Dáger, René; Navarro, Víctor; Negreanu, Mihaela Uniform boundedness for a predator-prey system with chemotaxis and dormancy of predators. (English) Zbl 07333608 Q. Appl. Math. 79, No. 2, 367-382 (2021). MSC: 35K57 35K59 35B45 35B50 92D25 92D40 PDF BibTeX XML Cite \textit{R. Dáger} et al., Q. Appl. Math. 79, No. 2, 367--382 (2021; Zbl 07333608) Full Text: DOI
Xu, Wen-Bing; Li, Wan-Tong; Ruan, Shigui Spatial propagation in nonlocal dispersal Fisher-KPP equations. (English) Zbl 07332862 J. Funct. Anal. 280, No. 10, Article ID 108957, 35 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{W.-B. Xu} et al., J. Funct. Anal. 280, No. 10, Article ID 108957, 35 p. (2021; Zbl 07332862) Full Text: DOI
Obaya, Rafael; Sanz, Ana M. Non-autonomous scalar linear-dissipative and purely dissipative parabolic PDEs over a compact base flow. (English) Zbl 07332803 J. Differ. Equations 285, 714-750 (2021). MSC: 37B55 35K57 37L30 PDF BibTeX XML Cite \textit{R. Obaya} and \textit{A. M. Sanz}, J. Differ. Equations 285, 714--750 (2021; Zbl 07332803) Full Text: DOI
Ishii, Yuta The effect of heterogeneity on one-peak stationary solutions to the Schnakenberg model. (English) Zbl 07332792 J. Differ. Equations 285, 321-382 (2021). MSC: 35B25 35B35 35J66 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Ishii}, J. Differ. Equations 285, 321--382 (2021; Zbl 07332792) Full Text: DOI
Dehestani, Haniye; Ordokhani, Yadollah; Razzaghi, Mohsen A novel direct method based on the Lucas multiwavelet functions for variable-order fractional reaction-diffusion and subdiffusion equations. (English) Zbl 07332759 Numer. Linear Algebra Appl. 28, No. 2, e2346, 20 p. (2021). MSC: 65Mxx 35K57 PDF BibTeX XML Cite \textit{H. Dehestani} et al., Numer. Linear Algebra Appl. 28, No. 2, e2346, 20 p. (2021; Zbl 07332759) Full Text: DOI
Slavík, Jakub Attractors for stochastic reaction-diffusion equation with additive homogeneous noise. (English) Zbl 07332705 Czech. Math. J. 71, No. 1, 21-43 (2021). MSC: 35B41 60H15 37L55 35K57 PDF BibTeX XML Cite \textit{J. Slavík}, Czech. Math. J. 71, No. 1, 21--43 (2021; Zbl 07332705) Full Text: DOI
Ding, Weiwei Convergence to traveling waves for time-periodic bistable reaction-diffusion equations. (English) Zbl 07332529 Proc. Am. Math. Soc. 149, No. 4, 1647-1661 (2021). MSC: 35K15 35B40 35B35 35K57 PDF BibTeX XML Cite \textit{W. Ding}, Proc. Am. Math. Soc. 149, No. 4, 1647--1661 (2021; Zbl 07332529) Full Text: DOI
Li, Fuxiang; Zhao, Xiao-Qiang Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality. (English) Zbl 07331893 Bull. Math. Biol. 83, No. 5, Paper No. 43, 25 p. (2021). MSC: 35K57 37N25 92D30 PDF BibTeX XML Cite \textit{F. Li} and \textit{X.-Q. Zhao}, Bull. Math. Biol. 83, No. 5, Paper No. 43, 25 p. (2021; Zbl 07331893) Full Text: DOI
Woolley, Thomas E.; Krause, Andrew L.; Gaffney, Eamonn A. Bespoke Turing systems. (English) Zbl 07331891 Bull. Math. Biol. 83, No. 5, Paper No. 41, 32 p. (2021). MSC: 92C15 35K57 PDF BibTeX XML Cite \textit{T. E. Woolley} et al., Bull. Math. Biol. 83, No. 5, Paper No. 41, 32 p. (2021; Zbl 07331891) Full Text: DOI
Mackenzie, John; Rowlatt, Christopher; Insall, Robert A conservative finite element ALE scheme for mass-conservative reaction-diffusion equations on evolving two-dimensional domains. (English) Zbl 07331664 SIAM J. Sci. Comput. 43, No. 1, B132-B166 (2021). MSC: 35K57 35K61 65M12 65M60 92C17 PDF BibTeX XML Cite \textit{J. Mackenzie} et al., SIAM J. Sci. Comput. 43, No. 1, B132--B166 (2021; Zbl 07331664) Full Text: DOI
Andrade-Restrepo, Martin; Ciuperca, Ionel Sorin; Lemarre, Paul; Pujo-Menjouet, Laurent; Tine, Léon Matar A reaction-diffusion model of spatial propagation of A\(\beta\) oligomers in early stage Alzheimer’s disease. (English) Zbl 07331660 J. Math. Biol. 82, No. 5, Paper No. 39, 23 p. (2021). MSC: 35K57 92B05 PDF BibTeX XML Cite \textit{M. Andrade-Restrepo} et al., J. Math. Biol. 82, No. 5, Paper No. 39, 23 p. (2021; Zbl 07331660) Full Text: DOI
Izuhara, Hirofumi; Monobe, Harunori; Wu, Chang-Hong The formation of spreading front: the singular limit of three-component reaction-diffusion models. (English) Zbl 07331659 J. Math. Biol. 82, No. 5, Paper No. 38, 33 p. (2021). MSC: 35K57 35K45 92D25 PDF BibTeX XML Cite \textit{H. Izuhara} et al., J. Math. Biol. 82, No. 5, Paper No. 38, 33 p. (2021; Zbl 07331659) Full Text: DOI
Bouin, Emeric; Legendre, Guillaume; Lou, Yuan; Slover, Nichole Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. (English) Zbl 07331657 J. Math. Biol. 82, No. 5, Paper No. 36, 34 p. (2021). MSC: 35K57 92D15 92D25 PDF BibTeX XML Cite \textit{E. Bouin} et al., J. Math. Biol. 82, No. 5, Paper No. 36, 34 p. (2021; Zbl 07331657) Full Text: DOI
