Volosivets, S. S. Ulyanov-type embedding theorems for functions on zero-dimensional locally compact groups. (English. Russian original) Zbl 07304931 Sib. Math. J. 62, No. 1, 32-43 (2021); translation from Sib. Mat. Zh. 62, No. 1, 42-54 (2021). MSC: 46E15 46E30 PDF BibTeX XML Cite \textit{S. S. Volosivets}, Sib. Math. J. 62, No. 1, 32--43 (2021; Zbl 07304931); translation from Sib. Mat. Zh. 62, No. 1, 42--54 (2021) Full Text: DOI
Jain, Pankaj; Molchanova, Anastasia; Singh, Monika; Vodopyanov, Sergey On grand Sobolev spaces and pointwise description of Banach function spaces. (English) Zbl 07265445 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112100, 17 p. (2021). MSC: 46E30 46E35 PDF BibTeX XML Cite \textit{P. Jain} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112100, 17 p. (2021; Zbl 07265445) Full Text: DOI
del Campo, R.; Fernández, A.; Mayoral, F.; Naranjo, F.; Sánchez Pérez, E. A. Lorentz spaces of vector measures and real interpolation of operators. (English) Zbl 07311590 Quaest. Math. 43, No. 5-6, 591-609 (2020). MSC: 46E30 47B38 46B42 PDF BibTeX XML Cite \textit{R. del Campo} et al., Quaest. Math. 43, No. 5--6, 591--609 (2020; Zbl 07311590) Full Text: DOI
Wrobel, Aj Mackey continuity of convex functions on dual Banach spaces: a review. (English) Zbl 07309329 Extr. Math. 35, No. 2, 185-195 (2020). MSC: 46N10 46A20 46E30 52A41 46A70 PDF BibTeX XML Cite \textit{A. Wrobel}, Extr. Math. 35, No. 2, 185--195 (2020; Zbl 07309329) Full Text: DOI
Koshino, Katsuhisa The space consisting of uniformly continuous functions on a metric measure space with the \(L^p\) norm. (English) Zbl 07285170 Topology Appl. 282, Article ID 107303, 16 p. (2020). MSC: 54C35 57N20 57N17 46E15 46E30 28A20 PDF BibTeX XML Cite \textit{K. Koshino}, Topology Appl. 282, Article ID 107303, 16 p. (2020; Zbl 07285170) Full Text: DOI
D’Onofrio, Luigi; Sbordone, Carlo; Schiattarella, Roberta Atomic decomposition for preduals of some Banach spaces. (English) Zbl 07283049 Rend. Mat. Appl., VII. Ser. 41, No. 3-4, 265-274 (2020). MSC: 46B04 46E30 PDF BibTeX XML Cite \textit{L. D'Onofrio} et al., Rend. Mat. Appl., VII. Ser. 41, No. 3--4, 265--274 (2020; Zbl 07283049) Full Text: Link
Fernandes, C. A.; Karlovich, A. Yu. Semi-almost periodic Fourier multipliers on rearrangement-invariant spaces with suitable Muckenhoupt weights. (English) Zbl 1451.42012 Bol. Soc. Mat. Mex., III. Ser. 26, No. 3, 1135-1162 (2020). MSC: 42A45 46E30 PDF BibTeX XML Cite \textit{C. A. Fernandes} and \textit{A. Yu. Karlovich}, Bol. Soc. Mat. Mex., III. Ser. 26, No. 3, 1135--1162 (2020; Zbl 1451.42012) Full Text: DOI
Ascione, Giacomo; Manzo, Gianluigi o-O structure of some rearrangement invariant Banach function spaces. (English) Zbl 07270556 J. Elliptic Parabol. Equ. 6, No. 2, 427-449 (2020). MSC: 46E30 46A35 46B15 46B10 PDF BibTeX XML Cite \textit{G. Ascione} and \textit{G. Manzo}, J. Elliptic Parabol. Equ. 6, No. 2, 427--449 (2020; Zbl 07270556) Full Text: DOI
Cui, Yun’An; An, Lili The Orlicz space equipped with the \(\Phi\)-Amemiya norm contains an order asymptotically isometric copy of \({c_0}\). (Chinese. English summary) Zbl 07266733 J. East China Norm. Univ., Nat. Sci. Ed., No. 2, 35-40 (2020). MSC: 46E30 46B04 PDF BibTeX XML Cite \textit{Y. Cui} and \textit{L. An}, J. East China Norm. Univ., Nat. Sci. Ed. , No. 2, 35--40 (2020; Zbl 07266733) Full Text: DOI
Ebadian, A.; Jabbari, A. Convolution operators on Banach-Orlicz algebra. (English) Zbl 07254982 Anal. Math. 46, No. 2, 243-264 (2020). Reviewer: Antonio M. Peralta (Granada) MSC: 47B48 46E25 46E30 PDF BibTeX XML Cite \textit{A. Ebadian} and \textit{A. Jabbari}, Anal. Math. 46, No. 2, 243--264 (2020; Zbl 07254982) Full Text: DOI
Karapetyants, Alexey; Restrepo, Joel Esteban Generalized Hölder type spaces of harmonic functions in the unit ball and half space. (English) Zbl 07250682 Czech. Math. J. 70, No. 3, 675-691 (2020). MSC: 42B35 46E30 46E15 PDF BibTeX XML Cite \textit{A. Karapetyants} and \textit{J. E. Restrepo}, Czech. Math. J. 70, No. 3, 675--691 (2020; Zbl 07250682) Full Text: DOI
Shang, Shaoqiang; Cui, Yunan Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces. (English) Zbl 07249475 Electron Res. Arch. 28, No. 1, 327-346 (2020). MSC: 46E40 46E30 46B50 46B25 PDF BibTeX XML Cite \textit{S. Shang} and \textit{Y. Cui}, Electron Res. Arch. 28, No. 1, 327--346 (2020; Zbl 07249475) Full Text: DOI
Yan, Xianjie; Yang, Dachun; Yuan, Wen Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces. (English) Zbl 07247153 Front. Math. China 15, No. 4, 769-806 (2020). Reviewer: Ioannis Parissis (Bilbao) MSC: 42B25 42B30 42B35 46E30 PDF BibTeX XML Cite \textit{X. Yan} et al., Front. Math. China 15, No. 4, 769--806 (2020; Zbl 07247153) Full Text: DOI
