Cao, Yulei; Tian, Hao; Wazwaz, Abdul-Majid; Liu, Jian-Guo; Zhang, Zhao Interaction of wave structure in the \(\mathcal{PT}\)-symmetric \((3+1)\)-dimensional nonlocal Mel’nikov equation and their applications. (English) Zbl 07651352 Z. Angew. Math. Phys. 74, No. 2, Paper No. 49, 16 p. (2023). MSC: 33F10 35Q58 39A14 PDF BibTeX XML Cite \textit{Y. Cao} et al., Z. Angew. Math. Phys. 74, No. 2, Paper No. 49, 16 p. (2023; Zbl 07651352) Full Text: DOI OpenURL
Zeraoulia, Rafik; Salas, A. H. Note on an open conjecture in rational dynamical systems. (English) Zbl 07663599 J. Numer. Math. Stoch. 13, No. 1, 57-67 (2022). MSC: 39A10 PDF BibTeX XML Cite \textit{R. Zeraoulia} and \textit{A. H. Salas}, J. Numer. Math. Stoch. 13, No. 1, 57--67 (2022; Zbl 07663599) Full Text: Link OpenURL
Kudlak, Zachary; Vernon, R. Patrick Unbounded rational systems with nonconstant coefficients. (English) Zbl 07661217 Nonauton. Dyn. Syst. 9, 307-316 (2022). MSC: 39A22 PDF BibTeX XML Cite \textit{Z. Kudlak} and \textit{R. P. Vernon}, Nonauton. Dyn. Syst. 9, 307--316 (2022; Zbl 07661217) Full Text: DOI OpenURL
Oğul, Burak; Simşek, Dagistan On the recursive sequence. (English) Zbl 07650721 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 6, 423-435 (2022). MSC: 39A20 PDF BibTeX XML Cite \textit{B. Oğul} and \textit{D. Simşek}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 29, No. 6, 423--435 (2022; Zbl 07650721) Full Text: Link OpenURL
Hammad, Hasanen A.; Elmursi, Mohamed; Rashwan, Rashwan A.; Işık, Hüseyin Applying fixed point methodologies to solve a class of matrix difference equations for a new class of operators. (English) Zbl 07636098 Adv. Contin. Discrete Models 2022, Paper No. 52, 16 p. (2022). MSC: 54H25 47H10 46T99 PDF BibTeX XML Cite \textit{H. A. Hammad} et al., Adv. Contin. Discrete Models 2022, Paper No. 52, 16 p. (2022; Zbl 07636098) Full Text: DOI OpenURL
Hamioud, Hamida; Touafek, Nouressadat; Dekkar, Imane; Yazlik, Yasin On a three dimensional nonautonomous system of difference equations. (English) Zbl 07632331 J. Appl. Math. Comput. 68, No. 6, 3901-3936 (2022). MSC: 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{H. Hamioud} et al., J. Appl. Math. Comput. 68, No. 6, 3901--3936 (2022; Zbl 07632331) Full Text: DOI OpenURL
Celledoni, Elena; Evripidou, Charalambos; McLaren, David I.; Owren, Brynjulf; Quispel, G. R. W.; Tapley, Benjamin K. Detecting and determining preserved measures and integrals of birational maps. (English) Zbl 07613238 J. Comput. Dyn. 9, No. 4, 553-574 (2022). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J70 37J35 37M15 37M21 39A36 14E05 PDF BibTeX XML Cite \textit{E. Celledoni} et al., J. Comput. Dyn. 9, No. 4, 553--574 (2022; Zbl 07613238) Full Text: DOI arXiv OpenURL
Leĭnartas, Evgeniĭ Konstantinovich; Yakovleva, Tat’yana Igorevna Generating function of the solution of a difference equation and the Newton polyhedron of the characteristic polynomial. (Russian. English summary) Zbl 1497.39014 Izv. Irkutsk. Gos. Univ., Ser. Mat. 40, 3-14 (2022). MSC: 39A45 05A15 05B10 14M25 14N10 PDF BibTeX XML Cite \textit{E. K. Leĭnartas} and \textit{T. I. Yakovleva}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 40, 3--14 (2022; Zbl 1497.39014) Full Text: DOI Link OpenURL
Bussière, Ismaël; Gaboriaud, Julien; Vinet, Luc; Zhedanov, Alexei Bispectrality and biorthogonality of the rational functions of \(q\)-Hahn type. (English) Zbl 07574862 J. Math. Anal. Appl. 516, No. 1, Article ID 126443, 17 p. (2022). MSC: 33Cxx 33Dxx 39Axx PDF BibTeX XML Cite \textit{I. Bussière} et al., J. Math. Anal. Appl. 516, No. 1, Article ID 126443, 17 p. (2022; Zbl 07574862) Full Text: DOI arXiv OpenURL
Čermák, Jan; Fedorková, Lucie; Kureš, Miroslav Complete classification scheme for the distribution of trinomial zeros with respect to their moduli. (English) Zbl 07574653 Publ. Math. Debr. 101, No. 1-2, 119-146 (2022). Reviewer: Adhemar Bultheel (Leuven) MSC: 26C10 12D10 30C15 39A30 PDF BibTeX XML Cite \textit{J. Čermák} et al., Publ. Math. Debr. 101, No. 1--2, 119--146 (2022; Zbl 07574653) Full Text: DOI OpenURL
Doliwa, Adam Non-commutative Hermite-Padé approximation and integrability. (English) Zbl 1494.39020 Lett. Math. Phys. 112, No. 4, Paper No. 68, 17 p. (2022). MSC: 39A36 37K60 37K20 41A21 15A15 PDF BibTeX XML Cite \textit{A. Doliwa}, Lett. Math. Phys. 112, No. 4, Paper No. 68, 17 p. (2022; Zbl 1494.39020) Full Text: DOI arXiv OpenURL
Vasquez Campos, Brian D. Characterization of rational solutions of a KdV-like equation. (English) Zbl 07545910 Math. Comput. Simul. 201, 396-416 (2022). MSC: 35-XX 39-XX PDF BibTeX XML Cite \textit{B. D. Vasquez Campos}, Math. Comput. Simul. 201, 396--416 (2022; Zbl 07545910) Full Text: DOI arXiv OpenURL
Ogul, Burak; Simsek, Dagistan; Abdullayev, Fahreddin; Farajzadeh, Ali On the recursive sequence \(x_{n+1}=\frac{x_{n-7}}{1+x_{n-1}x_{n-3}x_{n-5}} \). (English) Zbl 1490.39013 Thai J. Math. 20, No. 1, 111-119 (2022). MSC: 39A20 11B37 PDF BibTeX XML Cite \textit{B. Ogul} et al., Thai J. Math. 20, No. 1, 111--119 (2022; Zbl 1490.39013) Full Text: Link OpenURL