Shi, Qingyan; Shi, Junping; Wang, Hao Spatial movement with distributed memory. (English) Zbl 07331654 J. Math. Biol. 82, No. 4, Paper No. 33, 32 p. (2021). MSC: 35 92B05 35B32 35K57 PDF BibTeX XML Cite \textit{Q. Shi} et al., J. Math. Biol. 82, No. 4, Paper No. 33, 32 p. (2021; Zbl 07331654) Full Text: DOI
Amorim, Paulo; Telch, Bruno A chemotaxis predator-prey model with indirect pursuit-evasion dynamics and parabolic signal. (English) Zbl 07330934 J. Math. Anal. Appl. 500, No. 1, Article ID 125128, 27 p. (2021). MSC: 35K 35B 92C 92D PDF BibTeX XML Cite \textit{P. Amorim} and \textit{B. Telch}, J. Math. Anal. Appl. 500, No. 1, Article ID 125128, 27 p. (2021; Zbl 07330934) Full Text: DOI
Hu, Haijun; Deng, Litian; Huang, Jianhua Traveling wave of a nonlocal dispersal Lotka-Volterra cooperation model under shifting habitat. (English) Zbl 07330919 J. Math. Anal. Appl. 500, No. 1, Article ID 125100, 13 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{H. Hu} et al., J. Math. Anal. Appl. 500, No. 1, Article ID 125100, 13 p. (2021; Zbl 07330919) Full Text: DOI
Li, Qi; Lou, Bendong Vanishing phenomena in fast decreasing generalized bistable equations. (English) Zbl 07330915 J. Math. Anal. Appl. 500, No. 1, Article ID 125096, 9 p. (2021). MSC: 35B40 35B05 35K57 35K15 PDF BibTeX XML Cite \textit{Q. Li} and \textit{B. Lou}, J. Math. Anal. Appl. 500, No. 1, Article ID 125096, 9 p. (2021; Zbl 07330915) Full Text: DOI
Keya, Kamrun Nahar; Kamrujjaman, Md.; Islam, Mohammad Shafiqul The influence of density in population dynamics with strong and weak allee effect. (English) Zbl 07330590 J. Egypt. Math. Soc. 29, Paper No. 4, 26 p. (2021). MSC: 92D25 35K57 37N25 PDF BibTeX XML Cite \textit{K. N. Keya} et al., J. Egypt. Math. Soc. 29, Paper No. 4, 26 p. (2021; Zbl 07330590) Full Text: DOI
Zhang, Qian; Zhang, Guo-Bao Front-like entire solutions for a Lotka-Volterra weak competition system with nonlocal dispersal. (English) Zbl 07329761 J. Dyn. Control Syst. 27, No. 1, 133-151 (2021). MSC: 35B08 35K57 35C07 35B40 35B51 92D25 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{G.-B. Zhang}, J. Dyn. Control Syst. 27, No. 1, 133--151 (2021; Zbl 07329761) Full Text: DOI
Skrzypek, Leslaw; You, Yuncheng Dynamics and synchronization of boundary coupled FitzHugh-Nagumo neural networks. (English) Zbl 07329289 Appl. Math. Comput. 388, Article ID 125545, 13 p. (2021). MSC: 35B40 35B45 35K57 35M33 35Q92 92B25 92C20 PDF BibTeX XML Cite \textit{L. Skrzypek} and \textit{Y. You}, Appl. Math. Comput. 388, Article ID 125545, 13 p. (2021; Zbl 07329289) Full Text: DOI
Wang, Jia-Bing; Wang, Jie; Cao, Jia-Feng Blowup and global existence of a free boundary problem with weak spatial source. (English) Zbl 07328931 Appl. Anal. 100, No. 5, 964-974 (2021). MSC: 35R35 35K57 35K20 35B33 35B44 PDF BibTeX XML Cite \textit{J.-B. Wang} et al., Appl. Anal. 100, No. 5, 964--974 (2021; Zbl 07328931) Full Text: DOI
Suzuki, Masamitsu Local existence and nonexistence for fractional in time weakly coupled reaction-diffusion systems. (English) Zbl 07328519 SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021). MSC: 35R11 35K57 35K51 35A01 26A33 46E35 PDF BibTeX XML Cite \textit{M. Suzuki}, SN Partial Differ. Equ. Appl. 2, No. 1, Paper No. 2, 27 p. (2021; Zbl 07328519) Full Text: DOI
Vynnycky, Michael; McKee, Sean; Bieniasz, Lesław A nonlinear transient reaction-diffusion problem from electroanalytical chemistry. (English) Zbl 07328072 SIAM J. Appl. Math. 81, No. 1, 208-232 (2021). MSC: 35B25 35K57 78A57 PDF BibTeX XML Cite \textit{M. Vynnycky} et al., SIAM J. Appl. Math. 81, No. 1, 208--232 (2021; Zbl 07328072) Full Text: DOI
Liu, Yue; Rens, Elisabeth G.; Edelstein-Keshet, Leah Spots, stripes, and spiral waves in models for static and motile cells. GTPase patterns in cells. (English) Zbl 07327693 J. Math. Biol. 82, No. 4, Paper No. 28, 39 p. (2021). MSC: 92C15 92C17 92C37 35K57 PDF BibTeX XML Cite \textit{Y. Liu} et al., J. Math. Biol. 82, No. 4, Paper No. 28, 39 p. (2021; Zbl 07327693) Full Text: DOI
Fu, Sheng-Chen; Mimura, Masayasu; Tsai, Je-Chiang Traveling waves for a three-component reaction-diffusion model of farmers and hunter-gatherers in the Neolithic transition. (English) Zbl 07327691 J. Math. Biol. 82, No. 4, Paper No. 26, 36 p. (2021). MSC: 92D 35K57 35C07 35Q92 PDF BibTeX XML Cite \textit{S.-C. Fu} et al., J. Math. Biol. 82, No. 4, Paper No. 26, 36 p. (2021; Zbl 07327691) Full Text: DOI
Shi, Yangyang; Zhao, Hongyong Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias. (English) Zbl 07327689 J. Math. Biol. 82, No. 4, Paper No. 24, 45 p. (2021). MSC: 35Q92 35K57 37N25 92D30 PDF BibTeX XML Cite \textit{Y. Shi} and \textit{H. Zhao}, J. Math. Biol. 82, No. 4, Paper No. 24, 45 p. (2021; Zbl 07327689) Full Text: DOI
