Comment. Math. Helv. 89, No. 2, 313-341 (2014). Reviewer: Michel Waldschmidt (Paris) MSC: 11J91 33E30 34M35 34M40 PDF BibTeX XML Cite \textit{S. Fischler} and \textit{T. Rivoal}, Comment. Math. Helv. 89, No. 2, 313--341 (2014; Zbl 1304.11070) Full Text: DOI
Zayed, E. M. E.; El-Moneam, M. A. Dynamics of the rational difference equation \( x_{x+1} = {\gamma x}_n + \frac{{\alpha x}_{n-1} + {\beta x}_{n-k}}{{Ax}_{n-1} + Bx_{n-k}}\). (English) Zbl 1301.39007 Commun. Appl. Nonlinear Anal. 21, No. 1, 43-53 (2014). Reviewer: Antonio Linero Bas (Murcia) MSC: 39A20 39A30 39A22 39A23 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, Commun. Appl. Nonlinear Anal. 21, No. 1, 43--53 (2014; Zbl 1301.39007)
Behloul, Djilali; Cheng, Sui Sun Polynomial solutions of a nonlinear difference equation. (English) Zbl 1295.65122 Numer. Algorithms 65, No. 2, 325-337 (2014). Reviewer: Antonio Linero Bas (Murcia) MSC: 65Q10 39A05 PDF BibTeX XML Cite \textit{D. Behloul} and \textit{S. S. Cheng}, Numer. Algorithms 65, No. 2, 325--337 (2014; Zbl 1295.65122) Full Text: DOI
Jašarević, S.; Kulenović, M. R. S. Basins of attraction of equilibrium and boundary points of second-order difference equations. (English) Zbl 1293.39006 J. Difference Equ. Appl. 20, No. 5-6, 947-959 (2014). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A20 39A30 39A28 PDF BibTeX XML Cite \textit{S. Jašarević} and \textit{M. R. S. Kulenović}, J. Difference Equ. Appl. 20, No. 5--6, 947--959 (2014; Zbl 1293.39006) Full Text: DOI
Allen, L. J. S.; Kocic, V. L. Resonance in Beverton-Holt population models with periodic and random coefficients. (English) Zbl 1295.39012 J. Difference Equ. Appl. 20, No. 5-6, 925-946 (2014). Reviewer: Peter Zabreiko (Minsk) MSC: 39A23 39A22 39A50 92D25 39A20 PDF BibTeX XML Cite \textit{L. J. S. Allen} and \textit{V. L. Kocic}, J. Difference Equ. Appl. 20, No. 5--6, 925--946 (2014; Zbl 1295.39012) Full Text: DOI
Kocic, V. L.; Kostrov, Y. Dynamics of a discontinuous discrete Beverton-Holt model. (English) Zbl 1295.39009 J. Difference Equ. Appl. 20, No. 5-6, 859-874 (2014). Reviewer: Peter Zabreiko (Minsk) MSC: 39A21 39A22 92D25 39A20 39A30 PDF BibTeX XML Cite \textit{V. L. Kocic} and \textit{Y. Kostrov}, J. Difference Equ. Appl. 20, No. 5--6, 859--874 (2014; Zbl 1295.39009) Full Text: DOI
Gan, Chenquan; Yang, Xiaofan; Liu, Wanping On behavior of two third-order nonlinear difference equations. (English) Zbl 1311.39018 Util. Math. 93, 193-203 (2014). Reviewer: Roman Šimon Hilscher (Brno) MSC: 39A20 39A21 39A30 39A22 PDF BibTeX XML Cite \textit{C. Gan} et al., Util. Math. 93, 193--203 (2014; Zbl 1311.39018)
Hatir, Esref; Mansour, Toufik; Yalçinkaya, İbrahim On a fuzzy difference equation. (English) Zbl 1309.39009 Util. Math. 93, 135-151 (2014). Reviewer: Józef Drewniak (Rzeszów) MSC: 39A20 26E50 39A21 39A22 39A30 PDF BibTeX XML Cite \textit{E. Hatir} et al., Util. Math. 93, 135--151 (2014; Zbl 1309.39009)