Khaliq, Abdul; Hassan, Sk. Sarif Analytical solution of a rational difference equation. (English) Zbl 1490.39019 Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 181-202 (2022). MSC: 39A22 39A20 39A23 PDF BibTeX XML Cite \textit{A. Khaliq} and \textit{Sk. S. Hassan}, Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 181--202 (2022; Zbl 1490.39019) Full Text: DOI OpenURL
Okubo, Naoto; Suzuki, Takao Generalized \(q\)-Painlevé VI systems of type \((A_{2n+1}+A_1+A_1)^{(1)}\) arising from cluster algebra. (English) Zbl 1497.37070 Int. Math. Res. Not. 2022, No. 9, 6561-6607 (2022). MSC: 37J37 37J70 37J65 14E05 39A13 39A36 13F60 PDF BibTeX XML Cite \textit{N. Okubo} and \textit{T. Suzuki}, Int. Math. Res. Not. 2022, No. 9, 6561--6607 (2022; Zbl 1497.37070) Full Text: DOI arXiv OpenURL
Vabishchevich, Petr N. Factorized schemes for first and second order evolution equations with fractional powers of operators. (English) Zbl 07516755 Comput. Methods Appl. Math. 22, No. 2, 493-510 (2022). MSC: 65Mxx 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Comput. Methods Appl. Math. 22, No. 2, 493--510 (2022; Zbl 07516755) Full Text: DOI OpenURL
Wang, Zheng; Huang, Zhi Gang On transcendental directions of entire solutions of linear differential equations. (English) Zbl 1485.34211 AIMS Math. 7, No. 1, 276-287 (2022). MSC: 34M10 30D35 37F10 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{Z. G. Huang}, AIMS Math. 7, No. 1, 276--287 (2022; Zbl 1485.34211) Full Text: DOI OpenURL
Wei, Kangning Involutions of Halphen pencils of index 2 and discrete integrable systems. (English) Zbl 07506353 Math. Phys. Anal. Geom. 25, No. 1, Paper No. 5, 9 p. (2022). MSC: 37J70 37J38 39A36 14E05 14E07 PDF BibTeX XML Cite \textit{K. Wei}, Math. Phys. Anal. Geom. 25, No. 1, Paper No. 5, 9 p. (2022; Zbl 07506353) Full Text: DOI arXiv OpenURL
Ingram, Patrick Effective finiteness of solutions to certain differential and difference equations. (English) Zbl 1489.39021 Can. Math. Bull. 65, No. 1, 52-67 (2022). Reviewer: Risto Korhonen (Joensuu) MSC: 39A45 39A22 30D05 30D35 34M05 34C11 11G50 PDF BibTeX XML Cite \textit{P. Ingram}, Can. Math. Bull. 65, No. 1, 52--67 (2022; Zbl 1489.39021) Full Text: DOI arXiv OpenURL
Göcen, Melih; Cebeci, Adem Form of the periodic solutions of some systems of higher order difference equations. (English) Zbl 1485.39023 Asian-Eur. J. Math. 15, No. 2, Article ID 2250029, 16 p. (2022). MSC: 39A23 39A20 39A22 PDF BibTeX XML Cite \textit{M. Göcen} and \textit{A. Cebeci}, Asian-Eur. J. Math. 15, No. 2, Article ID 2250029, 16 p. (2022; Zbl 1485.39023) Full Text: DOI OpenURL
Vabishchevich, Petr N. Some methods for solving equations with an operator function and applications for problems with a fractional power of an operator. (English) Zbl 07474422 J. Comput. Appl. Math. 407, Article ID 114096, 13 p. (2022). MSC: 65Mxx 26A33 35R11 65F60 65M06 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 407, Article ID 114096, 13 p. (2022; Zbl 07474422) Full Text: DOI arXiv OpenURL
Saleh, Mohammad; Herzallah, Shahd Dynamics and bifurcation of a second order rational difference equation with quadratic terms. (English) Zbl 1485.39025 J. Appl. Nonlinear Dyn. 10, No. 3, 563-578 (2021). MSC: 39A28 PDF BibTeX XML Cite \textit{M. Saleh} and \textit{S. Herzallah}, J. Appl. Nonlinear Dyn. 10, No. 3, 563--578 (2021; Zbl 1485.39025) Full Text: DOI OpenURL
Zayed, Elsayed M. E.; Alngar, Mohamed E. M. Dynamics of a higher order nonlinear rational difference equation. (English) Zbl 1483.39004 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 357-367 (2021). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. E. M. Alngar}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 357--367 (2021; Zbl 1483.39004) Full Text: Link OpenURL
Djafri, N.; Hamaiziaf, T.; Derouiche, F. Boundedness and dynamics of a modified discrete chaotic system with rational fraction. (English) Zbl 1499.39080 Nonlinear Dyn. Syst. Theory 21, No. 1, 68-75 (2021). MSC: 39A33 39A28 PDF BibTeX XML Cite \textit{N. Djafri} et al., Nonlinear Dyn. Syst. Theory 21, No. 1, 68--75 (2021; Zbl 1499.39080) Full Text: Link OpenURL
Linero Bas, A.; Nieves Roldán, D. Periods of a max-type equation. (English) Zbl 1479.39014 J. Difference Equ. Appl. 27, No. 11, 1608-1645 (2021). MSC: 39A23 37E15 PDF BibTeX XML Cite \textit{A. Linero Bas} and \textit{D. Nieves Roldán}, J. Difference Equ. Appl. 27, No. 11, 1608--1645 (2021; Zbl 1479.39014) Full Text: DOI arXiv OpenURL
Schmalian, Misha; Suris, Yuri B.; Tumarkin, Yuriy How one can repair non-integrable Kahan discretizations. II: A planar system with invariant curves of degree 6. (English) Zbl 1485.37063 Math. Phys. Anal. Geom. 24, No. 4, Paper No. 40, 19 p. (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 37J70 37M15 39A36 14E05 14H70 PDF BibTeX XML Cite \textit{M. Schmalian} et al., Math. Phys. Anal. Geom. 24, No. 4, Paper No. 40, 19 p. (2021; Zbl 1485.37063) Full Text: DOI arXiv OpenURL