Lu, Hannah; Um, Kimoon; Tartakovsky, Daniel M. Hybrid models of chemotaxis with application to leukocyte migration. (English) Zbl 07327688 J. Math. Biol. 82, No. 4, Paper No. 23, 29 p. (2021). MSC: 92C17 35Q92 35K57 60G50 65N99 PDF BibTeX XML Cite \textit{H. Lu} et al., J. Math. Biol. 82, No. 4, Paper No. 23, 29 p. (2021; Zbl 07327688) Full Text: DOI
Ambrazevičius, A.; Skakauskas, V. Solvability of a coupled quasilinear reaction-diffusion system. (English) Zbl 07327339 Appl. Anal. 100, No. 4, 791-803 (2021). MSC: 35K51 35K57 35K59 35K61 35B09 92E20 PDF BibTeX XML Cite \textit{A. Ambrazevičius} and \textit{V. Skakauskas}, Appl. Anal. 100, No. 4, 791--803 (2021; Zbl 07327339) Full Text: DOI
Lee, Jihoon; Toi, Vu Manh Global attractors and exponential stability of partly dissipative reaction diffusion systems with exponential growth nonlinearity. (English) Zbl 07327336 Appl. Anal. 100, No. 4, 735-751 (2021). MSC: 35B41 35B35 35B65 35K51 35K57 35K58 PDF BibTeX XML Cite \textit{J. Lee} and \textit{V. M. Toi}, Appl. Anal. 100, No. 4, 735--751 (2021; Zbl 07327336) Full Text: DOI
Cantin, Guillaume; Aziz-Alaoui, M. A. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. (English) Zbl 07327297 Commun. Pure Appl. Anal. 20, No. 2, 623-650 (2021). MSC: 35B41 35K51 35K57 35K90 92D25 PDF BibTeX XML Cite \textit{G. Cantin} and \textit{M. A. Aziz-Alaoui}, Commun. Pure Appl. Anal. 20, No. 2, 623--650 (2021; Zbl 07327297) Full Text: DOI
Xing, Chao; Pan, Jiaojiao; Luo, Hong Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. (English) Zbl 07327288 Commun. Pure Appl. Anal. 20, No. 1, 427-448 (2021). MSC: 35B32 35B35 35K52 35K57 37L10 35Q92 PDF BibTeX XML Cite \textit{C. Xing} et al., Commun. Pure Appl. Anal. 20, No. 1, 427--448 (2021; Zbl 07327288) Full Text: DOI
Takagi, Izumi Patterns versus spatial heterogeneity – from a variational viewpoint. (English) Zbl 07326596 Zheng, Zhiyong (ed.), Proceedings of the first international forum on financial mathematics and financial technology, Suzhou, China, June 29 – July 2, 2019. Singapore: Springer (ISBN 978-981-15-8372-8/hbk; 978-981-15-8373-5/ebook). Financial Mathematics and Fintech, 127-138 (2021). MSC: 35B36 35-02 35K57 35B32 PDF BibTeX XML Cite \textit{I. Takagi}, in: Proceedings of the first international forum on financial mathematics and financial technology, Suzhou, China, June 29 -- July 2, 2019. Singapore: Springer. 127--138 (2021; Zbl 07326596) Full Text: DOI
Chang, Xiaoyuan; Shi, Junping; Wang, Hao Spatial modeling and dynamics of organic matter biodegradation in the absence or presence of bacterivorous grazing. (English) Zbl 07325704 Math. Biosci. 331, Article ID 108501, 18 p. (2021). MSC: 92D40 92C70 35K57 35B32 PDF BibTeX XML Cite \textit{X. Chang} et al., Math. Biosci. 331, Article ID 108501, 18 p. (2021; Zbl 07325704) Full Text: DOI
Coville, Jérôme; Gui, Changfeng; Zhao, Mingfeng Propagation acceleration in reaction diffusion equations with anomalous diffusions. (English) Zbl 07324160 Nonlinearity 34, No. 3, 1544-1576 (2021). MSC: 35C07 35B51 35K15 35K55 35K57 35R09 35R11 PDF BibTeX XML Cite \textit{J. Coville} et al., Nonlinearity 34, No. 3, 1544--1576 (2021; Zbl 07324160) Full Text: DOI
Song, Xiaona; Li, Xingru; Song, Shuai; Zhang, Yijun; Ning, Zhaoke Quasi-synchronization of coupled neural networks with reaction-diffusion terms driven by fractional Brownian motion. (English) Zbl 07323710 J. Franklin Inst. 358, No. 4, 2482-2499 (2021). MSC: 93B70 93C20 35K57 93C57 60G22 PDF BibTeX XML Cite \textit{X. Song} et al., J. Franklin Inst. 358, No. 4, 2482--2499 (2021; Zbl 07323710) Full Text: DOI
Takagi, Izumi; Zhang, Conghui Pattern formation in a reaction-diffusion-ODE model with hysteresis in spatially heterogeneous environments. (English) Zbl 07319453 J. Differ. Equations 280, 928-966 (2021). MSC: 35B36 35K57 35J25 35B35 92D40 92-02 PDF BibTeX XML Cite \textit{I. Takagi} and \textit{C. Zhang}, J. Differ. Equations 280, 928--966 (2021; Zbl 07319453) Full Text: DOI
Haragus, Mariana; Johnson, Mathew A.; Perkins, Wesley R. Linear modulational and subharmonic dynamics of spectrally stable Lugiato-Lefever periodic waves. (English) Zbl 07319434 J. Differ. Equations 280, 315-354 (2021). MSC: 35Q55 35B 35K 35C 35C07 35B35 35K57 PDF BibTeX XML Cite \textit{M. Haragus} et al., J. Differ. Equations 280, 315--354 (2021; Zbl 07319434) Full Text: DOI
Yi, Fengqi Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling. (English) Zbl 07319419 J. Differ. Equations 281, 379-410 (2021). MSC: 35K 35G 35K57 35K55 35G10 35K25 PDF BibTeX XML Cite \textit{F. Yi}, J. Differ. Equations 281, 379--410 (2021; Zbl 07319419) Full Text: DOI