del Campo, Ricardo; Fernández, Antonio; Mayoral, Fernando; Naranjo, Francisco; Sánchez-Pérez, Enrique A. When and where the Orlicz and Luxemburg (quasi-) norms are equivalent? (English) Zbl 07244663 J. Math. Anal. Appl. 491, No. 1, Article ID 124302, 17 p. (2020). MSC: 46E30 PDF BibTeX XML Cite \textit{R. del Campo} et al., J. Math. Anal. Appl. 491, No. 1, Article ID 124302, 17 p. (2020; Zbl 07244663) Full Text: DOI
van Rooij, A. On the Riesz dual of \(L^1 (\mu)\). (English) Zbl 07243538 Indag. Math., New Ser. 31, No. 5, 917-919 (2020). MSC: 46A40 46E30 28A12 PDF BibTeX XML Cite \textit{A. van Rooij}, Indag. Math., New Ser. 31, No. 5, 917--919 (2020; Zbl 07243538) Full Text: DOI
Kamińska, Anna; Lee, Han Ju; Tag, Hyung Joon Diameter two properties and the Radon-Nikodým property in Orlicz spaces. (English) Zbl 07243533 Indag. Math., New Ser. 31, No. 5, 848-862 (2020). Reviewer: Johann Langemets (Tartu) MSC: 46B04 46B22 46B25 46E30 46B45 PDF BibTeX XML Cite \textit{A. Kamińska} et al., Indag. Math., New Ser. 31, No. 5, 848--862 (2020; Zbl 07243533) Full Text: DOI
de Pagter, B.; Sukochev, F. A. The Grothendieck property in Marcinkiewicz spaces. (English) Zbl 1451.46019 Indag. Math., New Ser. 31, No. 5, 791-808 (2020). Reviewer: Elói M. Galego (São Paulo) MSC: 46B25 46E30 46B42 PDF BibTeX XML Cite \textit{B. de Pagter} and \textit{F. A. Sukochev}, Indag. Math., New Ser. 31, No. 5, 791--808 (2020; Zbl 1451.46019) Full Text: DOI
Astashkin, Sergey V. The Rademacher system in function spaces. (English) Zbl 07233025 Cham: Birkhäuser (ISBN 978-3-030-47889-6/hbk; 978-3-030-47890-2/ebook). xx, 559 p. (2020). Reviewer: Daniele Puglisi (Catania) MSC: 46-02 46E30 46B15 60G50 46B70 46B09 PDF BibTeX XML Cite \textit{S. V. Astashkin}, The Rademacher system in function spaces. Cham: Birkhäuser (2020; Zbl 07233025) Full Text: DOI
Jiao, Yong; Sukochev, Fedor; Xie, Guangheng; Zanin, Dmitriy Rosenthal’s inequalities: \({\Delta }\)-norms and quasi-Banach symmetric sequence spaces. (English) Zbl 07220496 Stud. Math. 255, No. 1, 55-81 (2020). MSC: 46E30 60G50 46B09 PDF BibTeX XML Cite \textit{Y. Jiao} et al., Stud. Math. 255, No. 1, 55--81 (2020; Zbl 07220496) Full Text: DOI
Youssfi, Ahmed; Ahmida, Youssef Some approximation results in Musielak-Orlicz spaces. (English) Zbl 07217145 Czech. Math. J. 70, No. 2, 453-471 (2020). MSC: 46E30 46B10 PDF BibTeX XML Cite \textit{A. Youssfi} and \textit{Y. Ahmida}, Czech. Math. J. 70, No. 2, 453--471 (2020; Zbl 07217145) Full Text: DOI
Evseev, N. A.; Menovschikov, A. V. On changing variables in \(L^p\)-spaces with distributed-microstructure. (English. Russian original) Zbl 07215272 Russ. Math. 64, No. 3, 82-86 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 3, 92-97 (2020). MSC: 47H30 35A23 35B27 35K57 46E30 46E35 PDF BibTeX XML Cite \textit{N. A. Evseev} and \textit{A. V. Menovschikov}, Russ. Math. 64, No. 3, 82--86 (2020; Zbl 07215272); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 3, 92--97 (2020) Full Text: DOI
Sánchez Pérez, Enrique A.; Tradacete, Pedro \(p\)-regularity and weights for operators between \(L^p\)-spaces. (English) Zbl 07213230 Z. Anal. Anwend. 39, No. 1, 41-65 (2020). MSC: 46E30 46B42 47B01 47B10 PDF BibTeX XML Cite \textit{E. A. Sánchez Pérez} and \textit{P. Tradacete}, Z. Anal. Anwend. 39, No. 1, 41--65 (2020; Zbl 07213230) Full Text: DOI
Emelyanov, E. Y.; Marabeh, M. A. A. Internal characterization of Brezis-Lieb spaces. (English) Zbl 07210883 Positivity 24, No. 3, 585-592 (2020). MSC: 46B42 46E30 PDF BibTeX XML Cite \textit{E. Y. Emelyanov} and \textit{M. A. A. Marabeh}, Positivity 24, No. 3, 585--592 (2020; Zbl 07210883) Full Text: DOI
Chang, Der-Chen; Wang, Songbai; Yang, Dachun; Zhang, Yangyang Littlewood-Paley characterizations of Hardy-type spaces associated with ball quasi-Banach function spaces. In memory of Professor Carlos Berenstein. (English) Zbl 1439.42026 Complex Anal. Oper. Theory 14, No. 3, Paper No. 40, 33 p. (2020). MSC: 42B25 42B30 42B35 42B20 46E30 PDF BibTeX XML Cite \textit{D.-C. Chang} et al., Complex Anal. Oper. Theory 14, No. 3, Paper No. 40, 33 p. (2020; Zbl 1439.42026) Full Text: DOI
D’Onofrio, Luigi; Greco, Luigi; Perfekt, Karl-Mikael; Sbordone, Carlo; Schiattarella, Roberta Atomic decompositions, two stars theorems, and distances for the Bourgain-Brezis-Mironescu space and other big spaces. (English) Zbl 1443.46005 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 3, 653-661 (2020). Reviewer: Dirk Werner (Berlin) MSC: 46B04 46E30 PDF BibTeX XML Cite \textit{L. D'Onofrio} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 3, 653--661 (2020; Zbl 1443.46005) Full Text: DOI