Esmaeelzadeh, Zahra; Abdi, Ali; Hojjati, Gholamreza EBDF-type methods based on the linear barycentric rational interpolants for stiff IVPs. (English) Zbl 1475.65046 J. Appl. Math. Comput. 66, No. 1-2, 835-851 (2021). MSC: 65L04 65L05 65L12 65L20 PDF BibTeX XML Cite \textit{Z. Esmaeelzadeh} et al., J. Appl. Math. Comput. 66, No. 1--2, 835--851 (2021; Zbl 1475.65046) Full Text: DOI OpenURL
Dannan, Fozi M. Rational difference equations with parameter, boundedness and periodic solutions. (English) Zbl 1476.39015 J. Difference Equ. Appl. 27, No. 8, 1161-1172 (2021). MSC: 39A22 39A23 PDF BibTeX XML Cite \textit{F. M. Dannan}, J. Difference Equ. Appl. 27, No. 8, 1161--1172 (2021; Zbl 1476.39015) Full Text: DOI OpenURL
Gardini, Laura; Schmitt, Noemi; Sushko, Iryna; Tramontana, Fabio; Westerhoff, Frank Necessary and sufficient conditions for the roots of a cubic polynomial and bifurcations of codimension-1, -2, -3 for 3D maps. (English) Zbl 1481.39015 J. Difference Equ. Appl. 27, No. 4, 557-578 (2021). MSC: 39A28 37G10 39A60 26C10 30C15 65H04 PDF BibTeX XML Cite \textit{L. Gardini} et al., J. Difference Equ. Appl. 27, No. 4, 557--578 (2021; Zbl 1481.39015) Full Text: DOI Link OpenURL
Xu, Ming-Ming; Sulaiman, Jumat; Ali, Labiyana Hanif Half-sweep SOR iterative method using linear rational finite difference approximation for first-order Fredholm integro-differential equations. (English) Zbl 1470.65222 Int. J. Math. Comput. Sci. 16, No. 4, 1555-1570 (2021). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{M.-M. Xu} et al., Int. J. Math. Comput. Sci. 16, No. 4, 1555--1570 (2021; Zbl 1470.65222) Full Text: Link OpenURL
Camouzis, E.; Kotsios, S. May’s host-parasitoid geometric series model with a variable coefficient. (English) Zbl 1473.39003 Results Appl. Math. 11, Article ID 100160, 5 p. (2021). MSC: 39A10 39A22 39A23 39A50 PDF BibTeX XML Cite \textit{E. Camouzis} and \textit{S. Kotsios}, Results Appl. Math. 11, Article ID 100160, 5 p. (2021; Zbl 1473.39003) Full Text: DOI OpenURL
Zander, René On the singularity structure of Kahan discretizations of a class of quadratic vector fields. (English) Zbl 1489.37081 Eur. J. Math. 7, No. 3, 1046-1073 (2021). Reviewer: Florian Beck (Hamburg) MSC: 37J70 37J35 37J30 14H70 14E05 39A36 PDF BibTeX XML Cite \textit{R. Zander}, Eur. J. Math. 7, No. 3, 1046--1073 (2021; Zbl 1489.37081) Full Text: DOI arXiv OpenURL
Li, Xian-yi; Li, Wei Global asymptotical stability in a rational difference equation. (English) Zbl 1474.39049 Appl. Math., Ser. B (Engl. Ed.) 36, No. 1, 51-59 (2021). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{X.-y. Li} and \textit{W. Li}, Appl. Math., Ser. B (Engl. Ed.) 36, No. 1, 51--59 (2021; Zbl 1474.39049) Full Text: DOI OpenURL
Ishizaki, Katsuya; Korhonen, Risto; Li, Nan; Tohge, Kazuya A Stothers-Mason theorem with a difference radical. (English) Zbl 1473.30019 Math. Z. 298, No. 1-2, 671-696 (2021). Reviewer: Indrajit Lahiri (Kalyani) MSC: 30D35 30C10 39A10 PDF BibTeX XML Cite \textit{K. Ishizaki} et al., Math. Z. 298, No. 1--2, 671--696 (2021; Zbl 1473.30019) Full Text: DOI arXiv OpenURL
Vabishchevich, Petr N. Splitting schemes for non-stationary problems with a rational approximation for fractional powers of the operator. (English) Zbl 1475.65082 Appl. Numer. Math. 165, 414-430 (2021). MSC: 65M06 41A20 26A33 35R11 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Appl. Numer. Math. 165, 414--430 (2021; Zbl 1475.65082) Full Text: DOI arXiv OpenURL
Abramov, Sergei A.; Bronstein, Manuel; Petkovšek, Marko; Schneider, Carsten On rational and hypergeometric solutions of linear ordinary difference equations in \(\Pi\Sigma^\ast\)-field extensions. (English) Zbl 1483.12005 J. Symb. Comput. 107, 23-66 (2021). Reviewer: Christoph Koutschan (Linz) MSC: 12H10 39A06 68W30 PDF BibTeX XML Cite \textit{S. A. Abramov} et al., J. Symb. Comput. 107, 23--66 (2021; Zbl 1483.12005) Full Text: DOI arXiv OpenURL
Petrera, Matteo; Suris, Yuri B.; Wei, Kangning; Zander, René Manin involutions for elliptic pencils and discrete integrable systems. (English) Zbl 07345856 Math. Phys. Anal. Geom. 24, No. 1, Paper No. 6, 26 p. (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 37J70 37J38 39A36 14H70 14H45 14E05 14E07 PDF BibTeX XML Cite \textit{M. Petrera} et al., Math. Phys. Anal. Geom. 24, No. 1, Paper No. 6, 26 p. (2021; Zbl 07345856) Full Text: DOI arXiv OpenURL
Biala, T. A.; Khaliq, Abdul Q. M. Predictor-corrector schemes for nonlinear space-fractional parabolic PDEs with time-dependent boundary conditions. (English) Zbl 1460.65111 Appl. Numer. Math. 160, 1-22 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M22 65M06 65N06 65D32 65L10 41A21 35R11 65M15 PDF BibTeX XML Cite \textit{T. A. Biala} and \textit{A. Q. M. Khaliq}, Appl. Numer. Math. 160, 1--22 (2021; Zbl 1460.65111) Full Text: DOI OpenURL