Chen, Yu-Shuo; Giletti, Thomas; Guo, Jong-Shenq Persistence of preys in a diffusive three species predator-prey system with a pair of strong-weak competing preys. (English) Zbl 07319418 J. Differ. Equations 281, 341-378 (2021). MSC: 35K40 35K57 34B40 92D25 35K55 35B05 35B40 PDF BibTeX XML Cite \textit{Y.-S. Chen} et al., J. Differ. Equations 281, 341--378 (2021; Zbl 07319418) Full Text: DOI
Brauner, Claude-Michel; Roussarie, Robert; Shang, Peipei; Zhang, Linwan Existence of a traveling wave solution in a free interface problem with fractional order kinetics. (English) Zbl 07319412 J. Differ. Equations 281, 105-147 (2021). MSC: 35R35 35C07 34C05 34A26 80A25 35K57 35B35 35K40 80A25 PDF BibTeX XML Cite \textit{C.-M. Brauner} et al., J. Differ. Equations 281, 105--147 (2021; Zbl 07319412) Full Text: DOI
Winkler, Michael Conditional estimates in three-dimensional chemotaxis-Stokes systems and application to a Keller-Segel-fluid model accounting for gradient-dependent flux limitation. (English) Zbl 07319409 J. Differ. Equations 281, 33-57 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35Q35 35K57 35B40 35B45 PDF BibTeX XML Cite \textit{M. Winkler}, J. Differ. Equations 281, 33--57 (2021; Zbl 07319409) Full Text: DOI
Nguyen, Nhu N.; Yin, George Stochastic Lotka-Volterra competitive reaction-diffusion systems perturbed by space-time white noise: modeling and analysis. (English) Zbl 07319395 J. Differ. Equations 282, 184-232 (2021). MSC: 60H15 60H30 60H40 92D15 92D25 92D40 35K57 PDF BibTeX XML Cite \textit{N. N. Nguyen} and \textit{G. Yin}, J. Differ. Equations 282, 184--232 (2021; Zbl 07319395) Full Text: DOI
Liu, Gege; Xu, Tianyuan; Yin, Jingxue Forced waves of reaction-diffusion model with density-dependent dispersal in shifting environments. (English) Zbl 07319393 J. Differ. Equations 282, 127-147 (2021). MSC: 35C07 35K65 35K15 35K57 92D25 PDF BibTeX XML Cite \textit{G. Liu} et al., J. Differ. Equations 282, 127--147 (2021; Zbl 07319393) Full Text: DOI
Fang, Jian; Peng, Rui; Zhao, Xiao-Qiang Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment. (English. French summary) Zbl 07319302 J. Math. Pures Appl. (9) 147, 1-28 (2021). MSC: 35C07 35B40 35K57 92D25 PDF BibTeX XML Cite \textit{J. Fang} et al., J. Math. Pures Appl. (9) 147, 1--28 (2021; Zbl 07319302) Full Text: DOI
Mukherjee, N.; Volpert, V. Bifurcation scenario of Turing patterns in prey-predator model with nonlocal consumption in the prey dynamics. (English) Zbl 07319170 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021). MSC: 35B32 35B36 35K51 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{N. Mukherjee} and \textit{V. Volpert}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021; Zbl 07319170) Full Text: DOI
Wang, Yuan-Ming A high-order compact difference method on fitted meshes for Neumann problems of time-fractional reaction-diffusion equations with variable coefficients. (English) Zbl 07318237 Math. Comput. Simul. 181, 598-623 (2021). MSC: 65M PDF BibTeX XML Cite \textit{Y.-M. Wang}, Math. Comput. Simul. 181, 598--623 (2021; Zbl 07318237) Full Text: DOI
Tang, Changyang; Zhang, Chengjian A fully discrete \(\theta \)-method for solving semi-linear reaction-diffusion equations with time-variable delay. (English) Zbl 07318165 Math. Comput. Simul. 179, 48-56 (2021). MSC: 35K 65M PDF BibTeX XML Cite \textit{C. Tang} and \textit{C. Zhang}, Math. Comput. Simul. 179, 48--56 (2021; Zbl 07318165) Full Text: DOI
Kurt, Halil Ibrahim; Shen, Wenxian Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting. (English) Zbl 1455.35269 SIAM J. Math. Anal. 53, No. 1, 973-1003 (2021). MSC: 35Q92 92C17 35K55 35B44 35K51 35K57 PDF BibTeX XML Cite \textit{H. I. Kurt} and \textit{W. Shen}, SIAM J. Math. Anal. 53, No. 1, 973--1003 (2021; Zbl 1455.35269) Full Text: DOI
Lee, Jihoon Gromov-Hausdorff stability of reaction diffusion equations with Neumann boundary conditions under perturbations of the domain. (English) Zbl 07316099 J. Math. Anal. Appl. 496, No. 1, Article ID 124788, 19 p. (2021). MSC: 35B30 35B41 35K20 35K57 35K58 PDF BibTeX XML Cite \textit{J. Lee}, J. Math. Anal. Appl. 496, No. 1, Article ID 124788, 19 p. (2021; Zbl 07316099) Full Text: DOI
Guo, Zhiming; Guo, Hongpeng; Chen, Yuming Traveling wavefronts of a delayed temporally discrete reaction-diffusion equation. (English) Zbl 07316098 J. Math. Anal. Appl. 496, No. 1, Article ID 124787, 23 p. (2021). MSC: 39A14 39A12 35K57 PDF BibTeX XML Cite \textit{Z. Guo} et al., J. Math. Anal. Appl. 496, No. 1, Article ID 124787, 23 p. (2021; Zbl 07316098) Full Text: DOI
