×

\(C^{0}\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth-order elliptic problem. (English) Zbl 1276.65078

The authors prove an abstract convergence theorem that gives a theoretical frame to construct \(C^{0}\)-nonconforming elements for a fourth-order elliptic problem. The shape function space is divided into two subspaces by using bubble functions. One subspace is responsible for the \(C^{0}\)-continuity of the shape functions and for getting the approximation error. The other one (containing the bubble functions) is responsible for the continuity in the mean of the normal derivatives of the shape functions across the elements and for getting the consistence error. The authors construct a tetrahedral \(C^{0}\)-nonconforming element and two cuboid \(C^{0}\)-nonconforming elements for the three-dimensional fourth-order problem. It is also proved that one element is of first order convergence and other two are of second order convergence. The authors claim that for the first time, a second-order convergent nonconforming element for the fourth-order elliptic problem is constructed in this paper.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J30 Higher-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R.A., Fournier, J.J.F.: Sobolev spaces, 2nd edn. In: Pure and applied mathematics series, vol. 140. Academic press, New York (2003) · Zbl 1098.46001
[2] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008) · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[3] Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 28, 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[4] Chen, S.C., Shi, Z.C.: Double set parameter method of constructing a stiffness matrix. Chin. J. Numer. Math. Appl. 4, 286-296 (1991) · Zbl 0850.73278
[5] Chen, S.C., Yang, Y.Q., Mao, S.P.: Anisotropic conforming rectangular elements for elliptic problems of any order. Appl. Numer. Math. 59, 1137-1148 (2009) · Zbl 1161.65084 · doi:10.1016/j.apnum.2008.05.004
[6] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[7] Huang, J.G., Guo, L., Shi, Z.C.: Vibration analysis of Kirchhoff plates by the Morley element method. J. Comput. Appl. Math. 213, 14-34 (2008) · Zbl 1129.74046 · doi:10.1016/j.cam.2006.12.026
[8] Landau, L., Lifschitz, E.: Theory of Elasticity. Pregamon Press, London (1959)
[9] Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problems. RAIRO. Anal. Numer. 9, 9-53 (1975) · Zbl 0319.73042
[10] Long, Y.Q., Xin, K.Q.: Generalized conforming elements. J. Civ. Eng. 1, 1-14 (1987) · doi:10.1061/(ASCE)0887-3801(1987)1:1(1)
[11] Nilssen, T.K., Tai, X.C., Winther, R.: A robust nonconforming H2-element. Math. Comp. 70, 489-505 (2001) · Zbl 0965.65127 · doi:10.1090/S0025-5718-00-01230-8
[12] Shi, Z.C.: The generalized patch test for Zienkiewicz’s triangle. J. Comp. Math. 2, 279-286 (1984) · Zbl 0564.73069
[13] Shi, Z.C.: The F-E-M-Test for nonconforming finite elements. Math. Comp. 49, 391-405 (1987) · Zbl 0648.65075
[14] Shi, Z.C., Chen, S.C.: Convergence of a nine parameter generalized conforming element. Acta Numer. Math 15, 193-203 (1991). (in Chinese) · Zbl 0850.73277
[15] Stummel, F.: The generalized patch test. SIAM J. Numer. Anal. 16, 449-471 (1979) · Zbl 0418.65058 · doi:10.1137/0716037
[16] Tai, X.C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43, 287-306 (2006) · Zbl 1168.76311 · doi:10.1007/s10092-006-0124-6
[17] Tang, L.M., Chen, W.J., Liu, Y.X.: Quasi-conforming elements in finite element analysis. J. Dalian Inst. Tech. 19, 19-35 (1980). (in Chinese)
[18] Veubeke, F.D.: Variational principles and the patch test. Int. J. Numer. Meths. Eng. 8, 783-801 (1974) · Zbl 0284.73043 · doi:10.1002/nme.1620080408
[19] Wang, M., Shi, Z.C., Xu, J.C.: A new class of Zienkiewicz-type nonconforming element in any dimensions. Numer. Math. 106, 335-347 (2007) · Zbl 1118.65124 · doi:10.1007/s00211-007-0063-4
[20] Wang, M., Shi, Z.C., Xu, J.C.: Some n-rectangular nonconforming elements for fourth order elliptic equations. J. Comp. Math. 25(4), 408-420 (2007) · Zbl 1142.65451
[21] Wang, M., Xu, J.C.: Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comp. 76, 1-18 (2007) · Zbl 1125.65105 · doi:10.1090/S0025-5718-06-01889-8
[22] Wang, M., Xu, J.C.: The Morly element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155-169 (2006) · Zbl 1092.65103 · doi:10.1007/s00211-006-0685-y
[23] Zenicek, A.: Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory 7, 334-351 (1973) · Zbl 0279.41005 · doi:10.1016/0021-9045(73)90036-1
[24] Zhang, H.Q., Wang, M.: The Mathematical Theory of Finite Elements. Scientic Press, Bejing (1991). (in Chinese)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.