Oğul, Burak; Simşek, Dağıstan; Ibrahim, Tarek F. Solution of rational difference equation. (English) Zbl 1456.39001 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 125-141 (2021). MSC: 39A10 39A30 PDF BibTeX XML Cite \textit{B. Oğul} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 2, 125--141 (2021; Zbl 1456.39001) Full Text: Link OpenURL
Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei An algebraic description of the bispectrality of the biorthogonal rational functions of Hahn type. (English) Zbl 1456.33011 Proc. Am. Math. Soc. 149, No. 2, 715-728 (2021). Reviewer: Francisco Marcellán (Leganes) MSC: 33C45 33C80 PDF BibTeX XML Cite \textit{S. Tsujimoto} et al., Proc. Am. Math. Soc. 149, No. 2, 715--728 (2021; Zbl 1456.33011) Full Text: DOI arXiv OpenURL
Bektaş, Mehmet; Yilmaz, Münevver Yildirim (\(k, m)\)-type slant helices for partially null and pseudo null curves in Minkowski space \(\mathbb{E}_1^4\). (English) Zbl 07664159 Appl. Math. Nonlinear Sci. 5, No. 1, 515-520 (2020). MSC: 53A05 PDF BibTeX XML Cite \textit{M. Bektaş} and \textit{M. Y. Yilmaz}, Appl. Math. Nonlinear Sci. 5, No. 1, 515--520 (2020; Zbl 07664159) Full Text: DOI OpenURL
Simsek, Dagistan; Ogul, Burak; Abdullayev, Fahreddin Solution of the rational difference equation \(x_{n + 1} = \frac{x_{n-13}} {1+x_{n-1}x_{n-3}x_{n-5}x_{n-7}x_{n-9}x_{n-11}}\). (English) Zbl 07664155 Appl. Math. Nonlinear Sci. 5, No. 1, 485-494 (2020). MSC: 39A10 PDF BibTeX XML Cite \textit{D. Simsek} et al., Appl. Math. Nonlinear Sci. 5, No. 1, 485--494 (2020; Zbl 07664155) Full Text: DOI OpenURL
Petrera, Matteo; Suris, Yuri B.; Zander, René How one can repair non-integrable Kahan discretizations. (English) Zbl 07644740 J. Phys. A, Math. Theor. 53, No. 37, Article ID 37LT01, 7 p. (2020). MSC: 37J70 37J38 39A36 14H70 14H45 14E05 14E07 PDF BibTeX XML Cite \textit{M. Petrera} et al., J. Phys. A, Math. Theor. 53, No. 37, Article ID 37LT01, 7 p. (2020; Zbl 07644740) Full Text: DOI arXiv OpenURL
Gubbiotti, G.; Joshi, N.; Tran, D. T.; Viallet, C.-M. Bi-rational maps in four dimensions with two invariants. (English) Zbl 07640223 J. Phys. A, Math. Theor. 53, No. 11, Article ID 115201, 24 p. (2020). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{G. Gubbiotti} et al., J. Phys. A, Math. Theor. 53, No. 11, Article ID 115201, 24 p. (2020; Zbl 07640223) Full Text: DOI arXiv OpenURL
Hassan, Sk. Sarif; Mondal, Soma; Mandal, Swagata; Sau, Chumki Asymptotic dynamics of a class of third order rational difference equations. (English) Zbl 1499.39029 Far East J. Dyn. Syst. 32, No. 1, 21-49 (2020). MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{Sk. S. Hassan} et al., Far East J. Dyn. Syst. 32, No. 1, 21--49 (2020; Zbl 1499.39029) Full Text: DOI OpenURL
Fang, Mingliang; Yang, Degui; Liu, Dan Value distribution of meromorphic functions concerning rational functions and differences. (English) Zbl 1485.30011 Adv. Difference Equ. 2020, Paper No. 692, 12 p. (2020). MSC: 30D35 30D30 39A45 PDF BibTeX XML Cite \textit{M. Fang} et al., Adv. Difference Equ. 2020, Paper No. 692, 12 p. (2020; Zbl 1485.30011) Full Text: DOI OpenURL
Li, Jian; Liu, Kai Sharing values of \(q\)-difference-differential polynomials. (English) Zbl 1482.30091 Adv. Difference Equ. 2020, Paper No. 212, 11 p. (2020). MSC: 30D35 39A45 30C15 PDF BibTeX XML Cite \textit{J. Li} and \textit{K. Liu}, Adv. Difference Equ. 2020, Paper No. 212, 11 p. (2020; Zbl 1482.30091) Full Text: DOI OpenURL
Wen, Xiao-Yong; Yan, Zhenya; Zhang, Guoqiang Nonlinear self-dual network equations: modulation instability, interactions of higher-order discrete vector rational solitons and dynamical behaviours. (English) Zbl 1472.78029 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2242, Article ID 20200512, 22 p. (2020). MSC: 78A60 34A33 37K40 37K60 78M20 PDF BibTeX XML Cite \textit{X.-Y. Wen} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2242, Article ID 20200512, 22 p. (2020; Zbl 1472.78029) Full Text: DOI Link OpenURL
Buşe, Constantin; O’Regan, D. A surjectivity problem for matrices and null controllability for difference and differential matrix equations. (English) Zbl 1476.30028 Surv. Math. Appl. 15, 419-424 (2020). MSC: 30C15 15A24 PDF BibTeX XML Cite \textit{C. Buşe} and \textit{D. O'Regan}, Surv. Math. Appl. 15, 419--424 (2020; Zbl 1476.30028) Full Text: Link OpenURL
Bastien, Guy; Rogalski, Marc QRT-families of degree four biquadratic curves each of them has genus zero, associated dynamical systems. (English) Zbl 1473.39033 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 369-377 (2020). MSC: 39A36 37J70 14E05 14H70 PDF BibTeX XML Cite \textit{G. Bastien} and \textit{M. Rogalski}, Springer Proc. Math. Stat. 341, 369--377 (2020; Zbl 1473.39033) Full Text: DOI OpenURL
Kostrov, Yevgeniy; Kudlak, Zachary On a second-order rational difference equation with quadratic terms. II. (English) Zbl 1472.39028 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 279-296 (2020). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{Y. Kostrov} and \textit{Z. Kudlak}, Springer Proc. Math. Stat. 341, 279--296 (2020; Zbl 1472.39028) Full Text: DOI OpenURL
