Virrion, Anne The relative duality theorem for arithmetic \({\mathcal D}\)-modules. (Théorème de dualité relative pour les \({\mathcal D}\)-modules arithmétiques.) (French) Zbl 0876.14011 C. R. Acad. Sci., Paris, Sér. I 321, No. 6, 751-754 (1995). Summary: Let \({\mathcal D}\) be one of the rings of differential operators defined by P. Berthelot [Ann. Sci. Éc. Norm. Supér., IV. Sér. 29, No. 2, 185-272 (1996)] on a smooth scheme of unequal characteristics. We establish that the relative duality theorem for proper morphisms still holds in this context. More precisely we show that the direct image functor for \({\mathcal D}\)-modules commutes with the duality functor [see also A. Virrion, C. R. Acad. Sci., Paris, Sér. I 319, No. 12, 1283-1286 (1994; Zbl 0829.14010)]. Cited in 1 ReviewCited in 2 Documents MSC: 14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials 14G20 Local ground fields in algebraic geometry 13N10 Commutative rings of differential operators and their modules Keywords:rings of differential operators; relative duality theorem for proper morphisms Citations:Zbl 0829.14010 PDF BibTeX XML Cite \textit{A. Virrion}, C. R. Acad. Sci., Paris, Sér. I 321, No. 6, 751--754 (1995; Zbl 0876.14011) OpenURL