Chang, Chueh-Hsin; Yang, Tzi-Sheng Stability of semi-trivial wavefronts in reaction-diffusion systems. (English) Zbl 07315344 J. Math. Anal. Appl. 495, No. 1, Article ID 124658, 17 p. (2021). MSC: 35B35 35K57 35P15 35C07 PDF BibTeX XML Cite \textit{C.-H. Chang} and \textit{T.-S. Yang}, J. Math. Anal. Appl. 495, No. 1, Article ID 124658, 17 p. (2021; Zbl 07315344) Full Text: DOI
Zhu, Linhe; Liu, Wenshan Spatial dynamics and optimization method for a network propagation model in a shifting environment. (English) Zbl 07314933 Discrete Contin. Dyn. Syst. 41, No. 4, 1843-1874 (2021). MSC: 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{L. Zhu} and \textit{W. Liu}, Discrete Contin. Dyn. Syst. 41, No. 4, 1843--1874 (2021; Zbl 07314933) Full Text: DOI
Martinez, Patrick; Vancostenoble, Judith Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. (English) Zbl 07314578 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695-721 (2021). MSC: 92D25 92D40 35F20 35K57 35Q92 35R30 PDF BibTeX XML Cite \textit{P. Martinez} and \textit{J. Vancostenoble}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695--721 (2021; Zbl 07314578) Full Text: DOI
Fellner, Klemens; Morgan, Jeff; Tang, Bao Quoc Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. (English) Zbl 07314575 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635-651 (2021). MSC: 35K51 35K57 35K58 92D25 PDF BibTeX XML Cite \textit{K. Fellner} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635--651 (2021; Zbl 07314575) Full Text: DOI
Augner, Björn; Bothe, Dieter The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. (English) Zbl 07314571 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533-574 (2021). MSC: 35K57 35K51 35K59 80A30 92E20 PDF BibTeX XML Cite \textit{B. Augner} and \textit{D. Bothe}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 533--574 (2021; Zbl 07314571) Full Text: DOI
Laamri, El Haj; Pierre, Michel Stationary reaction-diffusion systems in \(L^1\) revisited. (English) Zbl 07314568 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 455-464 (2021). MSC: 35J57 35K10 35K40 35K57 PDF BibTeX XML Cite \textit{E. H. Laamri} and \textit{M. Pierre}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 455--464 (2021; Zbl 07314568) Full Text: DOI
Heida, Martin; Neukamm, Stefan; Varga, Mario Stochastic homogenization of \(\Lambda\)-convex gradient flows. (English) Zbl 07314565 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 427-453 (2021). MSC: 49J40 74Q10 35K57 60H30 PDF BibTeX XML Cite \textit{M. Heida} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 427--453 (2021; Zbl 07314565) Full Text: DOI
Frenzel, Thomas; Liero, Matthias Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. (English) Zbl 07314564 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395-425 (2021). MSC: 35B27 35K20 35K10 35K57 35Q84 PDF BibTeX XML Cite \textit{T. Frenzel} and \textit{M. Liero}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 395--425 (2021; Zbl 07314564) Full Text: DOI
Disser, Karoline Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. (English) Zbl 07314560 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321-330 (2021). MSC: 35K61 35K57 35B45 35A01 PDF BibTeX XML Cite \textit{K. Disser}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 321--330 (2021; Zbl 07314560) Full Text: DOI
Zhu, Neng; Liu, Zhengrong; Wang, Fang; Zhao, Kun Asymptotic dynamics of a system of conservation laws from chemotaxis. (English) Zbl 07314365 Discrete Contin. Dyn. Syst. 41, No. 2, 813-847 (2021). MSC: 35B40 35K57 35Q92 92C17 PDF BibTeX XML Cite \textit{N. Zhu} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 813--847 (2021; Zbl 07314365) Full Text: DOI
Tao, Youshan; Winkler, Michael Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. (English) Zbl 07314171 Discrete Contin. Dyn. Syst. 41, No. 1, 439-454 (2021). MSC: 35B44 35K57 92C17 35K51 35K59 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{M. Winkler}, Discrete Contin. Dyn. Syst. 41, No. 1, 439--454 (2021; Zbl 07314171) Full Text: DOI
Ninomiya, Hirokazu Entire solutions of the Allen-Cahn-Nagumo equation in a multi-dimensional space. (English) Zbl 07314169 Discrete Contin. Dyn. Syst. 41, No. 1, 395-412 (2021). MSC: 35B08 35K57 35C07 35B40 35B06 PDF BibTeX XML Cite \textit{H. Ninomiya}, Discrete Contin. Dyn. Syst. 41, No. 1, 395--412 (2021; Zbl 07314169) Full Text: DOI
Dipierro, Serena; Pellacci, Benedetta; Valdinoci, Enrico; Verzini, Gianmaria Time-fractional equations with reaction terms: fundamental solutions and asymptotics. (English) Zbl 07314164 Discrete Contin. Dyn. Syst. 41, No. 1, 257-275 (2021). MSC: 35R11 35C15 35B40 35K57 35K08 26A33 PDF BibTeX XML Cite \textit{S. Dipierro} et al., Discrete Contin. Dyn. Syst. 41, No. 1, 257--275 (2021; Zbl 07314164) Full Text: DOI