Ho, Kwok-Pun Definability of singular integral operators on Morrey-Banach spaces. (English) Zbl 1437.42016 J. Math. Soc. Japan 72, No. 1, 155-170 (2020). MSC: 42B20 42B35 46E30 PDF BibTeX XML Cite \textit{K.-P. Ho}, J. Math. Soc. Japan 72, No. 1, 155--170 (2020; Zbl 1437.42016) Full Text: DOI Euclid
Gardella, Eusebio; Thiel, Hannes Extending representations of Banach algebras to their biduals. (English) Zbl 07179298 Math. Z. 294, No. 3-4, 1341-1354 (2020). Reviewer: Marina Haralampidou (Athína) MSC: 46H15 46E30 46L05 47L10 PDF BibTeX XML Cite \textit{E. Gardella} and \textit{H. Thiel}, Math. Z. 294, No. 3--4, 1341--1354 (2020; Zbl 07179298) Full Text: DOI
Delzant, T.; Komornik, V. A nonlinear representation of dual spaces and its applications. (English) Zbl 07175011 Acta Math. Hung. 160, No. 1, 217-228 (2020). MSC: 46B10 46E30 PDF BibTeX XML Cite \textit{T. Delzant} and \textit{V. Komornik}, Acta Math. Hung. 160, No. 1, 217--228 (2020; Zbl 07175011) Full Text: DOI
Ho, K.-P. Sublinear operators on radial rearrangement-invariant quasi-Banach function spaces. (English) Zbl 07175002 Acta Math. Hung. 160, No. 1, 88-100 (2020). Reviewer: Joseph Lakey (Las Cruces) MSC: 42B20 42B25 47B38 46B70 46E30 PDF BibTeX XML Cite \textit{K. P. Ho}, Acta Math. Hung. 160, No. 1, 88--100 (2020; Zbl 07175002) Full Text: DOI
Ruiz, César; Sánchez, Víctor M. Variable exponent Lebesgue spaces which are not Riesz isomorphic to their own square. (English) Zbl 1446.46013 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 87, 9 p. (2020). MSC: 46E30 46B42 PDF BibTeX XML Cite \textit{C. Ruiz} and \textit{V. M. Sánchez}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114, No. 2, Paper No. 87, 9 p. (2020; Zbl 1446.46013) Full Text: DOI
Astashkin, Sergey V.; Terekhin, Pavel A. Representing systems of dilations and translations in symmetric function spaces. (English) Zbl 1446.46011 J. Fourier Anal. Appl. 26, No. 1, Paper No. 13, 22 p. (2020). MSC: 46E30 46B70 42C15 46B15 PDF BibTeX XML Cite \textit{S. V. Astashkin} and \textit{P. A. Terekhin}, J. Fourier Anal. Appl. 26, No. 1, Paper No. 13, 22 p. (2020; Zbl 1446.46011) Full Text: DOI
Glück, Jochen Spectral gaps for hyperbounded operators. (English) Zbl 07154872 Adv. Math. 362, Article ID 106958, 24 p. (2020). MSC: 47A10 47B65 47B38 47D06 46E30 46B08 PDF BibTeX XML Cite \textit{J. Glück}, Adv. Math. 362, Article ID 106958, 24 p. (2020; Zbl 07154872) Full Text: DOI arXiv
Zlatanov, Boyan Kottman’s constant, packing constant and Riesz angle in some classes of Köthe sequence spaces. (English) Zbl 07238221 Carpathian J. Math. 35, No. 1, 103-124 (2019). MSC: 46B20 46E30 46B45 46A45 PDF BibTeX XML Cite \textit{B. Zlatanov}, Carpathian J. Math. 35, No. 1, 103--124 (2019; Zbl 07238221)
Umarkhadzhiev, S. Estimates of the growth of analytic functions when approaching the boundary in a grand Bergman space in the upper half-plane. (English) Zbl 07222359 Nonlinear Stud. 26, No. 4, 1007-1014 (2019). MSC: 46E15 46E30 30H20 PDF BibTeX XML Cite \textit{S. Umarkhadzhiev}, Nonlinear Stud. 26, No. 4, 1007--1014 (2019; Zbl 07222359) Full Text: Link
Zhang, Qinghua; Zhu, Yueping Regular Banach space net and abstract-valued Orlicz space of range-varying type. (English) Zbl 07211961 Open Math. 17, 1680-1702 (2019). MSC: 46B10 46E30 46E40 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{Y. Zhu}, Open Math. 17, 1680--1702 (2019; Zbl 07211961) Full Text: DOI
Lindemulder, Nick; Veraar, Mark; Yaroslavtsev, Ivan The UMD property for Musielak-Orlicz spaces. (English) Zbl 07201933 Buskes, Gerard (ed.) et al., Positivity and noncommutative analysis. Festschrift in honour of Ben de Pagter on the occasion of his 65th birthday. Based on the workshop “Positivity and Noncommutative Analysis”, Delft, The Netherlands, September 26–28, 2018. Cham: Birkhäuser (ISBN 978-3-030-10849-6/hbk; 978-3-030-10850-2/ebook). Trends in Mathematics, 349-363 (2019). MSC: 46B09 42B20 46E30 PDF BibTeX XML Cite \textit{N. Lindemulder} et al., in: Positivity and noncommutative analysis. Festschrift in honour of Ben de Pagter on the occasion of his 65th birthday. Based on the workshop ``Positivity and Noncommutative Analysis'', Delft, The Netherlands, September 26--28, 2018. Cham: Birkhäuser. 349--363 (2019; Zbl 07201933) Full Text: DOI
Kończak, Joanna Non-square points of Orlicz-Lorentz function spaces. (English) Zbl 1448.46018 Commentat. Math. 59, No. 1-2, 1-17 (2019). MSC: 46B20 46E30 46B42 46A80 PDF BibTeX XML Cite \textit{J. Kończak}, Commentat. Math. 59, No. 1--2, 1--17 (2019; Zbl 1448.46018) Full Text: DOI