Heim, Bernhard; Neuhauser, Markus Difference equations related to number theory. (English) Zbl 1472.39032 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 245-255 (2020). Reviewer: Enzo Bonacci (Latina) MSC: 39A60 39-06 11B37 11B83 30C10 11F20 11Z05 33C45 PDF BibTeX XML Cite \textit{B. Heim} and \textit{M. Neuhauser}, Springer Proc. Math. Stat. 341, 245--255 (2020; Zbl 1472.39032) Full Text: DOI OpenURL
Bektešević, Jasmin; Destović, Fatih; Hadžiabdić, Vahidin; Mehuljić, Midhat The global dynamics of a quartic difference equation. (English) Zbl 1488.39053 Math. Montisnigri 47, 43-51 (2020). MSC: 39A45 39A30 39A23 37F10 PDF BibTeX XML Cite \textit{J. Bektešević} et al., Math. Montisnigri 47, 43--51 (2020; Zbl 1488.39053) Full Text: DOI OpenURL
Gubbiotti, Giorgio; Joshi, Nalini Space of initial values of a map with a quartic invariant. (English) Zbl 1464.14019 Bull. Aust. Math. Soc. 103, No. 3, 438-449 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14E05 14E15 14H70 14J17 37F10 39A10 PDF BibTeX XML Cite \textit{G. Gubbiotti} and \textit{N. Joshi}, Bull. Aust. Math. Soc. 103, No. 3, 438--449 (2020; Zbl 1464.14019) Full Text: DOI arXiv OpenURL
Klevchuk, I. I. Investigation of difference equations with a rational right-hand sides. (Ukrainian. English summary) Zbl 1474.39046 Bukovyn. Mat. Zh. 8, No. 2, 71-82 (2020). MSC: 39A28 PDF BibTeX XML Cite \textit{I. I. Klevchuk}, Bukovyn. Mat. Zh. 8, No. 2, 71--82 (2020; Zbl 1474.39046) Full Text: DOI OpenURL
Hone, A. N. W.; Quispel, G. R. W. Analogues of Kahan’s method for higher order equations of higher degree. (English) Zbl 1464.37068 Nijhoff, Frank (ed.) et al., Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9–13, 2018. Cham: Springer. Springer Proc. Math. Stat. 338, 175-189 (2020). MSC: 37J70 37J35 39A36 37M15 37K60 14E05 65P10 PDF BibTeX XML Cite \textit{A. N. W. Hone} and \textit{G. R. W. Quispel}, Springer Proc. Math. Stat. 338, 175--189 (2020; Zbl 1464.37068) Full Text: DOI arXiv Link OpenURL
Carstea, Adrian Stefan; Takenawa, Tomoyuki An algebraically stable variety for a four-dimensional dynamical system reduced from the lattice super-KdV equation. (English) Zbl 1462.37081 Nijhoff, Frank (ed.) et al., Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9–13, 2018. Cham: Springer. Springer Proc. Math. Stat. 338, 43-53 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 37K60 37K20 37J70 39A14 39A36 14E05 PDF BibTeX XML Cite \textit{A. S. Carstea} and \textit{T. Takenawa}, Springer Proc. Math. Stat. 338, 43--53 (2020; Zbl 1462.37081) Full Text: DOI arXiv OpenURL
Gubbiotti, Giorgio; Joshi, Nalini; Tran, Dinh Thi; Viallet, Claude-Michel Complexity and integrability in 4D bi-rational maps with two invariants. (English) Zbl 1464.37067 Nijhoff, Frank (ed.) et al., Asymptotic, algebraic and geometric aspects of integrable systems. In honor of Nalini Joshi on her 60th birthday. Selected papers of the workshop, TSIMF, Sanya, China, April 9–13, 2018. Cham: Springer. Springer Proc. Math. Stat. 338, 17-36 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 37J70 39A36 14E05 PDF BibTeX XML Cite \textit{G. Gubbiotti} et al., Springer Proc. Math. Stat. 338, 17--36 (2020; Zbl 1464.37067) Full Text: DOI arXiv OpenURL
Bridy, Andrew; Garton, Derek The cycle structure of unicritical polynomials. (English) Zbl 1465.37110 Int. Math. Res. Not. 2020, No. 23, 9120-9147 (2020). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 37P05 37P35 37H10 11Y05 11A51 12D05 PDF BibTeX XML Cite \textit{A. Bridy} and \textit{D. Garton}, Int. Math. Res. Not. 2020, No. 23, 9120--9147 (2020; Zbl 1465.37110) Full Text: DOI arXiv OpenURL
Ghioca, Dragos; Xie, Junyi [Wibmer, Michael] The dynamical Mordell-Lang conjecture for skew-linear self-maps. Appendix by Michael Wibmer. (English) Zbl 1467.37095 Int. Math. Res. Not. 2020, No. 21, 7433-7453 (2020). MSC: 37P05 11S82 14E05 39A10 PDF BibTeX XML Cite \textit{D. Ghioca} and \textit{J. Xie}, Int. Math. Res. Not. 2020, No. 21, 7433--7453 (2020; Zbl 1467.37095) Full Text: DOI OpenURL
Georgiev, Svetlin G. Asymptotic behaviour of the solutions of a class of \((k+1)\)-order rational difference equations. (English) Zbl 1474.39025 Sarajevo J. Math. 16(29), No. 2, 237-244 (2020). MSC: 39A22 39A20 PDF BibTeX XML Cite \textit{S. G. Georgiev}, Sarajevo J. Math. 16(29), No. 2, 237--244 (2020; Zbl 1474.39025) OpenURL
Cruz, Inês; Mena-Matos, Helena; Sousa-Dias, Esmeralda The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps. (English) Zbl 1456.53066 J. Geom. Mech. 12, No. 3, 363-375 (2020). MSC: 53D17 37J11 57R30 37J06 39A20 13F60 14E05 PDF BibTeX XML Cite \textit{I. Cruz} et al., J. Geom. Mech. 12, No. 3, 363--375 (2020; Zbl 1456.53066) Full Text: DOI OpenURL
Li, Bu Sheng; Ying, Rui; Zheng, Xiu Min; Xu, Hong Yan Results on solutions for several \(q\)-Painlevé difference equations concerning rational solutions, zeros, and poles. (English) Zbl 1489.39006 J. Math. 2020, Article ID 3781942, 10 p. (2020). MSC: 39A13 30C15 30D35 33E17 37K65 PDF BibTeX XML Cite \textit{B. S. Li} et al., J. Math. 2020, Article ID 3781942, 10 p. (2020; Zbl 1489.39006) Full Text: DOI OpenURL