Ramani, A.; Grammaticos, B. On two discrete Painlevé equations with high periodicities. (English) Zbl 1291.39017 J. Phys. A, Math. Theor. 47, No. 19, Article ID 192001, 8 p. (2014). MSC: 39A12 39A20 34M55 39A23 PDF BibTeX XML Cite \textit{A. Ramani} and \textit{B. Grammaticos}, J. Phys. A, Math. Theor. 47, No. 19, Article ID 192001, 8 p. (2014; Zbl 1291.39017) Full Text: DOI
Mazrooei-Sebdani, Reza Non-autonomous homogeneous rational difference equations of degree one: convergence and monotone solutions for second and third order case. (English) Zbl 1286.39005 Math. Methods Appl. Sci. 37, No. 4, 518-523 (2014). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{R. Mazrooei-Sebdani}, Math. Methods Appl. Sci. 37, No. 4, 518--523 (2014; Zbl 1286.39005) Full Text: DOI
Ibrahim, T. F. Periodicity and global attractivity of difference equation of higher order. (English) Zbl 1292.39007 J. Comput. Anal. Appl. 16, No. 3, 552-564 (2014). Reviewer: Xueyan Liu (Chattanooga) MSC: 39A20 39A30 39A23 39A22 PDF BibTeX XML Cite \textit{T. F. Ibrahim}, J. Comput. Anal. Appl. 16, No. 3, 552--564 (2014; Zbl 1292.39007)
Basu, Sukanya The roles of conic sections and elliptic curves in the global dynamics of a class of planar systems of rational difference equations. (English) Zbl 1391.39001 Adv. Difference Equ. 2013, Paper No. 292, 39 p. (2013). MSC: 39A05 PDF BibTeX XML Cite \textit{S. Basu}, Adv. Difference Equ. 2013, Paper No. 292, 39 p. (2013; Zbl 1391.39001) Full Text: DOI
Kanas, Stanislawa; Tatarczak, Anna Generalized Meixner-Pollaczek polynomials. (English) Zbl 1392.33006 Adv. Difference Equ. 2013, Paper No. 131, 14 p. (2013). MSC: 33C45 30C10 30C45 PDF BibTeX XML Cite \textit{S. Kanas} and \textit{A. Tatarczak}, Adv. Difference Equ. 2013, Paper No. 131, 14 p. (2013; Zbl 1392.33006) Full Text: DOI
Din, Qamar Global behavior of a rational difference equation. (English) Zbl 1340.39016 Acta Univ. Apulensis, Math. Inform. 34, 35-49 (2013). MSC: 39A20 65Q10 39A30 39A23 39A22 PDF BibTeX XML Cite \textit{Q. Din}, Acta Univ. Apulensis, Math. Inform. 34, 35--49 (2013; Zbl 1340.39016)
Liu, K.; Li, P.; Zhong, W. On a system of rational difference equations \(x_{n+1} = \frac{x_n-1}{y_n x_{n-1} - 1}, y_{n+1} = \frac{y_n - 1}{x_n y_{n-1} -1}, z_{n+1} = \frac{1}{y_n z_n-1}\). (English) Zbl 1328.39018 Fasc. Math. 51, 106-114 (2013). Reviewer: Miloš Čanak (Beograd) MSC: 39A20 PDF BibTeX XML Cite \textit{K. Liu} et al., Fasc. Math. 51, 106--114 (2013; Zbl 1328.39018)
Ji, Wenqiang; Zhang, Decun; Wang, Liying Dynamics and behaviors of a third-order system of difference equation. (English) Zbl 1314.39011 Math. Sci., Springer 7, Paper No. 34, 6 p. (2013). MSC: 39A20 39A23 39A21 PDF BibTeX XML Cite \textit{W. Ji} et al., Math. Sci., Springer 7, Paper No. 34, 6 p. (2013; Zbl 1314.39011) Full Text: DOI