×

An analytical description of three-dimensional heliocentric solar sail orbits. (English) Zbl 1365.70027

Summary: This paper introduces a simple analytical approximation to three-dimensional heliocentric solar sail orbits where the only forces considered are solar gravity and solar radiation. The approximation is based upon the previously studied hodograph transformation and provides a description of the inclination, longitude of ascending node and true latitude for a specific set of initial conditions. It is shown that the rotational symmetry of a heliocentric orbit allows this specific solution to be mapped onto a solution with arbitrary initial conditions. The approximation is then compared to the numerical results for a solar sail on an Earth escape trajectory with an area to mass ratio up to twice as high as current technology allows.

MSC:

70M20 Orbital mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bacon, R.H.: Logarithmic spiral: an ideal trajectory for the interplanetary vehicle with engines of low sustained thrust. Am. J. Phys. 27(3), 164-165 (1959) · Zbl 0083.20303 · doi:10.1119/1.1934788
[2] Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. Amerian Institute of Aeronautics and Astrodynamics, Virginia (1999) · Zbl 0972.70001
[3] Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press Inc, New York (1961) · Zbl 0132.23506
[4] Dachwald, B.: Interplanetary mission analysis for non-perfectly reflecting solar sailcraft using evolutionary neurocontrol. In: Astrodynamics Specialist Conference and Exhibit, 3-7 Aug 2003, Montana (2003) · Zbl 1203.70031
[5] Dachwald, B.: Optimal solar sail trajectories for missions to the outer solar system. In: Astrodynamics Specialist Conference and Exhibit, 16-19 Aug 2004. Providence, Rhode Island (2004)
[6] Farres, A., Jorba, À.: Dynamical system approach for the station keeping of a solar sail. J. Astronaut. Sci. 58(2), 199-230 (2008) · doi:10.1007/BF03256549
[7] Garwin, R.: Solar sailing—a practical method of propulsion within the solar system. Jet Propuls. 28, 188-190 (1958) · doi:10.2514/8.7271
[8] Kezerashvili, R.Y., Vázquez-Poritz, J.F.: Effect of a drag force due to absorption of solar radiation on solar sail orbital dynamics. Acta Astronaut 84, 206-214 (2013) · doi:10.1016/j.actaastro.2012.11.005
[9] Kezerashvili, R.Y., Vázquez-Poritz, J.F.: Drag force on solar sails due to absorption of solar radiation. Adv. Space Res. 48(11), 1778-1784 (2011) · doi:10.1016/j.asr.2011.07.015
[10] Leipold, M.: To the Sun and Pluto with solar sails and micro-sciencecraft. Acta Astronaut. 45(4-9), 549-555 (1999) · doi:10.1016/S0094-5765(99)00175-7
[11] London, H.S.: Some exact solutions of the equations of motion of a solar sail with constant sail setting. Am. Rocket Soc. J. 30, 198-200 (1960) · Zbl 0090.23503
[12] Macdonald, M., McInnes, C.R., Dachwald, B.: Heliocentric solar sail orbit transfers with locally optimal control laws. J. Spacecr. Rockets 44(1), 273-276 (2007) · doi:10.2514/1.17297
[13] McInnes, C.R., McDonald, A.J.C., Simmons, J.F.L., MacDonald, E.W.: Solar sail parking in restricted three-body systems. J. Guid. Control Dyn. 17(2), 399-406 (1994) · Zbl 0795.70017 · doi:10.2514/3.21211
[14] McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer, Chichester (1999) · doi:10.1007/978-1-4471-3992-8
[15] McInnes, C.R.: Solar sail mission applications for non-Keplerian orbits. Acta Astronaut 45(4-9), 567-575 (1999) · doi:10.1016/S0094-5765(99)00177-0
[16] McInnes, C.R., Macdonald, M.: Realistic Earth escape strategies for solar sailing. J. Guid. Control Dyn. 28(2), 315-323 (2005) · doi:10.2514/1.13505
[17] Planetary Society: LightSail (2014). http://sail.planetary.org/ · Zbl 0394.70023
[18] Sauer, C.G.: Solar sail trajectories for solar polar and interstellar probe missions. Astrodynamics 1999, 1-16 (2000)
[19] Surrey Space Centre: (2014) http://www.surrey.ac.uk/ssc/research/space_vehicle_control/index.htm
[20] Szebehely, V.G.: Celestial Mechanics and Astrodynamics. Academic Press, New York (1964) · doi:10.2514/4.864889
[21] Tsu, T.C.: Interplanetary travel by solar sail. Am. Rocket Soc. J. 29, 422-427 (1959)
[22] Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., et al.: Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut. 69(910), 833-840 (2011) · doi:10.1016/j.actaastro.2011.06.005
[23] Van Der Ha, J.C., Modi, V.J.: Long-term evaluation of three-dimensional heliocentric solar sail trajectories with arbitrary fixed sail setting. Celest. Mech. 19(2), 113-138 (1978) · Zbl 0394.70023 · doi:10.1007/BF01796085
[24] Vulpetti, G.: 3D high-speed escape heliocentric trajectories by all-metallic-sail low-mass sailcraft. Acta Astronaut. 39(1-4), 161-170 (1996) · doi:10.1016/S0094-5765(96)00133-6
[25] Vulpetti, G.: Sailcraft at high speed by orbital angular momentum reversal. Acta Astronaut. 40(10), 733-758 (1997) · doi:10.1016/S0094-5765(97)00153-7
[26] Vulpetti, G.: General 3D h-reversal trajectories for high-speed sailcraft. Acta Astronaut. 44(1), 67-73 (1999) · doi:10.1016/S0094-5765(99)00016-8
[27] Waters, T.J., McInnes, C.R.: Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. J. Guid. Control Dyn. 30(3), 687-693 (2007) · doi:10.2514/1.26232
[28] Waters, T.J., McInnes, C.R.: Solar sail dynamics in the three-body problem: homoclinic paths of points and orbits. Int. J. Non Linear Mech. 43(6), 490-496 (2008) · Zbl 1203.70031 · doi:10.1016/j.ijnonlinmec.2008.01.001
[29] Waters, T.J., McInnes, C.R.: Invariant manifolds and orbit control in the solar sail three-body problem. J. Guid Control Dyn. 31(3), 554-562 (2008) · doi:10.2514/1.32292
[30] Wokes, S., Palmer, P., Roberts, M.: Classification of two-dimensional fixed-sun-angle solar sail trajectories. J. Guid. Control Dyn. 31(5), 1249-1258 (2008) · doi:10.2514/1.34466
[31] Zeng, X., Baoyin, H., Li, J., Gong, S.: Feasibility analysis of the angular momentum reversal trajectory via hodograph method for high performance solar sails. Sci. China Technol. Sci. 54(11), 2951-2957 (2011) · doi:10.1007/s11431-011-4540-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.