Hirsch, Christian; Jahnel, Benedikt; Tóbiás, András Lower large deviations for geometric functionals. (English) Zbl 1453.60156 Electron. Commun. Probab. 25, Paper No. 41, 12 p. (2020). MSC: 60K35 60F10 82C22 PDF BibTeX XML Cite \textit{C. Hirsch} et al., Electron. Commun. Probab. 25, Paper No. 41, 12 p. (2020; Zbl 1453.60156) Full Text: DOI arXiv Euclid
Neumann, Matthias; Hirsch, Christian; Staněk, Jakub; Beneš, Viktor; Schmidt, Volker Estimation of geodesic tortuosity and constrictivity in stationary random closed sets. (English) Zbl 1433.62074 Scand. J. Stat. 46, No. 3, 848-884 (2019). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 62F10 62R40 62P30 PDF BibTeX XML Cite \textit{M. Neumann} et al., Scand. J. Stat. 46, No. 3, 848--884 (2019; Zbl 1433.62074) Full Text: DOI arXiv
Banyassady, Bahareh; Barba, Luis; Mulzer, Wolfgang Time-space trade-offs for computing Euclidean minimum spanning trees. (English) Zbl 1485.68258 Bender, Michael A. (ed.) et al., Latin 2018: theoretical informatics. 13th Latin American symposium, Buenos Aires, Argentina, April 16–19, 2018. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 10807, 108-119 (2018). MSC: 68U05 68R10 68W40 PDF BibTeX XML Cite \textit{B. Banyassady} et al., Lect. Notes Comput. Sci. 10807, 108--119 (2018; Zbl 1485.68258) Full Text: DOI arXiv
Coupier, David; Hirsch, Christian Coalescence of Euclidean geodesics on the Poisson-Delaunay triangulation. (English) Zbl 1429.60068 Bernoulli 24, No. 4A, 2721-2751 (2018). MSC: 60J90 60K35 60D05 PDF BibTeX XML Cite \textit{D. Coupier} and \textit{C. Hirsch}, Bernoulli 24, No. 4A, 2721--2751 (2018; Zbl 1429.60068) Full Text: DOI arXiv Euclid
Hirsch, Christian; Brereton, Tim; Schmidt, Volker Percolation and convergence properties of graphs related to minimal spanning forests. (English) Zbl 1386.60044 Electron. J. Probab. 22, Paper No. 105, 21 p. (2017). MSC: 60D05 82B43 PDF BibTeX XML Cite \textit{C. Hirsch} et al., Electron. J. Probab. 22, Paper No. 105, 21 p. (2017; Zbl 1386.60044) Full Text: DOI Euclid
Kleindessner, Matthäus; von Luxburg, Ulrike Lens depth function and \(k\)-relative neighborhood graph: versatile tools for ordinal data analysis. (English) Zbl 1440.62400 J. Mach. Learn. Res. 18(2017-2018), Paper No. 58, 52 p. (2017). MSC: 62R07 62H22 68T05 PDF BibTeX XML Cite \textit{M. Kleindessner} and \textit{U. von Luxburg}, J. Mach. Learn. Res. 18, Paper No. 58, 52 p. (2017; Zbl 1440.62400) Full Text: arXiv Link
Ceyhan, Elvan An investigation of new graph invariants related to the domination number of random proximity catch digraphs. (English) Zbl 1258.60018 Methodol. Comput. Appl. Probab. 14, No. 2, 299-334 (2012). Reviewer: Ove Frank (Stockholm) MSC: 60D05 05C80 05C69 05B40 05B45 PDF BibTeX XML Cite \textit{E. Ceyhan}, Methodol. Comput. Appl. Probab. 14, No. 2, 299--334 (2012; Zbl 1258.60018) Full Text: DOI arXiv
Wan, Peng-Jun; Wang, Lixin; Yao, Frances; Yi, Chih-Wei On the longest RNG edge of wireless ad hoc networks. (English) Zbl 1170.90342 Discrete Math. Algorithms Appl. 1, No. 1, 25-43 (2009). MSC: 90B18 05C90 PDF BibTeX XML Cite \textit{P.-J. Wan} et al., Discrete Math. Algorithms Appl. 1, No. 1, 25--43 (2009; Zbl 1170.90342) Full Text: DOI
Zeng, Guangzhou A clustering method based on relative neighborhood graph. (Chinese. English summary) Zbl 0777.92027 Acta Math. Appl. Sin. 16, No. 2, 222-229 (1993). MSC: 91C20 62H30 05C90 PDF BibTeX XML Cite \textit{G. Zeng}, Acta Math. Appl. Sin. 16, No. 2, 222--229 (1993; Zbl 0777.92027)