Khelifa, Amira; Halim, Yacine; Bouchair, Abderrahmane; Berkal, Massaoud On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers. (English) Zbl 1478.39006 Math. Slovaca 70, No. 3, 641-656 (2020). MSC: 39A20 11B39 PDF BibTeX XML Cite \textit{A. Khelifa} et al., Math. Slovaca 70, No. 3, 641--656 (2020; Zbl 1478.39006) Full Text: DOI OpenURL
Doliwa, Adam; Kashaev, Rinat M. Non-commutative birational maps satisfying Zamolodchikov equation, and Desargues lattices. (English) Zbl 1470.37097 J. Math. Phys. 61, No. 9, 092704, 23 p. (2020). Reviewer: Marzia Mazzotta (Lecce) MSC: 37K60 39A36 14E05 16T25 81R12 PDF BibTeX XML Cite \textit{A. Doliwa} and \textit{R. M. Kashaev}, J. Math. Phys. 61, No. 9, 092704, 23 p. (2020; Zbl 1470.37097) Full Text: DOI arXiv OpenURL
Chen, Jinchao; Li, Yezhou; Wu, Chengfa Radial distribution of Julia sets of entire solutions to complex difference equations. (English) Zbl 1452.30018 Mediterr. J. Math. 17, No. 6, Paper No. 184, 11 p. (2020). MSC: 30D35 34M10 37F10 PDF BibTeX XML Cite \textit{J. Chen} et al., Mediterr. J. Math. 17, No. 6, Paper No. 184, 11 p. (2020; Zbl 1452.30018) Full Text: DOI OpenURL
Georgiev, Svetlin Asymptotic behaviour of the solutions of a class of rational difference equations. (English) Zbl 1450.39004 Nonlinear Stud. 27, No. 2, 389-392 (2020). MSC: 39A20 39A10 PDF BibTeX XML Cite \textit{S. Georgiev}, Nonlinear Stud. 27, No. 2, 389--392 (2020; Zbl 1450.39004) Full Text: Link OpenURL
Peng, Chang-Wen; Huang, Hua-Wei The growth of meromorphic solutions for \(q\)-difference Painlevé IV equation. (English) Zbl 1450.30048 J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020). MSC: 30D30 34M05 PDF BibTeX XML Cite \textit{C.-W. Peng} and \textit{H.-W. Huang}, J. Math. Anal. Appl. 492, No. 2, Article ID 124485, 14 p. (2020; Zbl 1450.30048) Full Text: DOI OpenURL
Belhannache, Farida On the stability of a system of difference equations. (English) Zbl 1463.39036 Electron. J. Math. Anal. Appl. 8, No. 2, 109-114 (2020). MSC: 39A30 39A21 PDF BibTeX XML Cite \textit{F. Belhannache}, Electron. J. Math. Anal. Appl. 8, No. 2, 109--114 (2020; Zbl 1463.39036) Full Text: Link OpenURL
Zayed, Elsayed M. E. On the dynamics of a new nonlinear rational difference equation. (English) Zbl 1443.39010 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153-165 (2020). MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{E. M. E. Zayed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 153--165 (2020; Zbl 1443.39010) Full Text: Link OpenURL
Kostrov, Yevgeniy; Kudlak, Zachary; Vernon, Patrick On the boundedness character of a rational system of difference equations with non-constant coefficients. (English) Zbl 1442.39011 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 312, 267-295 (2020). MSC: 39A22 39A23 PDF BibTeX XML Cite \textit{Y. Kostrov} et al., Springer Proc. Math. Stat. 312, 267--295 (2020; Zbl 1442.39011) Full Text: DOI OpenURL
Vo, Thieu N.; Zhang, Yi Rational solutions of first-order algebraic ordinary difference equations. (English) Zbl 1436.39001 Adv. Appl. Math. 117, Article ID 102018, 28 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 39A05 39A22 14H05 14H45 PDF BibTeX XML Cite \textit{T. N. Vo} and \textit{Y. Zhang}, Adv. Appl. Math. 117, Article ID 102018, 28 p. (2020; Zbl 1436.39001) Full Text: DOI arXiv OpenURL
Sarumi, Ibrahim O.; Furati, Khaled M.; Khaliq, Abdul Q. M. Highly accurate global Padé approximations of generalized Mittag-Leffler function and its inverse. (English) Zbl 1440.65100 J. Sci. Comput. 82, No. 2, Paper No. 46, 27 p. (2020). MSC: 65M06 33E12 41A21 35C20 26A33 35R11 74F10 74K20 35Q74 PDF BibTeX XML Cite \textit{I. O. Sarumi} et al., J. Sci. Comput. 82, No. 2, Paper No. 46, 27 p. (2020; Zbl 1440.65100) Full Text: DOI arXiv OpenURL
Xu, Hong Yan; Tu, Jin Existence of rational solutions for \(q\)-difference Painlevé equations. (English) Zbl 1437.39001 Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020). Reviewer: Jacques Sauloy (Toulouse) MSC: 39A13 39A12 30D35 34M55 37J65 PDF BibTeX XML Cite \textit{H. Y. Xu} and \textit{J. Tu}, Electron. J. Differ. Equ. 2020, Paper No. 14, 14 p. (2020; Zbl 1437.39001) Full Text: Link OpenURL
Celledoni, E.; Evripidou, C.; McLaren, D. I.; Owren, B.; Quispel, G. R. W.; Tapley, B. K.; van der Kamp, P. H. Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps. (English) Zbl 07630957 J. Phys. A, Math. Theor. 52, No. 31, Article ID 31LT01, 11 p. (2019). MSC: 37J70 37J35 37M15 37M21 39A36 14E05 PDF BibTeX XML Cite \textit{E. Celledoni} et al., J. Phys. A, Math. Theor. 52, No. 31, Article ID 31LT01, 11 p. (2019; Zbl 07630957) Full Text: DOI arXiv OpenURL