Blecher, David P.; Phillips, N. Christopher \(L^p\)-operator algebras with approximate identities. I. (English) Zbl 07179013 Pac. J. Math. 303, No. 2, 401-457 (2019). MSC: 46H35 46E30 46H10 46H99 47L10 47L30 47B38 47B44 47L75 PDF BibTeX XML Cite \textit{D. P. Blecher} and \textit{N. C. Phillips}, Pac. J. Math. 303, No. 2, 401--457 (2019; Zbl 07179013) Full Text: DOI
Bilalov, Bilal T.; Alizade, Fidan A.; Rasulov, Murad F. On bases of trigonometric systems in Hardy-Orlicz spaces and Riesz theorem. (English) Zbl 1448.46016 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 39, No. 4, Math., 46-56 (2019). MSC: 46B15 46E30 46E15 PDF BibTeX XML Cite \textit{B. T. Bilalov} et al., Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 39, No. 4, Math., 46--56 (2019; Zbl 1448.46016) Full Text: Link
He, Xin; Cui, Yun’an; Ji, Dandan Monotone coefficients in Orlicz function spaces equipped with the \(p\)-Amemiya norm. (Chinese. English summary) Zbl 1449.46017 Adv. Math., Beijing 48, No. 4, 459-468 (2019). MSC: 46B20 46B42 46E30 PDF BibTeX XML Cite \textit{X. He} et al., Adv. Math., Beijing 48, No. 4, 459--468 (2019; Zbl 1449.46017) Full Text: DOI
Kamińska, Anna A note on type of weak-\(L^1\) and weak-\( \ell^1\) spaces. (English) Zbl 1443.46020 Kosek, Marta (ed.), Function spaces XII. Selected papers based on the presentations at the 12th conference, Krakow, Poland, July 9–14, 2018. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Cent. Publ. 119, 193-196 (2019). MSC: 46E30 46B07 46A16 PDF BibTeX XML Cite \textit{A. Kamińska}, Banach Cent. Publ. 119, 193--196 (2019; Zbl 1443.46020) Full Text: DOI
Delgado, O.; Mastyło, M.; Sánchez Pérez, E. A. Strong factorizations of operators with applications to Fourier and Cesàro transforms. (English) Zbl 1445.47020 Mich. Math. J. 68, No. 1, 167-192 (2019). MSC: 47A68 47A30 46E30 47B38 46B15 43A25 PDF BibTeX XML Cite \textit{O. Delgado} et al., Mich. Math. J. 68, No. 1, 167--192 (2019; Zbl 1445.47020) Full Text: DOI Euclid
Angrisani, Francesca; Ascione, Giacomo; Manzo, Gianluigi Orlicz spaces with a \(o\)-\(O\) type structure. (English) Zbl 1435.46007 Ric. Mat. 68, No. 2, 841-857 (2019). Reviewer: Dirk Werner (Berlin) MSC: 46B04 46B25 46E30 PDF BibTeX XML Cite \textit{F. Angrisani} et al., Ric. Mat. 68, No. 2, 841--857 (2019; Zbl 1435.46007) Full Text: DOI
Calabuig, Jose M.; Fernández-Unzueta, Maite; Galaz-Fontes, Fernando; Sánchez-Pérez, Enrique A. Equivalent norms in a Banach function space and the subsequence property. (English) Zbl 1442.46022 J. Korean Math. Soc. 56, No. 5, 1387-1401 (2019). MSC: 46E30 46B42 PDF BibTeX XML Cite \textit{J. M. Calabuig} et al., J. Korean Math. Soc. 56, No. 5, 1387--1401 (2019; Zbl 1442.46022) Full Text: DOI arXiv
Fernandes, Cláudio A.; Karlovich, Alexei Y.; Karlovich, Yuri I. Noncompactness of Fourier convolution operators on Banach function spaces. (English) Zbl 07126072 Ann. Funct. Anal. 10, No. 4, 553-561 (2019). MSC: 47G10 46E30 PDF BibTeX XML Cite \textit{C. A. Fernandes} et al., Ann. Funct. Anal. 10, No. 4, 553--561 (2019; Zbl 07126072) Full Text: DOI Euclid
Astashkin, Sergey V. Rearrangement invariant spaces satisfying Dunford-Pettis criterion of weak compactness. (English) Zbl 1443.46018 Kuchment, Peter (ed.) et al., Functional analysis and geometry. Selim Grigorievich Krein centennial. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 733, 45-59 (2019). MSC: 46E30 46B50 46B42 PDF BibTeX XML Cite \textit{S. V. Astashkin}, Contemp. Math. 733, 45--59 (2019; Zbl 1443.46018) Full Text: DOI
Calabuig, J. M.; Fernández-Unzueta, M.; Galaz-Fontes, F.; Sánchez-Pérez, E. A. Completability and optimal factorization norms in tensor products of Banach function spaces. (English) Zbl 1441.46053 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3513-3530 (2019). MSC: 46M05 46E30 28A35 PDF BibTeX XML Cite \textit{J. M. Calabuig} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3513--3530 (2019; Zbl 1441.46053) Full Text: DOI
Foralewski, Paweł; Kończak, Joanna Local uniform non-squareness of Orlicz-Lorentz function spaces. (English) Zbl 1441.46014 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3425-3443 (2019). Reviewer: Pawel Kolwicz (Poznań) MSC: 46B20 46E30 46B42 46A80 PDF BibTeX XML Cite \textit{P. Foralewski} and \textit{J. Kończak}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3425--3443 (2019; Zbl 1441.46014) Full Text: DOI
Astashkin, Sergey V. Some remarks about disjointly homogeneous symmetric spaces. (English) Zbl 1441.46022 Rev. Mat. Complut. 32, No. 3, 823-835 (2019). MSC: 46E30 46B42 46B70 PDF BibTeX XML Cite \textit{S. V. Astashkin}, Rev. Mat. Complut. 32, No. 3, 823--835 (2019; Zbl 1441.46022) Full Text: DOI
