Dehghan, Ali; Banihashemi, Amir H. Asymptotic average multiplicity of structures within different categories of trapping sets, absorbing sets, and stopping sets in random regular and irregular LDPC code ensembles. (English) Zbl 1432.94165 IEEE Trans. Inf. Theory 65, No. 10, 6022-6043 (2019). MSC: 94B05 94B15 94C15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Laczkovich, M. Tilings of convex polygons with congruent triangles. (English) Zbl 1255.52016 Discrete Comput. Geom. 48, No. 2, 330-372 (2012). Reviewer: Christian Richter (Jena) MSC: 52C20 52A10 × Cite Format Result Cite Review PDF Full Text: DOI
Pach, J.; Sharir, M. On the boundary of the union of planar convex sets. (English) Zbl 0927.52001 Discrete Comput. Geom. 21, No. 3, 321-328 (1999). Reviewer: Serguey M.Pokas (Odessa) MSC: 52A10 52A40 × Cite Format Result Cite Review PDF Full Text: DOI
Steffen, Klaus Hausdorff dimension, regular sets and totally irregular sets. (Hausdorff-Dimension, reguläre Mengen und total irreguläre Mengen.) (German) Zbl 0932.01053 Brieskorn, Egbert (ed.), Felix Hausdorff zum Gedächtnis. Band I: Aspekte seines Werkes. Wiesbaden: Vieweg. 185-227 (1996). Reviewer: K.-B.Gundlach (Marburg) MSC: 01A70 28-03 28A78 28A80 × Cite Format Result Cite Review PDF
Girotto, Bruno; Holzer, Silvano Regular and purely irregular bounded charges: A decomposition theorem. (English) Zbl 0769.28012 Proc. Am. Math. Soc. 116, No. 3, 683-693 (1992). MSC: 28C15 60B05 × Cite Format Result Cite Review PDF Full Text: DOI
Falconer, K. J. The geometry of fractal sets. (English) Zbl 0587.28004 Cambridge Tracts in Mathematics, 85. Cambridge etc.: Cambridge University Press. XIV, 162 p. £17.50; $ 32.50 (1985). Reviewer: D.Khavinson MSC: 28A75 28-02 × Cite Format Result Cite Review PDF Backlinks: MO
Degiovanni, Marco Bounce problems in convex sets. (Italian. English summary) Zbl 0546.73010 Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 73, 1-5 (1982). Reviewer: J.L.Thompson MSC: 74B99 70H20 74M20 34B10 35G30 × Cite Format Result Cite Review PDF
De Guzman, Miguel Besicovitch theory of linearly measurable sets and Fourier analysis. (English) Zbl 0427.28004 Harmonic analysis in Euclidean spaces, Part 1, Williamstown/ Massachusetts 1978, Proc. Symp. Pure Math., Vol. 35, 61-67 (1979). MSC: 28A75 42B15 28A15 × Cite Format Result Cite Review PDF