Chen, Minfeng; Gao, Zongsheng; Zhang, Jilong Value distribution of meromorphic solutions of certain non-linear difference equations. (English) Zbl 1499.30269 Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 4, 1173-1184 (2019). MSC: 30D35 34M05 39B32 PDF BibTeX XML Cite \textit{M. Chen} et al., Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 4, 1173--1184 (2019; Zbl 1499.30269) Full Text: DOI OpenURL
Alotaibi, A. M.; Noorani, M. S. M.; El-Moneam, M. A. On the periodicity of the solution of a rational difference equation. (English) Zbl 1492.39007 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 1427-1434 (2019). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{A. M. Alotaibi} et al., Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 2, 1427--1434 (2019; Zbl 1492.39007) Full Text: DOI OpenURL
Simşek, Dağıstan Solution of the rational difference equation \(x_{n+1} = \frac{x_{n -17}}{1+x_{n -5}.x_{n -11}}\). (English) Zbl 1499.39034 Filomat 33, No. 5, 1353-1359 (2019). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{D. Simşek}, Filomat 33, No. 5, 1353--1359 (2019; Zbl 1499.39034) Full Text: DOI OpenURL
El-Metwally, Hamdy A.; Elabbasy, E.; Al-Kaff, M. On the dynamics of some recursive sequences. (English) Zbl 1480.39007 J. Fract. Calc. Appl. 10, No. 2, 176-190 (2019). MSC: 39A22 39A20 39A30 PDF BibTeX XML Cite \textit{H. A. El-Metwally} et al., J. Fract. Calc. Appl. 10, No. 2, 176--190 (2019; Zbl 1480.39007) Full Text: Link OpenURL
Barkatou, Moulay; Cluzeau, Thomas; El Hajj, Ali Simple forms and rational solutions of pseudo-linear systems. (English) Zbl 1467.34012 Bradford, Russell (ed.), Proceedings of the 44th international symposium on symbolic and algebraic computation, ISSAC ’19, Beijing, China, July 15–18, 2019. New York, NY: Association for Computing Machinery (ACM). 26-33 (2019). MSC: 34A30 39A10 68W30 PDF BibTeX XML Cite \textit{M. Barkatou} et al., in: Proceedings of the 44th international symposium on symbolic and algebraic computation, ISSAC '19, Beijing, China, July 15--18, 2019. New York, NY: Association for Computing Machinery (ACM). 26--33 (2019; Zbl 1467.34012) Full Text: DOI OpenURL
Folly-Gbetoula, Mensah; Mnguni, Nkosingiphile; Kara, A. H. A group theory approach towards some rational difference equations. (English) Zbl 1454.39003 J. Math. 2019, Article ID 1505619, 9 p. (2019). Reviewer: Josef Diblík (Brno) MSC: 39A05 39A13 39A22 70G65 PDF BibTeX XML Cite \textit{M. Folly-Gbetoula} et al., J. Math. 2019, Article ID 1505619, 9 p. (2019; Zbl 1454.39003) Full Text: DOI arXiv OpenURL
Petrera, Matteo; Suris, Yuri B. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. II: Systems with a linear Poisson tensor. (English) Zbl 1457.37085 J. Comput. Dyn. 6, No. 2, 401-408 (2019). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J70 65P10 37M15 37J35 14E05 39A36 PDF BibTeX XML Cite \textit{M. Petrera} and \textit{Y. B. Suris}, J. Comput. Dyn. 6, No. 2, 401--408 (2019; Zbl 1457.37085) Full Text: DOI arXiv OpenURL
Harizanov, Stanislav; Lazarov, Raytcho; Margenov, Svetozar; Marinov, Pencho; Pasciak, Joseph Comparison analysis of two numerical methods for fractional diffusion problems based on the best rational approximations of \(t^\gamma\) on \([0, 1]\). (English) Zbl 1429.65064 Apel, Thomas (ed.) et al., Advanced finite element methods with applications. Selected papers from the 30th Chemnitz finite element symposium, St. Wolfgang/Strobl, Austria, September 25–27, 2017. Cham: Springer. Lect. Notes Comput. Sci. Eng. 128, 165-185 (2019). MSC: 65F10 65F15 65D32 35R11 65N30 65N06 65K10 41A20 15A18 35J05 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Lect. Notes Comput. Sci. Eng. 128, 165--185 (2019; Zbl 1429.65064) Full Text: DOI arXiv OpenURL
Wang, Qiong; Long, Fang; Wang, Jun Some results on difference Riccati equations and delay differential equations. (Chinese. English summary) Zbl 1449.30049 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 832-838 (2019). MSC: 30D05 30D35 34M05 39B32 PDF BibTeX XML Cite \textit{Q. Wang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 4, 832--838 (2019; Zbl 1449.30049) OpenURL
Petrera, Matteo; Smirin, Jennifer; Suris, Yuri B. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. (English) Zbl 1501.37068 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2223, Article ID 20180761, 13 p. (2019). MSC: 37J70 39A36 14E05 14H52 PDF BibTeX XML Cite \textit{M. Petrera} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2223, Article ID 20180761, 13 p. (2019; Zbl 1501.37068) Full Text: DOI arXiv Link OpenURL
Arar, Nouria Rational approximation of the head equation in unbounded domain. ([Rational approximation of the heat equation in unbounded domain].) (English) Zbl 1438.65281 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 9-20 (2019). MSC: 65N30 35A35 35K20 PDF BibTeX XML Cite \textit{N. Arar}, Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 12(61), No. 1, 9--20 (2019; Zbl 1438.65281) Full Text: DOI OpenURL