Bilalov, B. T.; Huseynli, A. A.; El-Shabrawy, S. R. Basis properties of trigonometric systems in weighted Morrey spaces. (English) Zbl 1441.46011 Azerb. J. Math. 9, No. 2, 183-209 (166-192) (2019). MSC: 46B15 46E30 PDF BibTeX XML Cite \textit{B. T. Bilalov} et al., Azerb. J. Math. 9, No. 2, 183--209 (166--192) (2019; Zbl 1441.46011) Full Text: Link
Cianchi, Andrea; Pick, Luboš; Slavíková, Lenka Banach algebras of weakly differentiable functions. (English) Zbl 1440.46029 J. Anal. Math. 138, No. 2, 473-511 (2019). MSC: 46E35 46E30 PDF BibTeX XML Cite \textit{A. Cianchi} et al., J. Anal. Math. 138, No. 2, 473--511 (2019; Zbl 1440.46029) Full Text: DOI
Lorist, Emiel; Nieraeth, Bas Vector-valued extensions of operators through multilinear limited range extrapolation. (English) Zbl 1423.42037 J. Fourier Anal. Appl. 25, No. 5, 2608-2634 (2019). MSC: 42B25 42B15 46E30 PDF BibTeX XML Cite \textit{E. Lorist} and \textit{B. Nieraeth}, J. Fourier Anal. Appl. 25, No. 5, 2608--2634 (2019; Zbl 1423.42037) Full Text: DOI arXiv
Hai, Pham Viet Polynomial stability and polynomial instability for skew-evolution semiflows. (English) Zbl 1434.34045 Result. Math. 74, No. 4, Paper No. 175, 19 p. (2019). Reviewer: Nikita V. Artamonov (Moskva) MSC: 34D05 46E30 34G10 34D20 47D06 PDF BibTeX XML Cite \textit{P. V. Hai}, Result. Math. 74, No. 4, Paper No. 175, 19 p. (2019; Zbl 1434.34045) Full Text: DOI
Sukochev, F.; Tulenov, K.; Zanin, D. The optimal range of the Calderòn operator and its applications. (English) Zbl 1437.46036 J. Funct. Anal. 277, No. 10, 3513-3559 (2019). MSC: 46E30 47B10 46L51 46L52 44A15 47L20 47C15 PDF BibTeX XML Cite \textit{F. Sukochev} et al., J. Funct. Anal. 277, No. 10, 3513--3559 (2019; Zbl 1437.46036) Full Text: DOI
Karlovich, Alexei Yu. Hardy-Littlewood maximal operator on the associate space of a Banach function space. (English) Zbl 1419.43003 Real Anal. Exch. 44, No. 1, 119-140 (2019). MSC: 43A85 46E30 PDF BibTeX XML Cite \textit{A. Yu. Karlovich}, Real Anal. Exch. 44, No. 1, 119--140 (2019; Zbl 1419.43003) Full Text: DOI Euclid arXiv
D’Onofrio, Luigi; Sbordone, Carlo; Schiattarella, Roberta Duality and distance formulas in Banach function spaces. (English) Zbl 1434.46005 J. Elliptic Parabol. Equ. 5, No. 1, 1-23 (2019). Reviewer: Dirk Werner (Berlin) MSC: 46B04 46B25 46E30 42B35 PDF BibTeX XML Cite \textit{L. D'Onofrio} et al., J. Elliptic Parabol. Equ. 5, No. 1, 1--23 (2019; Zbl 1434.46005) Full Text: DOI
Ho, Kwok-Pun Weak type estimates of singular integral operators on Morrey-Banach spaces. (English) Zbl 1418.42018 Integral Equations Oper. Theory 91, No. 3, Paper No. 20, 18 p. (2019). Reviewer: Hongbin Wang (Zibo) MSC: 42B20 42B25 42B35 46E30 PDF BibTeX XML Cite \textit{K.-P. Ho}, Integral Equations Oper. Theory 91, No. 3, Paper No. 20, 18 p. (2019; Zbl 1418.42018) Full Text: DOI
Kamińska, Anna; Raynaud, Yves Abstract Lorentz spaces and Köthe duality. (English) Zbl 1429.46021 Indag. Math., New Ser. 30, No. 4, 553-595 (2019). Reviewer: Enrique Alfonso Sánchez-Pérez (València) MSC: 46E30 46B42 PDF BibTeX XML Cite \textit{A. Kamińska} and \textit{Y. Raynaud}, Indag. Math., New Ser. 30, No. 4, 553--595 (2019; Zbl 1429.46021) Full Text: DOI arXiv
Blasco, Oscar Bilinear multipliers on Banach function spaces. (English) Zbl 1429.46020 J. Funct. Spaces 2019, Article ID 7639380, 11 p. (2019). Reviewer: Enrique Alfonso Sánchez-Pérez (València) MSC: 46E30 46G25 42B20 PDF BibTeX XML Cite \textit{O. Blasco}, J. Funct. Spaces 2019, Article ID 7639380, 11 p. (2019; Zbl 1429.46020) Full Text: DOI
Sánchez Pérez, E. A. Factorization through Lorentz spaces for operators acting in Banach function spaces. (English) Zbl 1427.46021 Positivity 23, No. 1, 75-88 (2019). MSC: 46E30 47B38 46B42 PDF BibTeX XML Cite \textit{E. A. Sánchez Pérez}, Positivity 23, No. 1, 75--88 (2019; Zbl 1427.46021) Full Text: DOI
Astashkin, Sergey V. Duality problem for disjointly homogeneous rearrangement invariant spaces. (English) Zbl 1415.46020 J. Funct. Anal. 276, No. 10, 3205-3225 (2019). Reviewer: Nicolae Popa (Bucureşti) MSC: 46E30 46B70 46B42 PDF BibTeX XML Cite \textit{S. V. Astashkin}, J. Funct. Anal. 276, No. 10, 3205--3225 (2019; Zbl 1415.46020) Full Text: DOI
Karapetyants, Alexey; Rafeiro, Humberto; Samko, Stefan Boundedness of the Bergman projection and some properties of Bergman type spaces. (English) Zbl 1421.30070 Complex Anal. Oper. Theory 13, No. 1, 275-289 (2019). Reviewer: Raymond Mortini (Metz) MSC: 30H20 30H99 46E30 46E15 PDF BibTeX XML Cite \textit{A. Karapetyants} et al., Complex Anal. Oper. Theory 13, No. 1, 275--289 (2019; Zbl 1421.30070) Full Text: DOI
