Shafranov, D. E. Numerical solution of the Dzektser equation with “white noise” in the space of smooth differential forms defined on a torus. (English) Zbl 07489411 J. Comput. Eng. Math. 7, No. 2, 58-65 (2020). MSC: 65-XX × Cite Format Result Cite Review PDF Full Text: DOI MNR
Zamyshlyaeva, Alyona A.; Sviridyuk, Georgy A. The linearized Benney-Luke mathematical model with additive white noise. (English) Zbl 1329.76044 Banasiak, Jacek (ed.) et al., Semigroups of operators – theory and applications. Selected papers based on the presentations at the conference, Bȩdlewo, Poland, October 6–10, 2013. Cham: Springer (ISBN 978-3-319-12144-4/hbk; 978-3-319-12145-1/ebook). Springer Proceedings in Mathematics & Statistics 113, 327-337 (2015). MSC: 76B15 47N20 60H30 × Cite Format Result Cite Review PDF Full Text: DOI
Zagrebina, S. A.; Konkina, A. S. The multipoint initial-final value condition for the Navier-Stokes linear model. (English) Zbl 1329.47084 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 8, No. 1, 132-136 (2015). MSC: 47N20 47D06 35Q30 76D05 × Cite Format Result Cite Review PDF Full Text: DOI
Zamyshlyaeva, A. A. An analytical study of the linearized Benney-Luke model. (Russian) Zbl 1340.34209 Mat. Zamet. YAGU 20, No. 2, 57-65 (2013). MSC: 34G10 47B99 × Cite Format Result Cite Review PDF
Sukacheva, Tamara Gennad’evna The thermoconvection problem for the linearizied model of the incompressible viscoelastic fluid of the nonzero order. (Russian. English summary) Zbl 1546.35165 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 37(254), No. 10, 40-53 (2011). MSC: 35Q35 76A10 80A19 35A01 35A02 × Cite Format Result Cite Review PDF Full Text: MNR
Sukacheva, T. G. A thermoconvection problem for the linearized model of the incompressible viscoelastic fluid. (Russian. English summary) Zbl 1225.35180 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 16(192), No. 5, 83-93 (2010). MSC: 35Q35 76A10 35Q79 35A01 × Cite Format Result Cite Review PDF
Zagrebina, S. A.; Yakupov, M. M. Existence and stability of solutions of a class of semilinear Sobolev-type equations. (Russian. English summary) Zbl 1242.34115 Vestn. Yuzhno-Ural. Gos. Univ. 27(127), Ser. Mat. Model. Program. 2, 10-18 (2008). Reviewer: Georgii Sviridyuk (Chelyabinsk) MSC: 34G20 34A09 34D20 × Cite Format Result Cite Review PDF
Sviridyuk, Georgy A. Phase spaces for a class of Sobolev-type equations. (English) Zbl 1160.35307 Ukr. Mat. Visn. 1, No. 2, 259-272 (2004) and in Ukr. Math. Bull. 1, No. 2, 265-278 (2004). MSC: 35A05 35R30 47D06 47N20 35K65 × Cite Format Result Cite Review PDF
Sviridyuk, G. A.; Zagrebina, S. A. Verigin’s problem for linear equations of the Sobolev type with relatively \(p\)-sectorial operators. (English. Russian original) Zbl 1081.47046 Differ. Equ. 38, No. 12, 1745-1752 (2002); translation from Differ. Uravn. 38, No. 12, 1646-1652 (2002). Reviewer: Luigi Barletti (Firenze) MSC: 47D06 34G10 47N20 × Cite Format Result Cite Review PDF Full Text: DOI