×

A novel approach for dynamic hand gesture recognition using contour-based similarity images. (English) Zbl 1329.68253

Summary: A novel approach is proposed for the recognition of moving hand gestures based on the representation of hand motions as contour-based similarity images (CBSIs). The CBSI was constructed by calculating the similarity between hand contours in different frames. The input CBSI was then matched with CBSIs in the database to recognize the hand gesture. The proposed continuous hand gesture recognition algorithm can simultaneously divide the continuous gestures into disjointed gestures and recognize them. No restrictive assumptions were considered for the motion of the hand between the disjointed gestures. The proposed algorithm was tested using hand gestures from American Sign Language and the results showed a recognition rate of 91.3% for disjointed gestures and 90.4% for continuous gestures. The experimental results illustrate the efficiency of the algorithm for noisy videos.

MSC:

68T45 Machine vision and scene understanding
62H35 Image analysis in multivariate analysis
68T10 Pattern recognition, speech recognition
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.5121/ijcses.2011.2109 · doi:10.5121/ijcses.2011.2109
[2] Chum O., Two-View Geometry Estimation by Random Sample and Consensus (2005)
[3] Derpanis K.G., A Review of Vision-Based Hand Gestures (2004)
[4] DOI: 10.1145/358669.358692 · doi:10.1145/358669.358692
[5] Heap A., Interface to Human and Virtual Worlds (1995)
[6] Huttenlocher D.P., IEEE Trans. Pattern Anal. Mach. Intell pp 850– (15)
[7] DOI: 10.1023/A:1013200319198 · Zbl 1012.68721 · doi:10.1023/A:1013200319198
[8] Juan L., Int. J. Image Process 3 pp 143– (2009)
[9] DOI: 10.1016/j.eswa.2010.08.056 · doi:10.1016/j.eswa.2010.08.056
[10] DOI: 10.1109/TSMCB.2010.2065802 · doi:10.1109/TSMCB.2010.2065802
[11] DOI: 10.1007/s10489-010-0251-2 · doi:10.1007/s10489-010-0251-2
[12] Li H., International Workshop on Human Activity Recognition and Modelling (HARAM) pp 35– (2005)
[13] DOI: 10.1016/j.patcog.2010.12.014 · Zbl 05937836 · doi:10.1016/j.patcog.2010.12.014
[14] DOI: 10.1109/DICTA.2005.1578108 · doi:10.1109/DICTA.2005.1578108
[15] DOI: 10.1023/B:VISI.0000029664.99615.94 · Zbl 02244065 · doi:10.1023/B:VISI.0000029664.99615.94
[16] DOI: 10.1109/GMAI.2006.48 · doi:10.1109/GMAI.2006.48
[17] DOI: 10.1109/TSMCC.2007.893280 · doi:10.1109/TSMCC.2007.893280
[18] Rousseeuw P.J., Robust Regression and Outlier Detection (2005) · Zbl 0711.62030
[19] DOI: 10.1109/TPAMI.2007.1041 · Zbl 05340884 · doi:10.1109/TPAMI.2007.1041
[20] Torr P.H.S., Sens. Fusion pp 432– (2059)
[21] DOI: 10.1006/cviu.2000.0895 · Zbl 1011.68547 · doi:10.1006/cviu.2000.0895
[22] DOI: 10.1016/S0262-8856(03)00137-9 · doi:10.1016/S0262-8856(03)00137-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.