Ashyralyev, Allaberen; Taskin, Abdulgafur The structure of fractional spaces generated by a two-dimensional neutron transport operator and its applications. (English) Zbl 1435.47045 Adv. Oper. Theory 4, No. 1, 140-155 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 47B65 47F05 47B38 47B01 35A35 35K30 34B27 35Q49 46E30 46E35 PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{A. Taskin}, Adv. Oper. Theory 4, No. 1, 140--155 (2019; Zbl 1435.47045) Full Text: DOI Euclid
Tulenov, Kanat Serikovich; Akhymbek, Meiram Erkanatuly; Kassymov, Aidyn Adilovich Clarkson inequalities on \(L^p(\widehat{G})\) space associated with compact Lie group. (English) Zbl 07205962 J. Pseudo-Differ. Oper. Appl. 9, No. 2, 443-450 (2018). MSC: 46E30 46B10 43A20 PDF BibTeX XML Cite \textit{K. S. Tulenov} et al., J. Pseudo-Differ. Oper. Appl. 9, No. 2, 443--450 (2018; Zbl 07205962) Full Text: DOI
Wang, Liying; Ma, Hongshi \({L_N}\)-weakly sequentially compact of subset a of Orlicz space \({L_M}\) (Second necessary and sufficient condition). (Chinese. English summary) Zbl 1438.46027 Acta Anal. Funct. Appl. 20, No. 4, 384-392 (2018). MSC: 46B50 46E30 PDF BibTeX XML Cite \textit{L. Wang} and \textit{H. Ma}, Acta Anal. Funct. Appl. 20, No. 4, 384--392 (2018; Zbl 1438.46027) Full Text: DOI
Mocanu, Marcelina Approximate differentiability in Newtonian spaces based on Banach function spaces. (English) Zbl 1438.46045 Sci. Stud. Res., Ser. Math. Inform. 28, No. 1, 177-190 (2018). MSC: 46E36 46E30 46E35 PDF BibTeX XML Cite \textit{M. Mocanu}, Sci. Stud. Res., Ser. Math. Inform. 28, No. 1, 177--190 (2018; Zbl 1438.46045)
Bandaliyev, R. A.; Guliyev, V. S.; Hasanov, S. G. Two-weighted inequalities for the Riesz potential in \(p\)-convex weighted modular Banach function spaces. (English) Zbl 1419.46025 Ukr. Math. J. 69, No. 11, 1673-1688 (2018); and Ukr. Mat. Zh. 69, No. 11, 1443-1454 (2017). MSC: 46E30 47B38 PDF BibTeX XML Cite \textit{R. A. Bandaliyev} et al., Ukr. Math. J. 69, No. 11, 1673--1688 (2018; Zbl 1419.46025) Full Text: DOI
Zhang, Qinghua Abstract-valued Orlicz spaces of range-varying type. (English) Zbl 1415.46022 Open Math. 16, 924-954 (2018). MSC: 46E30 46E40 46B10 PDF BibTeX XML Cite \textit{Q. Zhang}, Open Math. 16, 924--954 (2018; Zbl 1415.46022) Full Text: DOI
Ma, Hongshi Lower monotone coefficient of a point in Orlicz function spaces equipped with \(p\)-Amemiya norm \(\left ( {1 \leq p \leq \infty} \right)\). (Chinese. English summary) Zbl 1424.46047 Acta Anal. Funct. Appl. 20, No. 2, 142-149 (2018). MSC: 46E30 46B42 PDF BibTeX XML Cite \textit{H. Ma}, Acta Anal. Funct. Appl. 20, No. 2, 142--149 (2018; Zbl 1424.46047) Full Text: DOI
Heikkinen, Toni Generalized Lebesgue points for Hajłasz functions. (English) Zbl 1412.46042 J. Funct. Spaces 2018, Article ID 5637042, 12 p. (2018). MSC: 46E30 PDF BibTeX XML Cite \textit{T. Heikkinen}, J. Funct. Spaces 2018, Article ID 5637042, 12 p. (2018; Zbl 1412.46042) Full Text: DOI
Edmunds, David; Gogatishvili, Amiran; Kopaliani, Tengiz Construction of function spaces close to \(L^\infty \) with associate space close to \(L^1\). (English) Zbl 1425.46017 J. Fourier Anal. Appl. 24, No. 6, 1539-1553 (2018). Reviewer: George O. Okikiolu (London) MSC: 46E30 42A20 PDF BibTeX XML Cite \textit{D. Edmunds} et al., J. Fourier Anal. Appl. 24, No. 6, 1539--1553 (2018; Zbl 1425.46017) Full Text: DOI arXiv
Astashkin, S. V.; Semenov, E. M. Strict embeddings of rearrangement invariant spaces. (English. Russian original) Zbl 1409.46023 Dokl. Math. 98, No. 1, 327-329 (2018); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 481, No. 3 (2018). MSC: 46E30 46B42 47B60 PDF BibTeX XML Full Text: DOI
Shioji, Naoki Simple proofs of the uniform convexity of \(L^{p}\) and the Riesz representation theorem for \(L^{p}\). (English) Zbl 1404.46026 Am. Math. Mon. 125, No. 8, 733-738 (2018). Reviewer: Dirk Werner (Berlin) MSC: 46E30 46B10 46B20 PDF BibTeX XML Cite \textit{N. Shioji}, Am. Math. Mon. 125, No. 8, 733--738 (2018; Zbl 1404.46026) Full Text: DOI
Ciesielski, Maciej Strict \(K\)-monotonicity and \(K\)-order continuity in symmetric spaces. (English) Zbl 1406.46020 Positivity 22, No. 3, 727-743 (2018). MSC: 46E30 46B20 46B42 PDF BibTeX XML Cite \textit{M. Ciesielski}, Positivity 22, No. 3, 727--743 (2018; Zbl 1406.46020) Full Text: DOI arXiv
Gill, Tepper L. Banach spaces for the Schwartz distributions. (English) Zbl 1411.46022 Real Anal. Exch. 43, No. 1, 1-36 (2018). MSC: 46E30 26A39 PDF BibTeX XML Cite \textit{T. L. Gill}, Real Anal. Exch. 43, No. 1, 1--36 (2018; Zbl 1411.46022) Full Text: DOI arXiv
