×

Interpolatory rational model order reduction of parametric problems lacking uniform inf-sup stability. (English) Zbl 1446.30045

Summary: We present a technique for the approximation of a class of Hilbert space-valued maps which arise within the framework of model order reduction (MOR) for parametric partial differential equations, whose solution map has a meromorphic structure. Our MOR strategy consists in constructing an explicit rational approximation based on few snapshots of the solution in an interpolatory fashion. Under some restrictions on the structure of the original problem, we describe a priori convergence results for our technique, hereafter called minimal rational interpolation, which show its ability to identify the main features (e.g., resonance locations) of the target solution map. We also investigate some procedures to obtain a posteriori error indicators, which may be employed to adapt the degree and the sampling points of the minimal rational interpolant. Finally, some numerical experiments are carried out to confirm the theoretical results and the effectiveness of our technique.

MSC:

30D30 Meromorphic functions of one complex variable (general theory)
41A20 Approximation by rational functions
41A25 Rate of convergence, degree of approximation
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P15 Estimates of eigenvalues in context of PDEs
65D15 Algorithms for approximation of functions

Software:

redbKIT; Loewner
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Antoulas, Approximation of large-scale dynamical systems: An overview, IFAC Proc. Vol., 37 (2004), pp. 19-28, https://doi.org/10.1016/s1474-6670(17)31584-7.
[2] A. Antoulas, C. Beattie, and S. Gugercin, Interpolatory Model Reduction of Large-Scale Dynamical Systems, Springer, Boston, MA, 2010, pp. 3-58, https://doi.org/10.1007/978-1-4419-5757-3_1. · Zbl 1229.65103
[3] J. Ash, A. Berele, and S. Catoiu, Plausible and genuine extensions of L’Hospital’s rule, Math. Mag., 85 (2012), pp. 52-60. · Zbl 1246.40001
[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719581. · Zbl 0965.65058
[5] G. A. Baker and P. R. Graves-Morris, Padé Approximants, Cambridge University Press, Cambridge, UK, 1996. · Zbl 0923.41001
[6] U. Baur, C. Beattie, P. Benner, and S. Gugercin, Interpolatory projection methods for parameterized model reduction, SIAM J. Sci. Comput., 33 (2011), pp. 2489-2518, https://doi.org/10.1137/090776925. · Zbl 1254.93032
[7] C. Beattie and S. Gugercin, Model reduction by rational interpolation, Comput. Sci. Eng., 15 (2014), pp. 297-334.
[8] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev., 46 (2004), pp. 501-517, https://doi.org/10.1137/s0036144502417715. · Zbl 1061.65006
[9] F. Bonizzoni, F. Nobile, and I. Perugia, Convergence analysis of Padé approximations for Helmholtz frequency response problems, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 1261-1284, https://doi.org/10.1051/m2an/2017050. · Zbl 1411.35079
[10] F. Bonizzoni, F. Nobile, I. Perugia, and D. Pradovera, Fast least-squares Padé approximation of problems with normal operators and meromorphic structure, Math. Comp., 89 (2020), pp. 1229-1257, https://doi.org/10.1090/mcom/3511. · Zbl 1435.30114
[11] F. Bonizzoni, F. Nobile, I. Perugia, and D. Pradovera, Least-squares Padé approximation of parametric and stochastic Helmholtz maps, Adv. Comput. Math., 46 (2020), 46, https://doi.org/10.1007/s10444-020-09749-3. · Zbl 1439.30058
[12] F. Bonizzoni and D. Pradovera, Distributed sampling for rational approximation of the acoustic scattering of an airfoil, PAMM Proc. Appl. Math. Mech., 19 (2019).
[13] L. Bos and N. Levenberg, On the calculation of approximate Fekete points: The univariate case, Electron. Trans. Numer. Anal., 30 (2008), pp. 377-397. · Zbl 1176.41001
[14] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242 (2013), pp. 623-647, https://doi.org/10.1016/j.jcp.2013.02.028. · Zbl 1299.76180
[15] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32 (2010), pp. 2737-2764, https://doi.org/10.1137/090766498. · Zbl 1217.65169
[16] Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez, Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations, SIAM J. Sci. Comput., 32 (2010), pp. 970-996, https://doi.org/10.1137/09075250X. · Zbl 1213.78011
