×

Approximate analytical solutions for the relativistic oscillator using a linearized harmonic balance method. (English) Zbl 1170.34321

Summary: The analytical approximate technique developed by B. S. Wu, W. P. Sun and C. W. Lim [Int. J. Non-Linear Mech. 41, No. 6–7, 766–774 (2006; Zbl 1160.70340)] for conservative oscillators with odd nonlinearity is used to construct approximate frequency-amplitude relations and periodic solutions to the relativistic oscillator. By combining Newton’s method with the method of harmonic balance, analytical approximations to the oscillation period and periodic solutions are constructed for this oscillator. The approximate periods obtained are valid for the complete range of oscillation amplitudes, \(A\), and the discrepancy between the second approximate period and the exact one never exceeds 1.24%, and it tends to 1.09% when \(A\) tends to infinity. Excellent agreement of the approximate periods and periodic solutions with the exact ones are demonstrated and discussed.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics
70K99 Nonlinear dynamics in mechanics

Citations:

Zbl 1160.70340
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nayfeh A. H., Problems in Perturbations (1985)
[2] DOI: 10.1142/2778 · doi:10.1142/2778
[3] DOI: 10.1103/PhysRevLett.90.174301 · doi:10.1103/PhysRevLett.90.174301
[4] DOI: 10.1016/j.mechrescom.2005.06.012 · Zbl 1192.70026 · doi:10.1016/j.mechrescom.2005.06.012
[5] DOI: 10.1016/S0096-3003(03)00341-2 · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[6] He J. H., Int. J. Nonlin. Sci. Numer. Simulat. 6 pp 207–
[7] DOI: 10.1142/S0217979206034819 · doi:10.1142/S0217979206034819
[8] Cai X. C., Int. J. Nonlin. Sci. Numer. Simulat. 7 pp 109–
[9] DOI: 10.1016/j.chaos.2005.08.180 · Zbl 1142.65418 · doi:10.1016/j.chaos.2005.08.180
[10] DOI: 10.1088/0143-0807/28/1/010 · Zbl 1119.70017 · doi:10.1088/0143-0807/28/1/010
[11] Beléndez A., Int. J. Nonlin. Sci. Numer. Simulat. 8 pp 79–
[12] DOI: 10.1016/S0020-7462(00)00116-5 · Zbl 1116.34320 · doi:10.1016/S0020-7462(00)00116-5
[13] DOI: 10.1016/S0020-7462(00)00117-7 · Zbl 1116.34321 · doi:10.1016/S0020-7462(00)00117-7
[14] He J. H., Int. J. Nonlin. Sci. Numer. Simulat. 2 pp 317–
[15] DOI: 10.1016/j.physleta.2003.08.001 · Zbl 1034.34010 · doi:10.1016/j.physleta.2003.08.001
[16] Abd El-Latif G. M., Appl. Math. Comput. 152 pp 821–
[17] DOI: 10.1088/0143-0807/26/6/013 · Zbl 1080.70014 · doi:10.1088/0143-0807/26/6/013
[18] Ramos J. I., Appl. Math. Comput. 193 pp 303–
[19] DOI: 10.1016/S0022-460X(84)80025-5 · doi:10.1016/S0022-460X(84)80025-5
[20] DOI: 10.1006/jsvi.2000.3502 · Zbl 1237.65082 · doi:10.1006/jsvi.2000.3502
[21] DOI: 10.1016/j.chaos.2005.04.061 · Zbl 1083.37041 · doi:10.1016/j.chaos.2005.04.061
[22] DOI: 10.1016/j.jsv.2005.12.025 · Zbl 1243.34049 · doi:10.1016/j.jsv.2005.12.025
[23] DOI: 10.1088/0143-0807/27/3/008 · doi:10.1088/0143-0807/27/3/008
[24] DOI: 10.1016/j.jsv.2005.10.002 · Zbl 1243.34048 · doi:10.1016/j.jsv.2005.10.002
[25] DOI: 10.1016/j.jsv.2006.12.011 · doi:10.1016/j.jsv.2006.12.011
[26] He J. H., Int. J. Nonlin. Sci. Numer. Simulat. 2 pp 257–
[27] DOI: 10.1177/107754630100700501 · Zbl 1015.70019 · doi:10.1177/107754630100700501
[28] Shou D. H., Int. J. Nonlin. Sci. Numer. Simulat. 8 pp 121–
[29] DOI: 10.1016/S1007-5704(99)90065-5 · Zbl 0932.34058 · doi:10.1016/S1007-5704(99)90065-5
[30] DOI: 10.1023/A:1010349221054 · Zbl 0986.70016 · doi:10.1023/A:1010349221054
[31] DOI: 10.1016/S0375-9601(03)00513-9 · Zbl 1055.70009 · doi:10.1016/S0375-9601(03)00513-9
[32] DOI: 10.1016/S0020-7462(03)00071-4 · Zbl 1348.34074 · doi:10.1016/S0020-7462(03)00071-4
[33] DOI: 10.1016/j.jsv.2004.04.030 · Zbl 1236.34052 · doi:10.1016/j.jsv.2004.04.030
[34] DOI: 10.1016/j.jsv.2006.02.020 · Zbl 1243.34021 · doi:10.1016/j.jsv.2006.02.020
[35] He J. H., Non-perturbative methods for strongly nonlinear problems (2006)
[36] DOI: 10.1142/S0217979206033796 · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[37] DOI: 10.1016/j.cam.2006.07.020 · Zbl 1120.65084 · doi:10.1016/j.cam.2006.07.020
[38] DOI: 10.1119/1.17513 · doi:10.1119/1.17513
[39] J. L. Synge, Encyclopeadia of Physics III/1, ed. S. Flügge (Springer, Berlin, 1960) pp. 210–211.
[40] Goldstein H., Classical Mechanics (1981)
[41] DOI: 10.1006/jsvi.1997.1453 · Zbl 1235.70044 · doi:10.1006/jsvi.1997.1453
[42] DOI: 10.1016/j.ijnonlinmec.2006.01.006 · Zbl 1160.70340 · doi:10.1016/j.ijnonlinmec.2006.01.006
[43] Milne-Thomson L. M., Handbook of Mathematical Functions (1972) · Zbl 0239.73025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.