Hedenmalm, Haakan; Wennman, Aron A critical topology for \(L^p\)-Carleman classes with \(0<p<1\). (English) Zbl 1404.46033 Math. Ann. 371, No. 3-4, 1803-1844 (2018). MSC: 46E35 46E30 46A16 PDF BibTeX XML Cite \textit{H. Hedenmalm} and \textit{A. Wennman}, Math. Ann. 371, No. 3--4, 1803--1844 (2018; Zbl 1404.46033) Full Text: DOI arXiv
Meskhi, Alexander; Sawano, Yoshihiro Density, duality and preduality in grand variable exponent Lebesgue and Morrey spaces. (English) Zbl 1402.46023 Mediterr. J. Math. 15, No. 3, Paper No. 100, 15 p. (2018). MSC: 46E30 46B10 PDF BibTeX XML Cite \textit{A. Meskhi} and \textit{Y. Sawano}, Mediterr. J. Math. 15, No. 3, Paper No. 100, 15 p. (2018; Zbl 1402.46023) Full Text: DOI arXiv
Karlovich, Alexei Yu. The Coburn-Simonenko theorem for Toeplitz operators acting between Hardy type subspaces of different Banach function spaces. (English) Zbl 06909930 Mediterr. J. Math. 15, No. 3, Paper No. 91, 15 p. (2018). MSC: 47B35 46E30 PDF BibTeX XML Cite \textit{A. Yu. Karlovich}, Mediterr. J. Math. 15, No. 3, Paper No. 91, 15 p. (2018; Zbl 06909930) Full Text: DOI arXiv
Sadovskaya, O.; Sukochev, F. Isomorphic classification of \(L_{p,q}\)-spaces: the case \(p=2\), \(1\leq q< 2\). (English) Zbl 1406.46021 Proc. Am. Math. Soc. 146, No. 9, 3975-3984 (2018). MSC: 46E30 46B26 46B03 PDF BibTeX XML Cite \textit{O. Sadovskaya} and \textit{F. Sukochev}, Proc. Am. Math. Soc. 146, No. 9, 3975--3984 (2018; Zbl 1406.46021) Full Text: DOI
Astashkin, S. V.; Terekhin, P. A. Basis properties of affine Walsh systems in symmetric spaces. (English. Russian original) Zbl 1403.46026 Izv. Math. 82, No. 3, 451-476 (2018); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 3, 3-30 (2018). MSC: 46E30 46B15 PDF BibTeX XML Cite \textit{S. V. Astashkin} and \textit{P. A. Terekhin}, Izv. Math. 82, No. 3, 451--476 (2018; Zbl 1403.46026); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 3, 3--30 (2018) Full Text: DOI
Karapetyants, Alexey N.; Samko, Stefan G. On mixed norm Bergman-Orlicz-Morrey spaces. (English) Zbl 1392.30023 Georgian Math. J. 25, No. 2, 271-282 (2018). MSC: 30H20 46E30 46E15 PDF BibTeX XML Cite \textit{A. N. Karapetyants} and \textit{S. G. Samko}, Georgian Math. J. 25, No. 2, 271--282 (2018; Zbl 1392.30023) Full Text: DOI
Berezhnoĭ, E. I.; Maligranda, L. Representability of cones of monotone functions in weighted Lebesgue spaces and extrapolation of operators on these cones. (Represensibility of cones of monotone functions in weighted Lebesgue spaces and extrapolation of operators on these cones.) (English. Russian original) Zbl 1400.46021 St. Petersbg. Math. J. 29, No. 4, 545-574 (2018); translation from Algebra Anal. 29, No. 4, 1-44 (2017). MSC: 46E30 46B42 PDF BibTeX XML Cite \textit{E. I. Berezhnoĭ} and \textit{L. Maligranda}, St. Petersbg. Math. J. 29, No. 4, 545--574 (2018; Zbl 1400.46021); translation from Algebra Anal. 29, No. 4, 1--44 (2017) Full Text: DOI
Ho, Kwok-Pun Doob’s inequality, Burkholder-Gundy inequality and martingale transforms on martingale Morrey spaces. (English) Zbl 1399.46038 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 1, 93-109 (2018). MSC: 46E30 42B20 60G42 60G46 PDF BibTeX XML Cite \textit{K.-P. Ho}, Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 1, 93--109 (2018; Zbl 1399.46038) Full Text: DOI
Astashkin, Sergey V.; Maligranda, Lech \(L_p + L_q\) and \(L_p \cap L_q\) are not isomorphic for all \(1 \leq p\), \(q\leq \infty\), \(p\neq q\). (\(L_{p} + L_{q}\) et \(L_p \cap L_q\) ne sont pas isomorphes pour tout \(1 \leq p\), \(q\leq \infty\), \(p\neq q\).) (English. French summary) Zbl 1398.46008 C. R., Math., Acad. Sci. Paris 356, No. 6, 661-665 (2018). MSC: 46B03 46E30 46B42 46B25 PDF BibTeX XML Cite \textit{S. V. Astashkin} and \textit{L. Maligranda}, C. R., Math., Acad. Sci. Paris 356, No. 6, 661--665 (2018; Zbl 1398.46008) Full Text: DOI
Astashkin, Sergey V.; Curbera, Guillermo P. Random unconditional convergence and divergence in Banach spaces close to \(L^1\). (English) Zbl 1405.46012 Rev. Mat. Complut. 31, No. 2, 351-377 (2018). Reviewer: Pedro Tradacete (Madrid) MSC: 46B15 46E30 46B09 PDF BibTeX XML Cite \textit{S. V. Astashkin} and \textit{G. P. Curbera}, Rev. Mat. Complut. 31, No. 2, 351--377 (2018; Zbl 1405.46012) Full Text: DOI
Ciesielski, Maciej Lower and upper local uniform \(K\)-monotonicity in symmetric spaces. (English) Zbl 1397.46024 Banach J. Math. Anal. 12, No. 2, 314-330 (2018). MSC: 46E30 46B20 46B42 PDF BibTeX XML Cite \textit{M. Ciesielski}, Banach J. Math. Anal. 12, No. 2, 314--330 (2018; Zbl 1397.46024) Full Text: DOI Euclid