Meglioli, Giulia; Punzo, Fabio Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density. (English) Zbl 07312796 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112187, 22 p. (2021). MSC: 35B44 35B51 35K15 35K57 35K59 35K65 PDF BibTeX XML Cite \textit{G. Meglioli} and \textit{F. Punzo}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 203, Article ID 112187, 22 p. (2021; Zbl 07312796) Full Text: DOI
Fadai, Nabil T. Semi-infinite travelling waves arising in a general reaction-diffusion Stefan model. (English) Zbl 07312083 Nonlinearity 34, No. 2, 725-743 (2021). MSC: 35C07 35K57 34B16 41A60 35R37 PDF BibTeX XML Cite \textit{N. T. Fadai}, Nonlinearity 34, No. 2, 725--743 (2021; Zbl 07312083) Full Text: DOI
Ducrot, Arnaud; Giletti, Thomas; Guo, Jong-Shenq; Shimojo, Masahiko Asymptotic spreading speeds for a predator-prey system with two predators and one prey. (English) Zbl 07312081 Nonlinearity 34, No. 2, 669-704 (2021). MSC: 35C07 35K45 35K57 92D25 PDF BibTeX XML Cite \textit{A. Ducrot} et al., Nonlinearity 34, No. 2, 669--704 (2021; Zbl 07312081) Full Text: DOI
Li, Dingshi; Wang, Xuemin Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. (English) Zbl 07311264 Electron Res. Arch. 29, No. 2, 1969-1990 (2021). MSC: 37L55 37L30 37H30 35R60 35K57 35B40 PDF BibTeX XML Cite \textit{D. Li} and \textit{X. Wang}, Electron Res. Arch. 29, No. 2, 1969--1990 (2021; Zbl 07311264) Full Text: DOI
Yan, Weifang Traveling waves in a stage-structured predator-prey model with Holling type functional response. (English) Zbl 07311103 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407-434 (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{W. Yan}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407--434 (2021; Zbl 07311103) Full Text: DOI
Ishii, Yuta Concentration phenomena on \(Y\)-shaped metric graph for the Gierer-Meinhardt model with heterogeneity. (English) Zbl 07310972 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112220, 23 p. (2021). MSC: 35B25 35R02 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Ishii}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112220, 23 p. (2021; Zbl 07310972) Full Text: DOI
Bessonov, Nikolai; Bocharov, Gennady; Meyerhans, Andreas; Popov, Vladimir; Volpert, Vitaly Existence and dynamics of strains in a nonlocal reaction-diffusion model of viral evolution. (English) Zbl 07310943 SIAM J. Appl. Math. 81, No. 1, 107-128 (2021). MSC: 35Q92 35K57 35R09 92D25 92C15 92C50 PDF BibTeX XML Cite \textit{N. Bessonov} et al., SIAM J. Appl. Math. 81, No. 1, 107--128 (2021; Zbl 07310943) Full Text: DOI
Sandu, Adrian; Günther, Michael; Roberts, Steven Linearly implicit GARK schemes. (English) Zbl 07310819 Appl. Numer. Math. 161, 286-310 (2021). MSC: 65M06 65L06 65L04 65L80 35K57 PDF BibTeX XML Cite \textit{A. Sandu} et al., Appl. Numer. Math. 161, 286--310 (2021; Zbl 07310819) Full Text: DOI
Zheng, Xiangcheng; Liu, Huan; Wang, Hong; Fu, Hongfei Optimal-order finite element approximations to variable-coefficient two-sided space-fractional advection-reaction-diffusion equations in three space dimensions. (English) Zbl 07310800 Appl. Numer. Math. 161, 1-12 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 65M06 35R11 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Numer. Math. 161, 1--12 (2021; Zbl 07310800) Full Text: DOI
Polyanin, Andrei D.; Sorokin, Vsevolod G. A method for constructing exact solutions of nonlinear delay PDEs. (English) Zbl 07310653 J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 35D99 34K10 35B20 35K57 35C07 35R07 PDF BibTeX XML Cite \textit{A. D. Polyanin} and \textit{V. G. Sorokin}, J. Math. Anal. Appl. 494, No. 2, Article ID 124619, 6 p. (2021; Zbl 07310653) Full Text: DOI
Yang, C.; Rodríguez, N. Existence and stability traveling wave solutions for a system of social outbursts. (English) Zbl 07309691 J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021). MSC: 35C07 35K45 35K57 35Q91 PDF BibTeX XML Cite \textit{C. Yang} and \textit{N. Rodríguez}, J. Math. Anal. Appl. 494, No. 1, Article ID 124583, 30 p. (2021; Zbl 07309691) Full Text: DOI
Benito, J. J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Solving a reaction-diffusion system with chemotaxis and non-local terms using generalized finite difference method. Study of the convergence. (English) Zbl 07309595 J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 92C17 35Q92 65M06 35K57 PDF BibTeX XML Cite \textit{J. J. Benito} et al., J. Comput. Appl. Math. 389, Article ID 113325, 16 p. (2021; Zbl 07309595) Full Text: DOI