Bahl, Ashu; Cordero, Alicia; Sharma, Rajni; R. Torregrosa, Juan A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics. (English) Zbl 1429.65103 Appl. Math. Comput. 357, 147-166 (2019). MSC: 65H10 37F10 39A30 PDF BibTeX XML Cite \textit{A. Bahl} et al., Appl. Math. Comput. 357, 147--166 (2019; Zbl 1429.65103) Full Text: DOI OpenURL
Yashiro, Tabane; Minami, Ayane Discrete tomography for L-shaped window. (English) Zbl 1426.39022 Adv. Appl. Discrete Math. 20, No. 1, 37-60 (2019). MSC: 39A60 39A12 39A10 14K05 14C30 PDF BibTeX XML Cite \textit{T. Yashiro} and \textit{A. Minami}, Adv. Appl. Discrete Math. 20, No. 1, 37--60 (2019; Zbl 1426.39022) Full Text: DOI OpenURL
Zahra, W. K.; Elkholy, S. M.; Fahmy, M. Rational spline-nonstandard finite difference scheme for the solution of time-fractional Swift-Hohenberg equation. (English) Zbl 1429.65205 Appl. Math. Comput. 343, 372-387 (2019). MSC: 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{W. K. Zahra} et al., Appl. Math. Comput. 343, 372--387 (2019; Zbl 1429.65205) Full Text: DOI OpenURL
Cima, Anna; Zafar, Sundus Invariant fibrations for some birational maps of \(\mathbb{C}_2\). (English) Zbl 1428.14022 J. Difference Equ. Appl. 25, No. 8, 1107-1133 (2019). Reviewer: Shengyuan Zhao (Rennes) MSC: 14E07 32H50 14E05 37A25 26C15 28D20 39A23 PDF BibTeX XML Cite \textit{A. Cima} and \textit{S. Zafar}, J. Difference Equ. Appl. 25, No. 8, 1107--1133 (2019; Zbl 1428.14022) Full Text: DOI arXiv OpenURL
Zafar, Sundus; Cima, Anna Dynamical classification of a family of birational maps of \(\mathbb{C}^2\) via algebraic entropy. (English) Zbl 1440.37008 Qual. Theory Dyn. Syst. 18, No. 2, 631-652 (2019). MSC: 37A35 14E05 28D20 32H50 37C15 39A23 39A45 PDF BibTeX XML Cite \textit{S. Zafar} and \textit{A. Cima}, Qual. Theory Dyn. Syst. 18, No. 2, 631--652 (2019; Zbl 1440.37008) Full Text: DOI arXiv OpenURL
Sumi, Hiroki; Watanabe, Takayuki Non-i.i.d. random holomorphic dynamical systems and the probability of tending to infinity. (English) Zbl 1423.37047 Nonlinearity 32, No. 10, 3742-3771 (2019). MSC: 37F10 37H10 PDF BibTeX XML Cite \textit{H. Sumi} and \textit{T. Watanabe}, Nonlinearity 32, No. 10, 3742--3771 (2019; Zbl 1423.37047) Full Text: DOI arXiv OpenURL
Kojima, Kentaro; Sato, Tsukasa; Takemura, Kouichi Polynomial solutions of \(q\)-Heun equation and ultradiscrete limit. (English) Zbl 1420.39006 J. Difference Equ. Appl. 25, No. 5, 647-664 (2019). Reviewer: P. K. Banerji (Jodhpur) MSC: 39A13 33C05 33C45 33D15 33D60 30C15 PDF BibTeX XML Cite \textit{K. Kojima} et al., J. Difference Equ. Appl. 25, No. 5, 647--664 (2019; Zbl 1420.39006) Full Text: DOI arXiv OpenURL
Abdi, A.; Hosseini, S. A.; Podhaisky, H. Adaptive linear barycentric rational finite differences method for stiff ODEs. (English) Zbl 1503.65141 J. Comput. Appl. Math. 357, 204-214 (2019). MSC: 65L04 65L05 65L06 65L12 65D05 65L20 PDF BibTeX XML Cite \textit{A. Abdi} et al., J. Comput. Appl. Math. 357, 204--214 (2019; Zbl 1503.65141) Full Text: DOI OpenURL
Simşek, Dağıstan; Oğul, Burak; Imashkyzy, Meerim Solution of a rational difference equation. (English) Zbl 1411.39005 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 197-207 (2019). MSC: 39A10 PDF BibTeX XML Cite \textit{D. Simşek} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 3, 197--207 (2019; Zbl 1411.39005) Full Text: Link OpenURL
Galashin, Pavel; Pylyavskyy, Pavlo \(R\)-systems. (English) Zbl 1460.37041 Sel. Math., New Ser. 25, No. 2, Paper No. 22, 63 p. (2019). MSC: 37E15 37K60 39A36 14E05 06A07 PDF BibTeX XML Cite \textit{P. Galashin} and \textit{P. Pylyavskyy}, Sel. Math., New Ser. 25, No. 2, Paper No. 22, 63 p. (2019; Zbl 1460.37041) Full Text: DOI arXiv OpenURL
Zhao, Song-lin; Zhang, Da-jun Rational solutions to \(Q3_{\delta}\) in the Adler-Bobenko-Suris list and degenerations. (English) Zbl 1417.37242 J. Nonlinear Math. Phys. 26, No. 1, 107-132 (2019). MSC: 37K10 39A14 35Q51 35Q53 PDF BibTeX XML Cite \textit{S.-l. Zhao} and \textit{D.-j. Zhang}, J. Nonlinear Math. Phys. 26, No. 1, 107--132 (2019; Zbl 1417.37242) Full Text: DOI OpenURL
Hadžiabdić, Vahidin; Mehuljić, Midhat; Bektešević, Jasmin; Mujić, Naida The global behavior of a quadratic difference equation. (English) Zbl 1499.39046 Filomat 32, No. 18, 6203-6210 (2018). MSC: 39A22 39A30 39A45 37F10 PDF BibTeX XML Cite \textit{V. Hadžiabdić} et al., Filomat 32, No. 18, 6203--6210 (2018; Zbl 1499.39046) Full Text: DOI OpenURL
Nam, Young Woo Hyers-Ulam stability of hyperbolic Möbius difference equation. (English) Zbl 1499.39077 Filomat 32, No. 13, 4555-4575 (2018). MSC: 39A30 39A45 39A20 PDF BibTeX XML Cite \textit{Y. W. Nam}, Filomat 32, No. 13, 4555--4575 (2018; Zbl 1499.39077) Full Text: DOI arXiv OpenURL
Boonklurb, Ratinan; Neammai, Julaluk; Sukkrasanti, Vasana; Tantasuparuk, Theeruth Necessary and sufficient conditions for existence of an equilibrium and a periodic of prime period 2 solution of a certain rational difference equation. (English) Zbl 1465.39005 Chamchuri J. Math. 10, 1-13 (2018). MSC: 39A23 39A30 PDF BibTeX XML Cite \textit{R. Boonklurb} et al., Chamchuri J. Math. 10, 1--13 (2018; Zbl 1465.39005) Full Text: Link OpenURL