[17] M. Chevreuil and A. Nouy, Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics, Internat. J. Numer. Methods Engrg., 89 (2012), pp. 241-268, https://doi.org/10.1002/nme.3249. · Zbl 1242.74028
[18] Z. Drmač, S. Gugercin, and C. Beattie, Quadrature-based vector fitting for discretized \(\mathcal{H}_2\) approximation, SIAM J. Sci. Comput., 37 (2015), pp. A625-A652, https://doi.org/10.1137/140961511. · Zbl 1320.93029
[19] F. Ferranti, L. Knockaert, and T. Dhaene, Passivity-preserving parametric macromodeling by means of scaled and shifted state-space systems, IEEE Trans. Microw. Theory Tech., 59 (2011), pp. 2394-2403, https://doi.org/10.1109/TMTT.2011.2164551.
[20] R. W. Freund, Model reduction methods based on Krylov subspaces, Acta Numer., 12 (2003), pp. 267-319, https://doi.org/10.1017/S0962492902000120. · Zbl 1046.65021
[21] M. Grepl, Y. Maday, N. Nguyen, and A. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM Math. Model. Numer. Anal., 41 (2007), pp. 575-605, https://doi.org/10.1051/m2an:2007031. · Zbl 1142.65078
[22] E. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL, 1997.
[23] S. Grivet-Talocia and B. Gustavsen, Passive Macromodeling: Theory and Applications, Wiley Ser. Microw. Opt. Eng., John Wiley & Sons, Hoboken, NJ, 2015, https://doi.org/10.1002/9781119140931.
[24] P. Guillaume, Nonlinear eigenproblems, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 575-595, https://doi.org/10.1137/S0895479897324172. · Zbl 0930.65060
[25] B. Gustavsen and A. Semlyen, Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Deliv., 14 (1999), pp. 1052-1061, https://doi.org/10.1109/61.772353.
[26] J. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, BCAM SpringerBriefs, Bilbao, Spain, 2016, https://doi.org/10.1007/978-3-319-22470-1. · Zbl 1329.65203
[27] E. Hille, Analytic Function Theory, 2nd ed., Chelsea, New York, 1965. · Zbl 0102.29401
[28] D. Huynh, G. Rozza, S. Sen, and A. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 473-478, https://doi.org/10.1016/j.crma.2007.09.019. · Zbl 1127.65086
[29] A. C. Ionita and A. C. Antoulas, Data-driven parametrized model reduction in the Loewner framework, SIAM J. Sci. Comput., 36 (2014), pp. A984-A1007, https://doi.org/10.1137/130914619. · Zbl 1297.65072
[30] C. Lei, Y. Wang, Q. Chen, and N. Wong, On Vector Fitting Methods in Signal / Power Integrity Applications, Lect. Notes Eng. Comput. Sci. 2181, Springer, Berlin, 2010.
[31] M. Lenoir, M. Vullierme-Ledard, and C. Hazard, Variational formulations for the determination of resonant states in scattering problems, SIAM J. Math. Anal., 23 (1992), pp. 579-608, https://doi.org/10.1137/0523030. · Zbl 0801.35098
[32] P. Monk, Finite Element Methods for Maxwell’s Equations, Clarendon, Oxford, UK, 2003. · Zbl 1024.78009
[33] H. Panzer, J. Mohring, R. Eid, and B. Lohmann, Parametric model order reduction by matrix interpolation, At-Automatisierungstechnik, 58 (2010), pp. 475-484, https://doi.org/10.1524/auto.2010.0863.
[34] D. Pradovera, Interpolatory rational model order reduction of parametric problems lacking uniform inf-sup stability - numerical tests, (2020), https://doi.org/10.5281/ZENODO.3653702.
[35] A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, Unitext 92, Springer, Cham, 2016. · Zbl 1337.65113
[36] G. Rozza, D. B. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Methods Eng., 15 (2008), pp. 229-275, https://doi.org/10.1007/s11831-008-9019-9. · Zbl 1304.65251
[37] S. Steinberg, Meromorphic families of compact operators, Arch. Rational Mech. Anal., 31 (1968), pp. 372-379, https://doi.org/10.1007/BF00251419. · Zbl 0167.43002
[38] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, AMS, Providence, RI, 1969.
[39] D. Weile, E. Michielssen, E. Grimme, and K. Gallivan, A method for generating rational interpolant reduced order models of two-parameter linear systems, Appl. Math. Lett., 12 (1999), pp. 93-102, https://doi.org/10.1016/S0893-9659(99)00063-4. · Zbl 0947.15001
[40] Y. Q. Xiao, S. Grivet-Talocia, P. Manfredi, and R. Khazaka, A novel framework for parametric Loewner matrix interpolation, IEEE Trans. Compon. Packag. Manuf. Technol., 9 (2019), pp. 2404-2417, https://doi.org/10.1109/tcpmt.2019.2948802.
[41] Y. Yue, L. Feng, and P. Benner, Reduced-order modelling of parametric systems via interpolation of heterogeneous surrogates, Adv. Model. Simul. Eng. Sci., 6 (2019), 10, https://doi.org/10.1186/s40323-019-0134-y.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.