×

Scaling instability in buckling of axially compressed cylindrical shells. (English) Zbl 1331.74111

Summary: In this paper, we continue the development of mathematically rigorous theory of “near-flip” buckling of slender bodies of arbitrary geometry, based on hyperelasticity. In order to showcase the capabilities of this theory, we apply it to buckling of axially compressed circular cylindrical shells. The theory confirms the classical formula for the buckling load, whereby the perfect structure buckles at the stress that scales as the first power of shell’s thickness. However, in the case of imperfections of load, the theory predicts scaling instability of the buckling stress. Depending on the type of load imperfections, buckling may occur at stresses that scale as thickness to the power 1.5 or 1.25, corresponding to the lower and upper ends, respectively, of the historically accumulated experimental data.

MSC:

74K25 Shells
26D10 Inequalities involving derivatives and differential and integral operators
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
49S05 Variational principles of physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Almroth, B.O.: Postbuckling behaviour of axially compressed circular cylinders. AIAA J. 1, 627-633 (1963) · doi:10.2514/3.1605
[2] Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates, and Shells. McGraw-Hill, New York (1975) · Zbl 0352.73040
[3] Budiansky, B., Hutchinson, J.: A Survey of Some Buckling Problems. Technical report CR-66071, NASA, February (1966) · Zbl 1219.74027
[4] Budiansky, B., Hutchinson, J.: Buckling: progress and challenge. In: Besseling, J.F., van der Heijden, (eds.) Trends in Solid Mechanics 1979. Proceedings of the Symposium Dedicated to the 65 th Birthday of W. T. Koiter, pp. 185-208. Delft University, Delft University Press Sijthoff & Noordhoff International Publishers (1979) · Zbl 0427.73022
[5] Calladine, C., Barber, J.: Simple experiments on self-weight buckling of open cylindrical shells. J. Appl. Mech. 37(4), 1150-1151 (1970) · doi:10.1115/1.3408677
[6] Calladine, CR; Durban, D. (ed.); Givoli, G. (ed.); Simmonds, JG (ed.), A shell-buckling paradox resolved, 119-134 (2002), Dordrecht · doi:10.1007/0-306-46954-5_8
[7] Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, Additamentum I. De curvis elasticis. Bousquet, Lausannae et Genevae, 1744. Opera Omnia, Ser. I, Vol. 24. English translation by Oldfather, W. A. and Ellis, C. A. and Brown, D. M. in Isis 20(1), 72-160 (1933) · Zbl 0788.01072
[8] Fosdick, R., Foti, P., Fraddosio, A., Piccioni, M.D.: A lower bound estimate of the critical load for compressible elastic solids. Continuum Mech. Thermodyn. 22(2), 77-97 (2010) · Zbl 1234.74014 · doi:10.1007/s00161-009-0133-1
[9] Friedrichs, K.O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. Math. 48(2), 441-471 (1947) · Zbl 0029.17002 · doi:10.2307/1969180
[10] Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461-1506 (2002) · Zbl 1021.74024 · doi:10.1002/cpa.10048
[11] Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183-236 (2006) · Zbl 1100.74039 · doi:10.1007/s00205-005-0400-7
[12] Goldenveizer, A.L.: Mathematical rigidity of surfaces and physical rigidity of shells. Mech. Solids 14(6), 65-77 (1979)
[13] Gorman, D.J., Evan-Iwanowski, R.M.: An analytical and experimental investigation of the effects of large prebuckling deformations on the buckling of clamped thin-walled circular cylindrical shells subjected to axial loading and internal pressure. Dev. Theor. Appl. Mech. 4, 415-426 (1970)
[14] Grabovsky, Y., Harutyunyan, D.: Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells. SIAM J. Math Anal. 46(5), 3277-3295 (2014) · Zbl 1307.74049 · doi:10.1137/130948999
[15] Grabovsky, Y., Harutyunyan, D.: Rigorous derivation of the buckling load in axially compressed circular cylindrical shells. J. Elast. 120(2), 249-276 (2015) · Zbl 1440.74151 · doi:10.1007/s10659-015-9513-x
[16] Grabovsky, Y., Truskinovsky, L.: The flip side of buckling. Contin. Mech. Thermodyn. 19(3-4), 211-243 (2007) · Zbl 1160.74360 · doi:10.1007/s00161-007-0044-y
[17] Griggs, J.: Experimental study of buckling of thin-walled cylindrical shells. Masters of arts thesis, Temple University, Philadelphia, PA (2010)
[18] Hill, R.: On the elasticity and stability of perfect crystals at finite strain. Math. Proc. Camb. Philos. Soc. 77, 225-240 (1975) · Zbl 0305.73028 · doi:10.1017/S0305004100049549
[19] Holden, J.T.: Estimation of critical loads in elastic stability theory. Arch. Ration. Mech. Anal. 17, 171-183 (1964) · Zbl 0125.13005 · doi:10.1007/BF00282436