Chen, Jiaolong Generalized Bloch spaces, integral means of hyperbolic harmonic mappings in the unit ball. (English) Zbl 1390.31006 J. Math. Anal. Appl. 464, No. 1, 596-615 (2018). MSC: 31C05 46E15 46E30 PDF BibTeX XML Cite \textit{J. Chen}, J. Math. Anal. Appl. 464, No. 1, 596--615 (2018; Zbl 1390.31006) Full Text: DOI arXiv
Kiwerski, Tomasz; Kolwicz, Paweł Rotundity and monotonicity properties of selected Cesàro function spaces. (English) Zbl 1398.46013 Positivity 22, No. 1, 357-377 (2018). MSC: 46B20 46B04 46B42 46E30 PDF BibTeX XML Cite \textit{T. Kiwerski} and \textit{P. Kolwicz}, Positivity 22, No. 1, 357--377 (2018; Zbl 1398.46013) Full Text: DOI
Raynaud, Yves New axiomatizable classes of Banach spaces via disjointness-preserving isometries. (English) Zbl 1396.46017 Positivity 22, No. 1, 301-339 (2018). Reviewer: Manuel González (Santander) MSC: 46B42 46E30 03C65 46M07 PDF BibTeX XML Cite \textit{Y. Raynaud}, Positivity 22, No. 1, 301--339 (2018; Zbl 1396.46017) Full Text: DOI
Liang, Yu-Xia Integral-type operators from \(F(p,q,s)\) space to \(\alpha\)-Bloch-Orlicz and \(\beta\)-Zygmund-Orlicz spaces. (English) Zbl 06838041 Complex Anal. Oper. Theory 12, No. 1, 169-194 (2018). MSC: 47G10 46E15 46E30 PDF BibTeX XML Cite \textit{Y.-X. Liang}, Complex Anal. Oper. Theory 12, No. 1, 169--194 (2018; Zbl 06838041) Full Text: DOI
Tupputi, Maria Rosaria Carleson measures for the Dirichlet-Orlicz space. (English) Zbl 1393.46020 Stud. Math. 240, No. 1, 1-20 (2018). MSC: 46E15 46E30 31C25 PDF BibTeX XML Cite \textit{M. R. Tupputi}, Stud. Math. 240, No. 1, 1--20 (2018; Zbl 1393.46020) Full Text: DOI
Edmunds, D. E.; Nekvinda, A. Characterisation of zero trace functions in higher-order spaces of Sobolev type. (English) Zbl 1402.46024 J. Math. Anal. Appl. 459, No. 2, 879-892 (2018). Reviewer: Jiří Rákosník (Praha) MSC: 46E35 46E30 PDF BibTeX XML Cite \textit{D. E. Edmunds} and \textit{A. Nekvinda}, J. Math. Anal. Appl. 459, No. 2, 879--892 (2018; Zbl 1402.46024) Full Text: DOI
Wójtowicz, Marek; Wiśniewska, Halina Orthomorphisms on non-Banach \(F\)-lattices containing a copy of \(\mathbb{R}^{\mathbb{N}}\) with applications to Musielak-Orlicz spaces. (English) Zbl 1383.46005 J. Math. Anal. Appl. 458, No. 1, 812-820 (2018). Reviewer: Esteban Induraín (Pamplona) MSC: 46A40 46E30 06B30 46B42 54F05 PDF BibTeX XML Cite \textit{M. Wójtowicz} and \textit{H. Wiśniewska}, J. Math. Anal. Appl. 458, No. 1, 812--820 (2018; Zbl 1383.46005) Full Text: DOI
Ruiz, César; Sánchez, Víctor M. Subprojective Nakano spaces. (English) Zbl 1383.46010 J. Math. Anal. Appl. 458, No. 1, 332-344 (2018). Reviewer: Elói M. Galego (Sao Paulo) MSC: 46B03 46B45 46E30 PDF BibTeX XML Cite \textit{C. Ruiz} and \textit{V. M. Sánchez}, J. Math. Anal. Appl. 458, No. 1, 332--344 (2018; Zbl 1383.46010) Full Text: DOI
Kusraev, Anatoliĭ Georgievich; Tasoev, Batradz Botazovich Maximal quasi-normed extension of quasi-normed lattices. (English) Zbl 07259905 Vladikavkaz. Mat. Zh. 19, No. 3, 41-50 (2017). MSC: 46A16 46B42 46E30 46G10 47B38 47G10 PDF BibTeX XML Cite \textit{A. G. Kusraev} and \textit{B. B. Tasoev}, Vladikavkaz. Mat. Zh. 19, No. 3, 41--50 (2017; Zbl 07259905) Full Text: MNR
Jain, Pankaj; Singh, Monika; Singh, Arun Pal Duality of fully measurable grand Lebesgue space. (English) Zbl 1452.46022 Trans. A. Razmadze Math. Inst. 171, No. 1, 32-47 (2017). MSC: 46E30 PDF BibTeX XML Cite \textit{P. Jain} et al., Trans. A. Razmadze Math. Inst. 171, No. 1, 32--47 (2017; Zbl 1452.46022) Full Text: DOI
Rodríguez, José Open problems in Banach spaces and measure theory. (English) Zbl 1426.28026 Quaest. Math. 40, No. 6, 811-832 (2017). MSC: 28B05 28B20 46B26 46B50 46E30 46E40 PDF BibTeX XML Cite \textit{J. Rodríguez}, Quaest. Math. 40, No. 6, 811--832 (2017; Zbl 1426.28026) Full Text: DOI
Karlovich, Alexei Yu. Density of analytic polynomials in abstract Hardy spaces. (English) Zbl 1416.46031 Commentat. Math. 57, No. 2, 131-141 (2017). MSC: 46E30 42A10 PDF BibTeX XML Cite \textit{A. Yu. Karlovich}, Commentat. Math. 57, No. 2, 131--141 (2017; Zbl 1416.46031) Full Text: DOI arXiv
Chen, Lili; Gao, Lu; Zhao, Yanfeng A new iterative scheme for finding attractive points of \((\alpha,\beta)\)-generalized hybrid set-valued mappings. (English) Zbl 1412.46025 J. Nonlinear Sci. Appl. 10, No. 3, 1228-1237 (2017). MSC: 46B20 46E30 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Nonlinear Sci. Appl. 10, No. 3, 1228--1237 (2017; Zbl 1412.46025) Full Text: DOI
Mocanu, Marcelina On a maximal operator in rearrangement invariant Banach function spaces on metric spaces. (English) Zbl 1399.46039 Sci. Stud. Res., Ser. Math. Inform. 27, No. 1, 49-60 (2017). MSC: 46E30 46E35 PDF BibTeX XML Cite \textit{M. Mocanu}, Sci. Stud. Res., Ser. Math. Inform. 27, No. 1, 49--60 (2017; Zbl 1399.46039)