Sheng, Wei-Jie; Wang, Mingxin; Wang, Zhi-Cheng Entire solutions of time periodic bistable Lotka-Volterra competition-diffusion systems in \(\mathbb{R}^N\). (English) Zbl 07309247 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 37, 47 p. (2021). MSC: 35C07 35K57 35B08 PDF BibTeX XML Cite \textit{W.-J. Sheng} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 37, 47 p. (2021; Zbl 07309247) Full Text: DOI
Wei, Jingdong; Zhou, Jiangbo; Zhen, Zaili; Tian, Lixin Time periodic traveling waves in a three-component non-autonomous and reaction-diffusion epidemic model. (English) Zbl 07308678 Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021). MSC: 35C07 35B10 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{J. Wei} et al., Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021; Zbl 07308678) Full Text: DOI
Guo, Hongjun; Monobe, Harunori \(V\)-shaped fronts around an obstacle. (English) Zbl 07307522 Math. Ann. 379, No. 1-2, 661-689 (2021). MSC: 35K57 35A18 35B08 35B30 35C07 35K20 PDF BibTeX XML Cite \textit{H. Guo} and \textit{H. Monobe}, Math. Ann. 379, No. 1--2, 661--689 (2021; Zbl 07307522) Full Text: DOI
Mohammed, Wael W. Fast-diffusion limit for reaction-diffusion equations with degenerate multiplicative and additive noise. (English) Zbl 07307374 J. Dyn. Differ. Equations 33, No. 1, 577-592 (2021). MSC: 60H10 60H15 35R60 PDF BibTeX XML Cite \textit{W. W. Mohammed}, J. Dyn. Differ. Equations 33, No. 1, 577--592 (2021; Zbl 07307374) Full Text: DOI
Gordon, Peter V.; Hegde, Uday G.; Hicks, Michael C. On traveling front of ignition in co-flow laminar reactive jets. (English) Zbl 07307309 SIAM J. Appl. Math. 81, No. 1, 47-59 (2021). MSC: 35C05 35C07 35C15 35K57 80A25 PDF BibTeX XML Cite \textit{P. V. Gordon} et al., SIAM J. Appl. Math. 81, No. 1, 47--59 (2021; Zbl 07307309) Full Text: DOI
McCue, Scott W.; El-Hachem, Maud; Simpson, Matthew J. Exact sharp-fronted travelling wave solutions of the Fisher-KPP equation. (English) Zbl 07307181 Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021). MSC: 35C07 35K57 35K20 PDF BibTeX XML Cite \textit{S. W. McCue} et al., Appl. Math. Lett. 114, Article ID 106918, 9 p. (2021; Zbl 07307181) Full Text: DOI
Wu, Chin-Chin On the stable tail limit of traveling wave for a predator-prey system with nonlocal dispersal. (English) Zbl 07307153 Appl. Math. Lett. 113, Article ID 106855, 6 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{C.-C. Wu}, Appl. Math. Lett. 113, Article ID 106855, 6 p. (2021; Zbl 07307153) Full Text: DOI
Mongolian, Suriguga; Kao, Yonggui; Wang, Changhong; Xia, Hongwei Robust mean square stability of delayed stochastic generalized uncertain impulsive reaction-diffusion neural networks. (English) Zbl 1455.93149 J. Franklin Inst. 358, No. 1, 877-894 (2021). MSC: 93D09 93E15 93B70 93C27 93C20 PDF BibTeX XML Cite \textit{S. Mongolian} et al., J. Franklin Inst. 358, No. 1, 877--894 (2021; Zbl 1455.93149) Full Text: DOI
Dai, Feng; Liu, Bin Optimal control problem for a general reaction-diffusion tumor-immune system with chemotherapy. (English) Zbl 1455.92071 J. Franklin Inst. 358, No. 1, 448-473 (2021). MSC: 92C50 49J20 35K57 PDF BibTeX XML Cite \textit{F. Dai} and \textit{B. Liu}, J. Franklin Inst. 358, No. 1, 448--473 (2021; Zbl 1455.92071) Full Text: DOI
Dębiec, Tomasz; Perthame, Benoît; Schmidtchen, Markus; Vauchelet, Nicolas Incompressible limit for a two-species model with coupling through Brinkman’s law in any dimension. (English. French summary) Zbl 07305904 J. Math. Pures Appl. (9) 145, 204-239 (2021). MSC: 35Q92 92C37 35B45 35K57 35K55 35K65 76A10 76N10 76S05 35R35 PDF BibTeX XML Cite \textit{T. Dębiec} et al., J. Math. Pures Appl. (9) 145, 204--239 (2021; Zbl 07305904) Full Text: DOI
Mansouri, D.; Bendoukha, S.; Abdelmalek, S.; Youkana, A. On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity. (English) Zbl 07305515 Appl. Anal. 100, No. 3, 675-694 (2021). MSC: 35R11 35K51 35K57 PDF BibTeX XML Cite \textit{D. Mansouri} et al., Appl. Anal. 100, No. 3, 675--694 (2021; Zbl 07305515) Full Text: DOI
Coronel, Aníbal; Friz, Luis; Hess, Ian; Zegarra, María On the existence and uniqueness of an inverse problem in epidemiology. (English) Zbl 07305507 Appl. Anal. 100, No. 3, 513-526 (2021). MSC: 49S05 49N45 49K20 92D30 92D25 35K57 PDF BibTeX XML Cite \textit{A. Coronel} et al., Appl. Anal. 100, No. 3, 513--526 (2021; Zbl 07305507) Full Text: DOI
Wang, Fangyuan; Zhang, Zhongqiang; Zhou, Zhaojie A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. (English) Zbl 07305150 J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021). MSC: 49M41 49M25 49K20 49N60 65K10 35R11 35K57 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 386, Article ID 113233, 17 p. (2021; Zbl 07305150) Full Text: DOI