Agarwal, Pankaj K.; Matoušek, Jiří Relative neighborhood graphs in three dimensions. (English) Zbl 0764.68105 Comput. Geom. 2, No. 1, 1-14 (1992). MSC: 68R10 68Q25 68U05 PDF BibTeX XML Cite \textit{P. K. Agarwal} and \textit{J. Matoušek}, Comput. Geom. 2, No. 1, 1--14 (1992; Zbl 0764.68105) Full Text: DOI
Chang, M. S.; Tang, C. Y.; Lee, R. C. T. Solving the Euclidean bottleneck biconnected edge subgraph problem by 2- relative neighborhood graphs. (English) Zbl 0768.68125 Discrete Appl. Math. 39, No. 1, 1-12 (1992). MSC: 68R10 05C45 68Q25 68P10 PDF BibTeX XML Cite \textit{M. S. Chang} et al., Discrete Appl. Math. 39, No. 1, 1--12 (1992; Zbl 0768.68125) Full Text: DOI
Agarwal, Pankaj K.; Matoušek, Jiří Relative neighborhood graphs in three dimensions. (English) Zbl 0829.68092 Frederickson, Greg (ed.), Proceedings of the third annual ACM-SIAM symposium on discrete algorithms, held January 27-29, 1992, in Orlando, FL, USA. Philadelphia, PA: SIAM. 58-65 (1992). MSC: 68R10 68Q25 68U05 PDF BibTeX XML Cite \textit{P. K. Agarwal} and \textit{J. Matoušek}, in: Proceedings of the third annual ACM-SIAM symposium on discrete algorithms, SODA '92, held January 27--29, 1992, in Orlando, FL, USA. Philadelphia, PA: SIAM; New York, NY: ACM. 58--65 (1992; Zbl 0829.68092)
Su, Tung-Hsin; Chang, Ruei-Chuan On constructing the relative neighborhood graphs in Euclidean k- dimensional spaces. (English) Zbl 0723.68104 Computing 46, No. 2, 121-130 (1991). MSC: 68U05 68Q25 PDF BibTeX XML Cite \textit{T.-H. Su} and \textit{R.-C. Chang}, Computing 46, No. 2, 121--130 (1991; Zbl 0723.68104) Full Text: DOI
Chang, M. S.; Tang, C. Y.; Lee, R. C. T. 20-relative neighborhood graphs are Hamiltonian. (English) Zbl 0755.05030 J. Graph Theory 15, No. 5, 543-557 (1991). Reviewer: S.Mihalas (Columbus / Ohio) MSC: 05C10 05C45 PDF BibTeX XML Cite \textit{M. S. Chang} et al., J. Graph Theory 15, No. 5, 543--557 (1991; Zbl 0755.05030) Full Text: DOI
Jaromczyk, Jerzy W.; Kowaluk, Mirosław Constructing the relative neighborhood graph in 3-dimensional Euclidean space. (English) Zbl 0757.05062 Discrete Appl. Math. 31, No. 2, 181-191 (1991). MSC: 05C35 PDF BibTeX XML Cite \textit{J. W. Jaromczyk} and \textit{M. Kowaluk}, Discrete Appl. Math. 31, No. 2, 181--191 (1991; Zbl 0757.05062) Full Text: DOI
Huang, Nen-Fu A divide-and-conquer algorithm for constructing relative neighborhood graph. (English) Zbl 0696.68059 BIT 30, No. 2, 196-206 (1990). MSC: 68Q25 68R10 68U99 PDF BibTeX XML Cite \textit{N.-F. Huang}, BIT 30, No. 2, 196--206 (1990; Zbl 0696.68059) Full Text: DOI
Ichino, Manabu; Sklansky, Jack The relative neighborhood graph for mixed feature variables. (English) Zbl 0563.68070 Pattern Recognition 18, 161-167 (1985). Reviewer: N.N.Necula MSC: 68T10 PDF BibTeX XML Cite \textit{M. Ichino} and \textit{J. Sklansky}, Pattern Recognition 18, 161--167 (1985; Zbl 0563.68070) Full Text: DOI
Supowit, Kenneth J. The relative neighborhood graph, with an application to minimum spanning trees. (English) Zbl 0625.68047 J. Assoc. Comput. Mach. 30, 428-448 (1983). MSC: 68R10 PDF BibTeX XML Cite \textit{K. J. Supowit}, J. Assoc. Comput. Mach. 30, 428--448 (1983; Zbl 0625.68047) Full Text: DOI
Toussaint, Godfried T. Computational geometric problems in pattern recognition. (English) Zbl 0503.68068 Pattern recognition, theory and applications, Proc. NATO Adv. Study Inst., Oxford 1981, 73-91 (1982). MSC: 68T10 68R99 PDF BibTeX XML
Toussaint, Godfried T.; Menard, Robert Fast algorithms for computing the planar relative neighborhood graph. (English) Zbl 0467.90028 Methods Oper. Res. 40, 425-428 (1981). MSC: 90B05 51M99 68Q25 51K05 05C35 05C05 PDF BibTeX XML Cite \textit{G. T. Toussaint} and \textit{R. Menard}, Methods Oper. Res. 40, 425--428 (1981; Zbl 0467.90028)