[20] Horák, J., Lord, G.J., Peletier, M.A.: Cylinder buckling: the mountain pass as an organizing center. SIAM J. Appl. Math. 66(5), 1793-1824 (2006). (electronic) · Zbl 1134.35042 · doi:10.1137/050635778
[21] Hunt, G., Lord, G., Champneys, A.: Homoclinic and heteroclinic orbits underlying the post-buckling of axially-compressed cylindrical shells. Comput. Methods Appl. Mech. Eng. 170(3), 239-251 (1999) · Zbl 0958.74021 · doi:10.1016/S0045-7825(98)00197-2
[22] Hunt, G., Lord, G., Peletier, M.: Cylindrical shell buckling: a characterization of localization and periodicity. Discrete Continuous Dyn. Syst. Ser. B 3(4), 505-518 (2003) · Zbl 1046.74017 · doi:10.3934/dcdsb.2003.3.505
[23] Hunt, G., Neto, E.L.: Localized buckling in long axially-loaded cylindrical shells. J. Mech. Phys. Solids 39(7), 881-894 (1991) · Zbl 0825.73249 · doi:10.1016/0022-5096(91)90010-L
[24] Hunt, G.W., Neto, E.L.: Maxwell critical loads for axially loaded cylindrical shells. Trans. ASME 60, 702-706 (1993) · doi:10.1115/1.2900861
[25] Koiter, W.T.: On the Stability of Elastic Equilibrium. PhD thesis, Technische Hogeschool, Technological University of Delft, Delft, Holland (1945)
[26] Lancaster, E., Calladine, C., Palmer, S.: Paradoxical buckling behaviour of a thin cylindrical shell under axial compression. Int. J. Mech. Sci. 42(5), 843-865 (2000) · Zbl 0948.74500 · doi:10.1016/S0020-7403(99)00030-2
[27] Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl-von Kármán equations for plates with incompatible strains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2126), 402-426 (2011). With supplementary data available online · Zbl 1219.74027 · doi:10.1098/rspa.2010.0138
[28] Lewicka, M., Mora, M.G., Pakzad, M.R.: The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Arch. Ration. Mech. Anal. 200(3), 1023-1050 (2011) · Zbl 1291.74130 · doi:10.1007/s00205-010-0387-6
[29] Lord, G., Champneys, A., Hunt, G.: Computation of localized post buckling in long axially compressed cylindrical shells. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 355(1732), 2137-2150 (1997) · Zbl 0894.73040 · doi:10.1098/rsta.1997.0114
[30] Lorenz, R.: Die nicht achsensymmetrische Knickung dünnwandiger Hohlzylinder. Phys. Z. 12(7), 241-260 (1911) · JFM 42.0879.02
[31] Mandal, P., Calladine, C.: Buckling of thin cylindrical shells under axial compression. Int. J. Solids Struct. 37(33), 4509-4525 (2000) · Zbl 0952.74522 · doi:10.1016/S0020-7683(99)00160-2
[32] Mora, M.G., Müller, S.: A nonlinear model for inextensible rods as a low energy \[\Gamma\] Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(3), 271-293 (2004) · Zbl 1109.74028
[33] Southwell, R.V.: LXX. On the collapse of tubes by external pressure. Philos. Mag. Ser. 6 25(149), 687-698 (1913a) · JFM 44.0931.02
[34] Southwell, R.V.: XXXVIII. On the collapse of tubes by external pressure—II. Lond. Edinb. Dublin Philos. Mag. J. Sci. 26(153), 502-511 (1913b) · JFM 44.0932.01
[35] Southwell, R.V.: LX. On the collapse of tubes by external pressure—III. Lond. Edinb. Dublin Philos. Mag. J. Sci. 29(169), 67-77 (1915) · JFM 45.1038.02
[36] Tennyson, R.C.: An Experimental Investigation of the Buckling of Circular Cylindrical Shells in Axial Compression Using the Photoelastic Technique. Technical report 102, University of Toronto, Toronto, ON, Canada (1964)
[37] Timoshenko, S.: Towards the question of deformation and stability of cylindrical shell. Vesti Obshestva Tekhnologii 21, 785-792 (1914)
[38] Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, vol. 2, 2nd edn. McGraw-Hill, New York (1959) · Zbl 0114.40801
[39] von Kármán, T., Dunn, L.G., Tsien, H.-S.: The influence of curvature on the buckling characteristics of structures. J. Aeronaut. Sci. 7, 276-289 (1940) · JFM 66.1063.01 · doi:10.2514/8.1123
[40] Von Mises, R.: Der kritische aussendruck zylindrischer Rohre. VDI-Zeitschrift 58(19), 750-755 (1914)
[41] Weingarten, V.I., Morgan, E.J., Seide, P.: Elastic stability of thin-walled cylindrical and conical shells under axial compression. AIAA J 3, 500-505 (1965) · doi:10.2514/3.2893
[42] Yamaki, N.: Elastic Stability of Circular Cylindrical Shells, vol. 27. Appl. Math. Mech. North Holland (1984) · Zbl 0544.73062
[43] Zhu, E., Mandal, P., Calladine, C.: Buckling of thin cylindrical shells: an attempt to resolve a paradox. Int. J. Mech. Sci. 44(8), 1583-1601 (2002) · Zbl 1032.74562 · doi:10.1016/S0020-7403(02)00065-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.