Tuan, Nguyen Huy; Khoa, Vo Anh; Van, Phan Thi Khanh; Au, Vo Van An improved quasi-reversibility method for a terminal-boundary value multi-species model with white Gaussian noise. (English) Zbl 07305070 J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021). MSC: 62L20 62F10 65J05 65J20 35K92 60H35 60H40 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 384, Article ID 113176, 14 p. (2021; Zbl 07305070) Full Text: DOI
Celiński, Rafał; Hilhorst, Danielle; Karch, Grzegorz; Mimura, Masayasu; Roux, Pierre Mathematical treatment of PDE model of chemotactic E. coli colonies. (English) Zbl 07303704 J. Differ. Equations 278, 73-99 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35K57 35B36 35B40 PDF BibTeX XML Cite \textit{R. Celiński} et al., J. Differ. Equations 278, 73--99 (2021; Zbl 07303704) Full Text: DOI
Kolokolnikov, Theodore; Paquin-Lefebvre, Frédéric; Ward, Michael J. Competition instabilities of spike patterns for the 1D Gierer-Meinhardt and Schnakenberg models are subcritical. (English) Zbl 07303399 Nonlinearity 34, No. 1, 273-312 (2021). MSC: 35B25 35B32 35B35 35B36 35K57 92C15 PDF BibTeX XML Cite \textit{T. Kolokolnikov} et al., Nonlinearity 34, No. 1, 273--312 (2021; Zbl 07303399) Full Text: DOI
Engwer, Christian; Wenske, Michael Estimating the extent of glioblastoma invasion. Approximate stationalization of anisotropic advection-diffusion-reaction equations in the context of glioblastoma invasion. (English) Zbl 07303135 J. Math. Biol. 82, No. 1-2, Paper No. 10, 25 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 35K57 92B05 92C05 92C50 92C55 PDF BibTeX XML Cite \textit{C. Engwer} and \textit{M. Wenske}, J. Math. Biol. 82, No. 1--2, Paper No. 10, 25 p. (2021; Zbl 07303135) Full Text: DOI
Wang, Zhi-An; Xu, Jiao On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. (English) Zbl 07303132 J. Math. Biol. 82, No. 1-2, Paper No. 7, 37 p. (2021). MSC: 35K51 35B40 35B44 35K57 92D25 PDF BibTeX XML Cite \textit{Z.-A. Wang} and \textit{J. Xu}, J. Math. Biol. 82, No. 1--2, Paper No. 7, 37 p. (2021; Zbl 07303132) Full Text: DOI
Van Gorder, Robert A.; Klika, Václav; Krause, Andrew L. Turing conditions for pattern forming systems on evolving manifolds. (English) Zbl 07303129 J. Math. Biol. 82, No. 1-2, Paper No. 4, 61 p. (2021). MSC: 35B36 35K57 92C15 92E20 PDF BibTeX XML Cite \textit{R. A. Van Gorder} et al., J. Math. Biol. 82, No. 1--2, Paper No. 4, 61 p. (2021; Zbl 07303129) Full Text: DOI
Cupps, Brian P.; Morgan, Jeff; Tang, Bao Quoc Uniform boundedness for reaction-diffusion systems with mass dissipation. (English) Zbl 07302456 SIAM J. Math. Anal. 53, No. 1, 323-350 (2021). MSC: 35K51 35A01 35A09 35K57 35K58 35Q92 PDF BibTeX XML Cite \textit{B. P. Cupps} et al., SIAM J. Math. Anal. 53, No. 1, 323--350 (2021; Zbl 07302456) Full Text: DOI
Zhai, Shuying; Weng, Zhifeng; Feng, Xinlong; He, Yinnian Stability and error estimate of the operator splitting method for the phase field crystal equation. (English) Zbl 07301286 J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021). MSC: 65M70 65T50 65M12 35K57 35R11 74N05 35Q74 82D80 PDF BibTeX XML Cite \textit{S. Zhai} et al., J. Sci. Comput. 86, No. 1, Paper No. 8, 23 p. (2021; Zbl 07301286) Full Text: DOI
Darbenas, Zymantas; Oliver, Marcel Breakdown of Liesegang precipitation bands in a simplified fast reaction limit of the Keller-Rubinow model. (English) Zbl 07301272 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 4, 34 p. (2021). MSC: 45G10 PDF BibTeX XML Cite \textit{Z. Darbenas} and \textit{M. Oliver}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 4, 34 p. (2021; Zbl 07301272) Full Text: DOI
de Rijk, Björn; Schneider, Guido Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. (English) Zbl 07301270 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 2, 38 p. (2021). MSC: 35K57 35K15 35B40 35A01 PDF BibTeX XML Cite \textit{B. de Rijk} and \textit{G. Schneider}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 2, 38 p. (2021; Zbl 07301270) Full Text: DOI
Miura, Tatsuya; Okabe, Shinya On the isoperimetric inequality and surface diffusion flow for multiply winding curves. (English) Zbl 07300730 Arch. Ration. Mech. Anal. 239, No. 2, 1111-1129 (2021). MSC: 53A04 35K57 76R50 PDF BibTeX XML Cite \textit{T. Miura} and \textit{S. Okabe}, Arch. Ration. Mech. Anal. 239, No. 2, 1111--1129 (2021; Zbl 07300730) Full Text: DOI
Ramirez-Carrasco, C.; Molina-Garay, J. Existence and approximation of traveling wavefronts for the diffusive Mackey-Glass equation. (English) Zbl 07299952 Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 2, 12 p. (2021). MSC: 35K57 34K99 PDF BibTeX XML Cite \textit{C. Ramirez-Carrasco} and \textit{J. Molina-Garay}, Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 2, 12 p. (2021; Zbl 07299952) Full Text: Link